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Abstract 
Infants portray suggestive unique cries while sick, having belly pain, discom-
fort, tiredness, attention and desire for a change of diapers among other needs. 
There exists limited knowledge in accessing the infants’ needs as they only 
relay information through suggestive cries. Many teenagers tend to give birth at 
an early age, thereby exposing them to be the key monitors of their own babies. 
They tend not to have sufficient skills in monitoring the infant’s dire needs, 
more so during the early stages of infant development. Artificial intelligence 
has shown promising efficient predictive analytics from supervised, and un-
supervised to reinforcement learning models. This study, therefore, seeks to 
develop an android app that could be used to discriminate the infant audio cries 
by leveraging the strength of convolution neural networks as a classifier mod-
el. Audio analytics from many kinds of literature is an untapped area by re-
searchers as it’s attributed to messy and huge data generation. This study, there-
fore, strongly leverages convolution neural networks, a deep learning model that 
is capable of handling more than one-dimensional datasets. To achieve this, the 
audio data in form of a wave was converted to images through Mel spectrum 
frequencies which were classified using the computer vision CNN model. The 
Librosa library was used to convert the audio to Mel spectrum which was then 
presented as pixels serving as the input for classifying the audio classes such as 
sick, burping, tired, and hungry. The study goal was to incorporate the model 
as an android tool that can be utilized at the domestic level and hospital facil-
ities for surveillance of the infant’s health and social needs status all time 
round. 
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1. Introduction 

Every year, millions of babies are born across the globe. The challenge of taking 
care of these babies has been highlighted to be tougher than the actual process of 
birthing. The study has emphasized this difficulty, especially for first-time parents. 
When babies are born, their only means of communication is through crying. Fail-
ure to understand the meaning of infant cries has proved to be the biggest chal-
lenge in taking care of infants. 

According to the report released by Ely and Driscoll, 47% of infants lose their 
lives due to misunderstandings between caregivers and infants [1]. Globally, there 
are approximately 6700 newborn deaths every day. This has been attributed to the 
minimal chances of infant survival due to misinterpretation of their needs. Accord-
ing to the literature, there exists an untapped gap in communication between in-
fants and caregivers. The language that infants speak primarily relies on sugges-
tive cries. The misunderstanding of the infants’ needs has escalated more com-
plex misfortunes for the infants. Take for example a situation when an infant 
needs a diaper change, and the caregivers insist on giving them more food. 
In fact, the misunderstanding of the infants’ needs not only leads to a higher rise 
of infant mortalities, but also encroaches on the rights and well-being of the in-
fants. 

Previous research looked to use DNNs in modeling audio classification. When 
DNNs are used, the spatial topology of the input which is an important attribute 
is disregarded. When these spatial correlations are not utilized, they inherently 
don’t model the input topology causing the network to be dense hence increas-
ing computation and complexity [2]. Moreover, previous studies specifically se-
lected audio recordings under a conducive balance of external sounds and with a 
short recording duration. This is never the case under normal circumstances. 
Therefore, these studies outlined inconsistencies with the algorithms. 

This study, therefore, potentially comes in to solve these uncertainties in mi-
sunderstanding the infants’ needs by leveraging the power of convolution neural 
networks to classify the suggestive cries. Moreover, this study also embraces the 
sustainable development goal and vision 2030 for Kenya in particular through 
the eradication of factors that compromise the infant’s health. 

Machine learning algorithms have been used to solve health problems in the 
past decade, but very few scientists have presented their solutions in the area of audio 
analytics. Perhaps the main reason for modelling audio analytics is the black-box 
nature of the deep learning algorithms and the complexities of extracting features 
from audio data. The computer vision based on deep learning is really intense based 
on computational power and deployment. This study, therefore, leverages the skills 
of statistics, mathematics and computer science to solve the menace of the limited 
understanding of infant language through the deployment of a simple, accessible 
android infant auditory monitoring application.  

2. Background 

Research on infant cries started as early as the 1960s when the four types of 
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cries—hunger, pain, pleasure, and birth were auditorily identified by a research 
group known as Wasz-Hockert [3]. Researchers determined that trained adult 
listeners could auditorily differentiate the types of infant cries. However, training 
of human perception for infant cry takes a longer time and is more difficult than 
training a machine learning model. According to Mukhopadhyay’s study, 33.09% 
is the highest classification accuracy that can be achieved when a group of people 
is trained to recognize some cry sound.  

