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Abstract 
Quantitative headspace analysis of volatiles emitted by plants or any other 
living organisms in chemical ecology studies generates large multidimen-
sional data that require extensive mining and refining to extract useful in-
formation. More often the number of variables and the quantified volatile 
compounds exceed the number of observations or samples and hence many 
traditional statistical analysis methods become inefficient. Here, we employed 
machine learning algorithm, random forest (RF) in combination with dis-
tance-based procedure, similarity percentage (SIMPER) as preprocessing steps 
to reduce the data dimensionality in the chemical profiles of volatiles from three 
African nightshade plant species before subjecting the data to non-metric multi-
dimensional scaling (NMDS). In addition, non-parametric methods namely 
permutational multivariate analysis of variance (PERMANOVA) and analysis of 
similarities (ANOSIM) were applied to test hypothesis of differences among 
the African nightshade species based on the volatiles profiles and ascertain 
the patterns revealed by NMDS plots. Our results revealed that there were 
significant differences among the African nightshade species when the da-
ta’s dimension was reduced using RF variable importance and SIMPER, as 
also supported by NMDS plots that showed S. scabrum being separated from 
S. villosum and S. sarrachoides based on the reduced data variables. The no-
velty of our work is on the merits of using data reduction techniques to suc-
cessfully reveal differences in groups which could have otherwise not been the 
case if the analysis were performed on the entire original data matrix charac-
terized by small samples. The R code used in the analysis has been shared 
herein for interested researchers to customise it for their own data of similar 
nature. 
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1. Introduction 

Quantification of plant volatiles or any volatiles emitted by living organisms 
gives rise to high multidimensional data. Such studies often are set to compare 
volatile profiles of groups of organisms. The fundamental objective in such stu-
dies is to identify compounds that discriminate between groups. In plants, such 
studies are useful to understand host plant-insect pest interaction, as particular 
plant species could be host or non-host of insect pest [1]. These volatiles can be 
emitted from flowers, leaves, fruits, roots or any other part of the plant into the 
atmosphere or soil, allowing the plant to interact with other organisms. There 
has been extensive investigation on the significance of volatiles in plant physi-
ology and ecology and their roles in mutualistic interaction with other organ-
isms [2]. For instance, pollinators are attracted by volatiles emitted from floral 
tissues [1] and conversely play a crucial role in host finding by insect pests in 
agro-ecosystems [3] [4]. 

Other studies have demonstrated the beneficial effect of herbivore-induced 
plant volatile compounds (HIVOCs) as host location signals for parasitoids and 
herbivore predators [2] [5] [6]. This indirect chemical defense is most likely as 
significant as direct chemical and physical defenses in inhibiting herbivore 
damage [5]. Furthermore, volatile signals emitted by injured plants may transmit 
a signal to surrounding plants, stimulating defensive responses [7]. Plants may 
release volatiles in response to changes in light, temperature, or other abiotic 
stressors [2]. Research on plant volatiles has therefore provided insights in un-
derstanding variations in plant species with regard to evolutionary origins and 
ecological consequences in terms of plant-insect interactions and functional 
responses.  

High dimensional multivariate data obtained from chemical volatile analysis 
has usually been analyzed using usual linear methods such as principal compo-
nent analysis (PCA) [8] [9], linear discriminant analysis (LDA) [10] [11], multi-
variate analysis of variance and other methods. In some cases, PCA has been 
used as a preprocess to reduce dimensionality of data before applying LDA on 
the principal components [12]. Principal component analysis and linear discri-
minant analysis are famous feature extraction methods that are subject to small 
sample sizes. In fact, the effect of small sample sizes for high dimensional data 
has been discussed by several authors [13] [14] [15]. Generally, sample size n 
must be greater than the number of variables or features, p. Small sample sizes 
with PCA tend to provide eigenvectors coefficients (also known as factor load-
ings) and eigenvalues that are unprecise estimate of population values while 
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large sample sizes provide precise estimates [13] [16]. The effect of small sample 
size is even stronger for linear discriminant methods such as LDA which loses 
performance when faced with small sample sizes in high dimensional variable 
space [17]. The effect of small sample size on classical statistical methods is fur-
ther aggravated by the methods’ reliance on model assumptions that can hardly 
be verified when sample sizes are small. This favors use of statistical methods 
having their model assumptions relaxed for the analysis of such small samples. 
Consequently, this has led to increased application of non-metric ordination 
techniques, especially in revealing patterns and producing meaningful results 
that are easy to interpret in multivariate data [18]. Specifically, non-metric mul-
tidimensional scaling (NMDS) has gained immense application in ecological da-
ta due to its ability to handle non-linear data [19] [20]. 

Data on chemical profile of volatiles is characterized by small samples n and 
large number of variables p, thus often p > n. The crucial problem then is the 
presence of variables not significantly contributing to discrimination of samples 
but capable of contributing to random noise which potentially could obscure 
differences in groups. The use of variable selection methods to reduce dimen-
sionality can lead to improvements in discrimination of samples and enhanced 
visualization. Therefore, in this study we use random forest (RF) technique and 
similarity percentage (SIMPER) as variable reduction techniques on chemical 
profiles of volatile compounds of three African nightshade plants prior to appli-
cation of NMDS and hypothesis testing using permutational multivariate analy-
sis of variance (PERMANOVA) and analysis of similarities (ANOSIM). 