Studies regarding infant crying in the past decades have narrowed down to two 
main perspectives, that is, classification or interpretation of cries and detection 
or recognition of cries through audio signals. Some studies tried to identify and 
interpret cries associated with certain statuses based on acoustic signals. In a study 
conducted by Ntalampiras, he experimented with various machine learning al-
gorithms, that is, Random Forest, Support Vector Machine, Reservoir Network, 
and Multi-layer Perceptron with the aim of using audio-based features to classify 
pathological states of cry [4]. The audio-based features included Mel frequency 
cepstral coefficients and temporal modulation features. In his report, the Ran-
dom Forest classifier had the best rate performance of 84.5%. In addition to that, 
Al-Azzawi aiming to detect infant cry based on various physiological statuses, 
proposed an automatic system that used fuzzy transform to extract features and 
then feed them into a Multi-Layer Perceptron (MLP) Artificial Neural Network 
(ANN). 

Even so, in the past years, researchers have applied different methods with the 
aim of achieving robust auditory classification to overcome the primary envi-
ronmental and demographic obstacles. Techniques such as the HMM, matrix 
factorization, Hough transform and-vector restricted DNNs and CNNs have 
been used within the domain of classifying audio. Researchers have also experi-
mented with classifying audio by representing the audio in form of spectrograms 
[5]. 

Recent works revolving around the use of CNN for audio classification have 
shown improved efficiency. CNNs with spectrograms for audio classification have 
accounted for spatial differences in their input by using locally connected sparse 
structures to improve accuracy. It can model frequency and time components be-
tween adjacent audio samples. Thus, CNN’s have outperformed DNNs in mod-
eling audio classification systems.  

Summary of Research Gaps from Previous Studies 

In theory, GMM-HMMs can complete a gamut of precision to model probabilis-
tic distribution. Consequently, to enhance speed and accuracy the focus has been 
on constraining GMMs. As a result, a study shows that with the adoption of 
computing systems with high processing speeds, DNNs have proven to be better 
than GMMs in modeling audio recognition systems [6]. However, literature 
shows that DNNs have significant drawbacks. First, the spatial topology of the 
input which is an important attribute is disregarded by DNNs. Audio is normal-
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ly constituted of a strong correlations structure with respect to its frequency 
domain. When DNNs are used, these spatial correlations are not utilized since 
they inherently don’t model the input topology. Furthermore, DNNs are affected 
by translational variances in audio signals. Although translational invariance can 
be achieved with an adequate number of parameters in the DNN architecture, the 
network would be dense. As such, complexity and computation would dramati-
cally increase.  

Most of the studies specifically selected audio recordings under a conducive 
balance of external sounds and with a short recording duration [7]. Under nor-
mal circumstances, this is never the case. External noise such as car engines, mu-
sic, and parents talking, can present a combination of cries. The placement of the 
microphone position may also vary depending on the parent’s personal preference 
or even the layout of the baby’s room. As such, these studies outlined inconsisten-
cies with the algorithms described in the above studies and hence may not be op-
timal for the continuous monitoring of the baby in real-life applications. Moreover, 
many studies have suggested numerous models that have never been put on pro-
duction. 

This study, therefore, tends to offer solution to the following existing problems: 
1) Bridging the communication gap between infants and caregivers. 
2) Reduction of infant mortality rate through minimization of infant health 

misdiagnosis. 
3) Provision of simple, accessible and affordable infant care tool as compared 

with traditional way of consulting pediatrician. 

3. Methodology 

Sound is a function of amplitude and time with parameters such as frequency, 
bandwidth and decibel. 

Secondary audio dataset having wave extension format was obtained from 
Coswara database and was combined with the secondary datasets provided by 
the UNICEF. The pediatrician experts collected the audio dataset and accurately 
classified the files as either hungry, tired, sick or burping. All the secondary audio 
files were recorded from strictly infants of the age 0 to 19 months of age as shown 
in Figure 1 below. 
 

 
Figure 1. Representation of the audio record (Image source KNuggets Blog). 

https://doi.org/10.4236/jdaip.2022.104013


G. Owino et al. 
 

 

DOI: 10.4236/jdaip.2022.104013 202 Journal of Data Analysis and Information Processing 
 

3.1. Target Population 

The study targeted only infants aged between zero to 19 months with an exclusion 
criterion of any infant beyond 3 years of age. 

3.2. Analytical and Data Preprocessing Tools 

Python programming is a high-level open-source general purpose programming 
language with myriad of libraries which has promised efficient machine learning 
models until their stage of production. Numerical array (NumPy) library was used 
to manipulate the matrices during image processing. 

Sckitlearn is a library in python that specifically was built for preprocessing of the 
input data. It was used in this study to randomly split the datasets into testing, 
training and validations tests. 

3.3. Study Variables 

The study variables were the recorded infants cry audio files from the four main 
classes that the study targeted. The main aim of this study was to come up with a 
classifier deep learning that could be used to discriminate the audio. The main 
classes were: 
• Burping. 
• Hungry. 
• Tired. 
• Sick. 

Below (Figure 2) is a pictorial view of some of the main classes. 
 

 
Figure 2. Image of infant audio classes, source (Child Maltreat, 2016, 21, 327-342). 
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3.4. Data Preprocessing 

Data preprocessing plays a fundamental role in modelling as such, garbage in 
garbage out could prevail thus posing a threat to the consumption of the model. 

The Audio data was read into the python environment using the free Graphic 
Processing Unit (GPU) that’s provided by Google collaboratory environment. 
This accelerated the processing power and run time as compared with the local 
memory environments. However, since the model was expected to discriminate 
the infant audio from the real-world environment where there will be acoustics 
noise, the study intentionally included background noise as another class. The 
study took this into considerations as the expected background noise could as-
sume any sound disturbances like spatting of rains, hooting of vehicles and 
more. 

3.4.1. Resizing the Audio into the Same Length 
All audio records were then converted into 6 seconds length by either extending 
the duration through padding or by truncating longer records. Augmentation of 
the time shift was done to have the records ready for Mel spectrum generations. 

3.4.2. Generation of Mel Spectrum 
The augmented data was then transformed to images, a Mel spectrum frequency 
that was modelled by CNN model. The Mel spectrum was achieved from Fourier 
transformation of the audio sounds frequency. The more granular form of MFCC 
was, therefore, achieved by the cosine transformation of the signals. This was very 
necessary as the Mel spectrum captures the essential features of the audio, goes 
beyond what human may not have perceived from different audio class based on 
the distinction points. This was the key first step in transformation of the audio 
to consumable format that was the raw input for CNN model. Some of the audio 
files were expected to be mono (one audio channel) while others were stereo 
having two audio channels. All the audios were, therefore, converted to stereo 
channels (Figure 3). 
 

 
Figure 3. Mel spectrum image of a transformed audio signal. 
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3.4.3. Mel Scale Augmentation: Time and Frequency Masking 
The Mel spectrum was augmented once more based on the time and frequency 
masking. The transformed audio records were ready to be modelled by the deep 
learning models as shown in Figure 4. 

From the Mel spectrum, the audio records were fully transformed to images 
ready for computer vision algorithms. The realized input datasets inform of spec-
trum was in a 3 dimension of frequency, time and channel. 

The files were divided into training, testing and validation test. To better have 
the most accurate model and asses the aspects of overfitting, a new dataset that 
the model has never seen was used to run the model again. The validation set was 
used to validate the model. 

3.5. Deep Learning Models 

Deep learning is a branch of machine learning models that tends to mimic the 
logical functionalities of the human brain. The models tend to find the unknown 
associations and patterns by employing logical structures. Deep learning models 
uses a series of multiple hidden layers as opposed to traditional generic neural 
network that only contains a few hidden layer [8]. The models are trained sever-
ally and maps the input data with the prior knowledge achieved through train-
ings using train datasets thus delivering accurate outputs. The ideological con-
cepts that’s pinning this novel innovation is similar with the biological neural 
networks which operates by comparing the new information with the already 
known patterns to arrive at the unknown information. Deep learning models are 
trained using very large, labeled datasets and initiate the feature learning. 

The main drive to shift into the deep learning models was the limitations of 
the machine learning models that tends to plateau in performance during train-
ing with larger datasets and thereafter, the diminishing returns abruptly kicks 
in the gradients. This, therefore, interferes with the accuracy and precision  
 

 
Figure 4. Full framework of signal wave conversion to Mel spectrum scale. 
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of the results. On the other hand, deep learning models also has stronger power 
for horizontal scaling and do not suffer from drift on productions, a case that 
many researchers have reported based on the machine learning models (Figure 
5). 

Deep learning models have gained a lot of popularities in the recent years 
based on their strengths in handling big datasets, revealing complex unknown 
relationship between the datasets. The models work well with the unstructured 
dataset. 

3.5.1. Convolution Neural Network Deep Learning Model 
Convolution Neural network in particular has been widely used in computer vi-
sion and problems that perhaps involves very large complex datasets that do not 
promise any clear statistical distributions. This study employs Convolution neural 
network to achieve an efficient auditory discrimination. Convolution neural net-
works are typical biological motivated architecture and have potentially stood out 
as one of the best deep learning models for computer visions. This study, there-
fore, leveraged on the potential feasibly state of art performance of Convolution 
neural networks efficient results. 

3.5.2. Theoretical Architecture of CNN Model 
The hidden convolution layers’ parameters are made up of a series of learnable 
filters called kernels. CNN filters have varying dimensions which maps the num-
ber of channels in the input layer [9]. The RGB images and gray scale images are 3 
and 1 respectively. The model uses pooling layers after convolution layers with 
the aim of reducing dimensions a process called down sampling. 

The hyper parameters of the pooling layers may be referred to as filter size and 
strides. The CNN model utilizes the maximum pooling layers and average pool-
ing layers as a way of achieving the dimension reductions or down sampling where 
the maximal and average value are used respectively [10]. Maximum pooling has 
been used in many applications of the CNN as it denotes a corresponding fea-
ture detection by large numbers. 
 

 
Figure 5. Image source Andrew NG why deep learning. 
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3.6. Architecture of CNN 

1) Convolution Layer 
The convolution layer is main fundamental part of CNN that is responsible 

for computational executions and loads. This layer performs a dot product of the 
two matrices that are learnable parameters which is also known as kernels. The 
CNN model is always spatially smaller than the image, but it is more in-depth 
feature that always aids in understanding the RGB images [11]. The kernel slides 
on height and width of the images thus producing an image that represents the 
receptive region thus realizing a two-dimensional image called activation.  

2) Pooling Layer 
The pooling layer tentatively represent the out of the network at different stages by 

either picking a maximum value or averaging the points thus arriving to the max-
imum pooling or average pooling. This really helps in attaining the down sampling 
through minimal spatial operations. The Pooling, therefore, is essential in enhanc-
ing a faster computational processing time and efficiency. 

Several pooling techniques exist such as Average pooling, rectangular neighbor-
hood and weighted pooling-based centrality of the image pixels. This study, there-
fore, employed the maximum pooling in particular to achieve the down sampling. 
The maximum poling, therefore, took care of drift when the model was deployed 
into production. At every stage, the model represents the extremal values derived 
from the primary pixel depth slice. 

For the activation size of W × W × D, a pooling kernel of size F and S strides 
all the time, then the output size volume will be arrived by the following formu-
la. 

( ) 1outW W F S= − +                     (3.1) 

Pooling, therefore, provides translation invariance thus, an object will be de-
tected regardless of the position it’s located. 

3) Fully Connected Layers 
All neurons have got full connectivity between the preceding and succeeding 

layers. This, therefore, allows matrix computations together with bias effect. The 
main goal for the fully connected layers is to enhance mapping between the in-
put and output layers. 

4) Non-Linearity Layers (Activation Functions) 
The convolution tends to operate linearly but the images may not be adequately 

mapped linearly. The nonlinear layers, therefore, come in and relaxe the assump-
tion of linearity thus fitting the nonlinear image datasets well. This study used 
ReLU activation function. The Rectified Linear Unit is one of the most popular 
activation functions due to its considerable flexibility. The ReLU amplifies the 
convergences fasters as compared with sigmoid and Tanh functions. 

The rectified Linear Unit (ReLU) is, therefore, a truncation performed indivi-
dually for every element in the input. This layer does not change the size of the input. 
Its input comprises ( )1

1
lm −  feature maps of size ( ) ( )1 1

2 3
l lm m− −∗  and the absolute 

value of each feature map is computed as: 

https://doi.org/10.4236/jdaip.2022.104013


G. Owino et al. 
 

 

DOI: 10.4236/jdaip.2022.104013 207 Journal of Data Analysis and Information Processing 
 

( ) ( )
1 1

l lY Y=                            (3.2) 

It is computed pointwise such that the output consists of ( ) ( )1
1 1

l lm m −=  feature 
maps unchanged in size. It’s represented as. 

{ }, , , ,max 0, l
i j d i j dy x=                       (3.3) 

with 10 l li H H +≤ < = , 10 l lj W W +≤ < =  and 10 l ld D D +≤ < = . There is no 
parameter inside this layer hence no parameter learning. From equation above, it 
is obvious that: 

, ,
, ,

, ,

d
0

d
i j d l

i j dl
i j d

y
x

x
 = >                        (3.4) 

where is the indicator function, being 1 if its argument is true, and 0 otherwise. 
Hence, we have: 

, , , ,

d d
dd l

i j d i j d

z z
yx

   =      
                     (3.5) 

if , , 0i j dx′ >  and 0 otherwise. y is an alias of 1lx + . 

The purpose of ReLU is to increase the non-linearity of the CNN. Since the 
semantic information in an image is obviously a highly nonlinear mapping of 
pixel values in the input, we want the mapping from CNN input to its output also 
be highly nonlinear. The ReLU function, although simple, is a nonlinear func-
tion. 

3.7. Mathematical Structure of the CNN Model 

A CNN usually takes an order 3 tensor as its input, but higher order tensor in-
puts can also be handled by CNN in a similar way [12]. The input then sequen-
tially goes through a series of processing. One processing step is usually called a 
layer, which could be a convolution layer, a pooling layer, a normalization layer, 
a fully connected layer, a loss layer, etc. 

1 1 2 1 1L L L Lx w x x w x w z− −→ → → → → → → →         (3.6) 

The input in this case is 1x  usually an image. It goes through the processing 
in the first layer, which is the first box. We denote the parameters involved in the 
first layer’s processing collectively as a tensor 1w . The output of the first layer is 

2x  which also acts as the input to the second layer processing. 
This processing proceeds till all layers in the CNN has been finished, which 

outputs Lx .One additional layer, however, is added for backward error propaga-
tion, a method that learns good parameter values in the CNN. Let’s suppose the 
problem at hand is an image classification problem with C classes. A commonly 
used strategy is to output Lx  as a C dimensional vector, whose ith entry encodes 
the prediction. To make Lx  a probability mass function, we can set the processing 
in the (L−1)th layer as a soft max transformation of 1Lx − . In other applications, 
the output Lx  may have other forms and interpretations. 

The last layer is a loss layer. Let us suppose it is the corresponding target value 
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for the input 1x , then a cost or loss function can be used to measure the discre-
pancy between the CNN prediction Lx  and the target t. A simple loss function 
could be: 

21
2

Lt x−                            (3.7) 

Although more complex loss functions can be used this squared loss function 
is used in a regression problem. A cross entropy loss function is used or a classi-
fication problem. 

3.7.1. Convolution 
Assume an image to be defined by a function: 

{ } { } ( )1 2 ,: 1, , 1, , , , i jI n n W i j I∗ → ⊆                 (3.8) 

Such that image I can be represented by an array of size 1 2n n∗ . Given that fil-
ter 

1 22 1 2 1h hK + ∗ +∈                         (3.9) 

the discrete convolution of the image I with filter K is given as: 

( )
1 2

1 2

, ,, :
h h

u v r u s vr s
u h v h

I K K I + +
=− =−

∗ = ∑ ∑                  (3.10) 

where the filter K is given by: 

1 2 1 2

1 2 1 2

, ,

0,0

, ,

h h h h

h h h h

K K

K K
K K

− − −

−

 
 

=  
 
 



 



                  (3.11) 

3.7.2. Convolution Layer 
Let layer l be a convolution layer then the input of the layer comprises ( )1

1
lm −  

feature maps from the previous layer each of size ( ) ( )1 1
2 3
l lm m− −∗ . When l = 1 the 

input is a single image I consisting of one or more channels thus a CNN accepts 
raw images as input. The output of layer l consists of 1

lm  feature maps of size 

2 3
l lm m∗ . The ith feature map in layer l denoted by l

iY  is computed as: 

( ) ( ) ( ) ( )
( )1
1

1
,

1

lm
l l l l

i i i j j
j

Y B K Y
−

−

=

= + ∗∑                    (3.12) 

where ( )l
iB  is a bias matrix and ( )

,
l

i jK  is the filter of size ( ) ( )
1 22 1 2 1l lh h+ ∗ +  

connecting the jth feature map in layer (l−1) with the ith feature map in layer l. 
When applying the discrete convolution only in the valid region of the input fea-
ture maps the output feature maps are of size: 

( ) ( ) ( )1
2 2 12l l lm m h−= −                        (3.13) 

and 
( ) ( ) ( )1
3 3 22l l lm m h−= −                        (3.14) 

The filters used for computing a fixed feature map ( )l
iY  are the same. i.e.: 
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( ) ( )
, ,
l l

i j i kK K=                         (3.15) 

for j k≠ . This can be extended to multilayer perceptron as each feature map 
( )l

iY  in layer l consists of ( ) ( )
2 3
l lm m∗  units arranged in a two-dimensional array. 

The unit at position (r, s) computes the output as: 

( )( ) ( )( ) ( ) ( )( )
( )

( )( ) ( )( ) ( )( )
( )

( )

( )

( )( )

1
1

1
1 1 2

(
1 2

1
,, , ,1

1
,, , ,1

l

l l l

l l

m
l l l l

i i i j jr s r s r sj

m h h
l l l

i i j jr s u v r s u vj u h v h

Y B K Y

B K Y

−

−

−

=

−

+ += =− =−

∗=

= + ∗

+ ∑

∑ ∑ ∑
    (3.16) 

The trainable weights of the network can be found in the filters ( )
,
l

i jK  and the 
bias matrices ( )l

iB . Now the size of the output is: 

( )
( ) ( )

( )

1
2 1

2
1

2
1

l l
l

l

m hm
s

− −
=

+
                    (3.17) 

and 

( )
( ) ( )

( )

1
3 2

3
2

2
1

l l
l

l

m h
m

s

− −
=

+
                    (3.18) 

where ( )
1

ls  and ( )
2
ls  are the subsampling skipping factors. 

3.7.3. Non-Linearity Layer 
Let layer l be non-linearity layer then its input is given by ( )

1
lm  feature maps and 

its output comprises again ( ) ( )1
1 1

l lm m −=  feature maps each of size ( ) ( )1 1
2 3
l lm m− −∗  

such that ( ) ( )1
2 2
l lm m −=  and ( ) ( )1

3 3
l lm m −=  and it’s given by: 

( ) ( )( )1l l
i iY f Y −=                      (3.19) 

where f is the activation function used in layer l and operates point wise. 

3.7.4. Feature Pooling and Subsampling Layer 
Reducing resolution can be accomplished in various ways. It can also be com-
bined with pooling and done in a separate layer. Let l be the pooling layer its 
output comprises of ( ) ( )1

1 1
l lm m −=  feature maps of reduced size. Pooling operates 

by placing windows at non-overlapping positions in each feature map and keep-
ing one value per window such that the feature maps are subsampled. There are 
two types of pooling, average pooling and max pooling the latter takes the maxi-
mum value of each window while the former takes the average. 

3.7.5. Fully Connected Layer 
Let layer l be a fully connected layer, if layer (l−1) is a fully connected layer as well 
we may apply: 

( ) ( ) ( )
( )1

1
,

1

lm
l l l

i i k k
k

z w y
−

−

=

= ∑                     (3.20) 

Otherwise, layer l expects ( )1
1

lm −  feature maps of size ( ) ( )1 1
2 3
l lm m− −∗  as input 

and the ith unit on the layer l computes: 
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( ) ( )( )l l
i iY f z=                         (3.21) 

with: 

( ) ( ) ( )( )
( )( )( ) 11 1
31 2

1
, , , ,1 1 1

ll l mm m
l l l

i i j r s j r sj r s
z w Y

−− −

−

= = =

= ∑ ∑ ∑                  (3.22) 

where ( )
, , ,
l

i j r sw  denotes the weight connecting the unit at position (r,s) in the jth 
feature map of layer (l−1) and the ith unit in layer l. The fully connected layer is 
mainly used for classification purposes. 

3.7.6. Error Backpropagation 
This is an algorithm used to evaluate the gradient of the error function in each 
iteration step. For every layer, we compute two sets of gradients: the partial deriv-
atives of z with respect to the layer parameter iw  and the layers input ix . 

The term i

z
w
∂
∂

 can be used to update the current (i−th) layer’s parameters. 

The term i

z
x
∂
∂

 can be used to update parameters backwards, to the (i−1)th layer. 

Thus, we can continue the back-propagation process, and use i

z
x
∂
∂

 to propagate  

the errors backward to the ith layer.  

4. Results and Discussion 

The main goal of this study was to achieve a robust classifier model that could 
discriminate the infant’s audio cries thus responding to their needs accordingly. 
Before modelling of the audio datasets, data preparation was conducted in order 
to promise precise and accurate results. 

4.1. Data Preparation 

The fundamental stage that perhaps ensures that this study objective was met 
was data preparation stage. The trimmed audio dataset from different classes 
were loaded as folder on the Google GPUs. All the audio datasets were in form 
of a wave format as shown in Figure 6. 

There were a total of 14,456 audio cry records from all the four classes of in-
fant needs that this study research on. Different cries classes were having differ-
ent number of cry records as shown in Table 1 below. 

This study relied much on Librosa, a python library developed by Liang [13]. 
The module allows the audio to read and play in the python environment. The 
audio datasets were then transformed to frequency domain by leveraging the 
first Fourier transform function. Fourier transform converted the audio data to a 
function of amplitude and time in seconds. Interestingly, different audio classes 
portrayed different results after transformation. 

This study used a more accurate granular form of audio representation called 
Mel spectrum images. The Mel spectrum images provide a fundamental basis for 
the features that the deep learning models uses as the distinction point. A more  
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Figure 6. Datasets in wave format. 
 
Table 1. Number of audio files per cry class. 

Class Number of audio files 

Burping 2601 

Discomfort 3863 

Tired 3985 

Hungry 4007 

Total 14,456 

 
robust index called MFCC stands for Mel frequency cepstral coefficients that 
converted the audio cries to time domain and to frequency domain provided 
even a plainer basis to explicitly identify the features of the infant audio cries. 
The MFCC ideally mimics the biological functionalities of the human ears. The 
MFCC index, therefore, provided a well granular data point for this study as 
compared with the time domain representation of the infant audio cries. As the 
study focused on the classification problem, there was need for accurate feeding 
of data points into the CNN model. The low intensity in the MFCC portrays the 
corresponding lower amplitude (Figure 7). 

The Mel spectrum images shows difference in the intensity of the colors at 
different time points thus depicting distinguishing features the infant’s audio 
classes. 

4.2. Data Modeling 
4.2.1. Mel Spectrum Coefficient  
The Fourier transform of the wave file was transformed to Mel spectrum coeffi-
cient as shown below. This two-dimensional input dataset that was being fed in-
to the CNN model with the corresponding labels (Figure 8). 

4.2.2. Convolutional Neural Network Model Training 
The input dataset was divided into the proportion of 80% to 20% training and  
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Figure 7. Cry class Mel spectrum images. 
 

 
Figure 8. Mel spectrum coefficients. 
 

testing respectively. The input data was divided in the proportion of 0.8 to 0.2 in 
every audio class folder. The resultant proportional files were then shuffled ro-
bustly so as to ensure efficient modelling in generalizability of the model infe-
rence. This was achieved by the python tensor flow libraries. The testing dataset 
was then shredded accordingly to completely minimize the mixture so that the 
model could be challenged with total new data that it has never seen. 

From the literatures thus far, the number of epochs and batch size have been 
proposed to be an integer which should be chosen randomly, sequentially with 
keen monitoring of the learning rates. The CNN model was trained using 100 
epochs with a batch size of 125. The accuracies of the model were realized to be 
significantly increasing with the number of epochs. However, the accuracies at-
tained its plateau curve from 23. As seen in Figure 9, the realization depicted 
from this point onwards, increase in the number of the epochs was leading to a  
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Figure 9. Number of epochs versus training accuracies. 

 
very negligible increase in accuracy of the model. 

The successive training time was also realized to be decreasing with the num-
ber of epochs. At first, the model took 2 seconds to train in the first epoch while 
this duration was significantly reducing with increase in the number of epochs. 

The CNN model through its soft max activation rendered the final classified 
class by voting from the predicted probabilities. 

The highest probability attributed to a class was picked to be the most accu-
rate predictions.  

4.2.3. Accuracy versus Loss  
The loss was significantly reducing with increase in the number of epochs. On 
the other hand, the accuracy was realized to be increasing with successive de-
crease in the loss. This potentially shows that; the loss function was being mini-
mized in the successive epochs as the model penalizes well thus depicting con-
stant linear learning rate. 

4.2.4. Graphical Representation of the Learning Rate 
According to the findings in the graph below, the accuracies in the successive 
epochs were realized to be inversely proportional to the losses. Both the training er-
ror was exponentially decreasing with increase in the number of training epochs. 
These potentially affirm the strength of CNN model to be the robust model for 
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audio data. The choice of the 100 epochs also agreed with the learning rate as the 
accuracy stabilizes from epoch 80. The error also stabilizes from epoch 60 but 
steeply on the elbow at epoch 20 (Figure 10). The advantage that the model en-
joyed in implementing this parameter is the exhaustive training of the model at 
optimal learning point. 

4.2.5. Results from Other Models 
The study also explored other machine learning models like Naive Bayesian, 
support vector machine, cat boost classifier model to ascertain the classifier 
model that fitted the audio dataset well. Decision trees had the lowest accuracy 
score of 70.65%. The convolutional neural networks performed relatively well 
with an accuracy of 92.73%. In the studies conducted by Nanni et al. (2015) the 
MLP promised a very higher accuracy but suffered from overfitting [14]. The va-
lidation stage eliminated the MLP model as the algorithm could not classify well 
the datasets it has never seen. The models were also evaluated in terms of com-
putational time in minutes.  

The Convolution Neural Networks (CNN) outperformed other generic mod-
els at the accuracy level of evaluations. This study was also keen to evaluate the 
model based on the training, testing accuracy and computational time. There 
were some machine learning models that really performed well based on training 
accuracy but really dropped in modelling the new datasets that were fed(testing). 
The convolutional neural networks did relatively well in generalizing the testing 
data thus having a higher accuracy. This promised the stability of the model thus 
affirming the operational stability of the model on the production environment. 
The convolution neural networks really possess the strength of down sampling 
with translational invariance. The dimension reduction has been scientifically 
embraced to reduce the computational time for the model. This brings a smooth 
significance in efficient operations of the model on the production environment. 
From the model accuracy (Table 2) below, it was realized that the mobile ResNet 
transfer model performed pretty well but relatively failed on testing data as com-
pared with the CNN model. 
 

 
Figure 10. Successive epochs versus training. 

https://doi.org/10.4236/jdaip.2022.104013


G. Owino et al. 
 

 

DOI: 10.4236/jdaip.2022.104013 215 Journal of Data Analysis and Information Processing 
 

Table 2. Model comparison. 

Model Training Acc. Testing Acc. Epoch 
Computational 
time (minutes) 

Decision Tree 0.70652 0.5671 100 73.02 

Cat Boost Classifier 0.83696 0.6834 100 72.23 

SVM 0.80102 0.6906 100 72.21 

Naive Bayes 0.73029 0.6308 100 76.04 

SGD 0.79348 0.7192 100 75.01 

CNN 0.94739 0.9175 100 32.49 

RNN 0.82609 0.8717 100 79.36 

MLP 0.5783 0.6756 100 78.32 

4.3. Model Evaluation 

The study used different model evaluation metrics such as: 

4.3.1. Model Precision Score 
This metric was used to ascertain the degree of positively predicted class that was 
indeed correct. Although this metric is affected by the class imbalance, the study 
seeks to compare the index with other model evaluation metrics. 

Precision Score = TP/(FP + T) = 0.72 

4.3.2. Recall Score 
This metric was used to evaluate how well the CNN model classified the posi-
tives out of all the possible positives present. This study in particular, used the 
recall to track all the classes that were predicted to be true out of the possible 
records that belonged to those particular infant needs. This metric is given by. 

Recall Score = TP/(FN + TP) = 0.81 
This study relied on this model evaluation metric as it is not affected by the 

data imbalance thus promising stable evaluation of the model performance even 
on the rare events. Burping in particular as one of the infant’s cry needs was rel-
atively rare in this study. There was a great improvement in the recall score as 
compared with precision index. 

4.3.3. Model F1 Score 
The study relied on this score as it combined the recall and precision together 
thus solving the problem in class imbalance. The model F1 score is a function of 
recall and precision. The score was realized to be. 

F1 Score = 2 × Precision Score × Recall Score/(Precision Score + Recall Score)  
= 2 × 0.72 × 0.81/(0.72 + 0.81) = 0.76 
The study relied on the F1 score as the strongest way to evaluate the classifica-

tion strength of the CNN model. The F1 score which is the function of the har-
monic mean of the precision and recall potentially motivated the best way to han-
dle class imbalance in evaluated the classifier model. 
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4.3.4. Confusion Matrix 
The confusion matrix in Figure 11 shows the probabilities of classifying infant 
audio classes. The hungry and sick classes were accurately classified correctly with a 
probability of 0.89. The burping class was least classified correctly with probabil-
ity of 0.29. This was because of the data imbalance as the burping audio files were 
less as compared with other records. Generally, the convolution neural networks 
performed well in classifying the audio datasets with only one class of burping 
poorly classified. Hidayati et al. (2009) confirmed that a reactively poorly imbalance 
class in classification problem is quite insignificant and thus renders the classifi-
er models to be evaluated in the next production stage [15]. 

4.4. Deployment of the Model 

After carefully evaluating the model, the chosen CNN model was deployed into 
production. The performance of the model at this stage was also evaluated based 
on the model’s ability to handle the covariance shift. In production, the model 
deployment was designed to be taking the input on real time basis rather than 
batch processing. The model was packaged and containerized in a docker image 
that provided universal operations in almost near all the operating systems’ any 
progressive changes and updates, the continuous development and continuous in-
tegration (CI/CD) was designed so as to take care of changes that could be pushed 
in the model without necessarily bring the entire system to downtime. 

Application Functionality 
The tool is expected to be working efficiently for about 7 meters radius. This 
means that any sound far apart may not be well discriminated by the application. 
The application was made very simple and accessible to every user who may not 
be tech-savvy. The application was also designed to be very light for the conven-
ience of installation into smartphones without consuming much space. 

The application will be launched upon which the audio record feature will pop 
out. Once the audio is recorded, the records will be moved to the model for  
 

 
Figure 11. Normalized confusion matrix. 
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recognition and get to the server. A response shall be rendered back with the cor-
rect class of the classifications. 

The final classification result was presented to the users on a simple bar graph 
showing the corresponding probabilities of the classified infant audio cry needs 
as shown in Figure 12 below. 
 

 
Figure 12. Snapshot classification results from the Application. 

5. Conclusions and Recommendation 

This study, therefore, confirms that the convolution neural networks indeed fit-
ted the infant audio dataset well as compared with another model. The study al-
so motivates the stage-wise evaluation of the deep learning model during the train-
ing stage and also upon production. On the realization of the efficient model that 
was least affected by the covariance shift, light and stable, the study came to con-
clude that the CNN model was very stable on deployment and faster on the in-
ferential stage. The inherent down sampling through convolving the image pix-
els to arrive at receptor fields promoted the dimension reduction that facilitated 
the light weight of the CNN model. This was also supported by maximum pool-
ing, a layer that was not affected by feature translation thus confirming the transla-
tional invariance of the activation functions in the CNN model. 

The realization of the model also motivates the deliberate consideration of the 
acoustic background effects of the audio during the training of the models. This 
study found that most of the models being trained by the scientist are expected 
to work in a vacuum or controlled environment where there are no external in-
fluences. This study, therefore, through its introduction of background noise prom-
ised a stable classification operation even in noisy background noise. For this rea-
son, the deployed model was not affected by the distribution drift from input au-
dio datasets. 
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