The random forest (RF) technique is an ensemble classifier that generates 
several decision trees from a sample obtained from the original dataset [21]. 
Each decision tree uses a different bootstrap sample in building the tree by ran-
domly selecting with replacement a sample from the dataset. The bootstrap 
sample is then fed as input to base learners which are combined using a majority 
vote [22]. Since the decision trees are unrelated, the decision made as a majority 
vote is better than the decision made by each individual tree [23]. Machine learn-
ing (ML) models have been shown to be robust in handling small sample size 
compared to other well-established models such as linear discriminant analysis 
[24]. In particular, RF has shown superior performance over other ML models 
especially with high dimensional small-sample datasets (p > n) [25] [26] [27]. 
Further, RF offers variable importance measures which are used to rank va-
riables based on their predictive ability and we leverage on this aspect of RF to 
reduce the dimension of the data in this study prior to application of NMDS and 
hypothesis tests. Gini importance and permutation importance (mean decrease 
in accuracy) are the two commonly used variable importance measures [28] and 
are described in the methodology of this study.  

Similarity percentage (SIMPER), proposed by Clarke [29] compares groups of 
sampling units pairwise and calculates each samples’ contribution to the average 
between-group Bray-Curtis dissimilarity [30] [31]. The existence of good dis-

https://doi.org/10.4236/jdaip.2024.122012


L. Chepkemoi et al. 
 

 

DOI: 10.4236/jdaip.2024.122012 213 Journal of Data Analysis and Information Processing 
 

criminator variables in samples result in high quantitative presence yielding high 
average dissimilarity [30]. This allows identifying variables that significantly 
contribute to the dissimilarity between samples [32]. 

The study aims to assess the similarity or dissimilarity of three African 
nightshade species (Solanum sarrachoides Sendtner, S. scabrum Miller and S. 
villosum Mill.) using NMDS with data preprocessed for variable reduction us-
ing RF and SIMPER. We demonstrate a step-by-step analysis using NMDS and 
show the merits of reducing the variables using RF and SIMPER as also con-
firmed by hypothesis tests using permutational multivariate analysis of variance 
(PERMANOVA) and analysis of similarities (ANOSIM). We demonstrate that 
using RF and SIMPER to reduce data dimension, enhances the visualization of 
the projection of the nightshade species on the volatile compounds and increases 
the power of hypothesis tests in PERMANOVA and ANOSIM. The R code used 
in the analysis is shared here for interested researchers to customise it for their 
own datasets of similar nature.  

2. Materials and Methods  
2.1. Data  

Our study used secondary data on amount of volatile organic compounds 
(VOCs) obtained from intact plants of three African nightshade species namely, 
S. sarrachoides, S. scabrum and S. villosum. The volatile chemical analyses were 
performed using gas chromatography-mass spectrometry (GC/MS) on three 
samples from each African nightshade species. A total of 58 volatile organic 
compounds were identified. A full description of the data and methodology is 
found in Murungi et al. [33]. 

2.2. Data Reduction Techniques  

In this study, we take advantage of the fundamental outcome of RF to reduce the 
dimension of the 58 volatile organic compounds of the three African nightshade 
species prior to application of NMDS, PERMANOVA and ANOSIM. 

Random forest technique generates several decision trees from a sample ob-
tained from the original dataset. The parameters under consideration in the im-
plementation of the RF algorithm are therefore, number of features for growing 
each tree (mtry) and number of trees to be generated (ntree). Here, ntree was 
fixed at default value 500 while mtry was evaluated by searching for the optimal 
mtry value using the tune function implemented in random Forest package in R. 
Approximately two-thirds of the samples (in-bag samples) are used to train the 
decision trees, with the remaining one-third (out-of-bag samples) used during 
an internal cross-validation procedure to estimate the performance of RF algo-
rithm [21] [34]. There is no pruning of trees in RF as ensemble and bootstrap-
ping schemes help it to overcome overfitting issues [25]. RF produces variable 
importance measures namely Gini importance and permutation importance 
(mean decrease in accuracy), which are used to rank variables based on their 

https://doi.org/10.4236/jdaip.2024.122012


L. Chepkemoi et al. 
 

 

DOI: 10.4236/jdaip.2024.122012 214 Journal of Data Analysis and Information Processing 
 

predictive ability. Gini importance has been disputed as having undesirable 
properties such as being biased in favor of variables with many categories while 
permutation importance has been proposed as a corrective measure to this bias-
ness [35]. Therefore, variable importance was derived using permutation im-
portance.  

Additionally, SIMPER was used to identify volatile compounds that showed 
significant difference between the African nightshade species (α = 0.05) to aug-
ment the volatile compounds selected under the RF variable importance meas-
ure. SIMPER analysis works at the univariate level by computing the relative 
contribution of each variable to the overall average Bray-Curtis dissimilarities by 
pairwise comparison of groups. 

2.3. Non-Metric Multidimensional Scaling and How It Works  

NMDS is a rank-based approach whose algorithm works by first randomly plac-
ing samples in an ordination space, with the desired number of dimensions de-
fined a priori. The placement of samples is by an iterative process that attempts 
to find an ordination based on a stress function, in which ordinated sample dis-
tance closely match the order of sample dissimilarities in the original distance 
matrix [36]. This means that the original distance data is substituted with ranks. 
Samples are represented as points in a two or three-dimensional space such that 
the relative distances of all points are in the same rank order as the relative simi-
larities of the samples [37] [38]. The mapping of samples using ranks preserves 
their ranked differences which enhances rescaling or rotation of axes for better 
visualization and interpretation [36]. Several iterations are implemented in the 
algorithm to obtain the lowest stress value possible, thus the stress function 
measures the goodness of fit of the distance adjustment in the reduced variable 
space configuration. Therefore, the lower the stress value, the better the data are 
represented in an ordination. The commonly utilized stress measure is Kruskal’s 
stress [39] defined as; 
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where uvd  represents the actual distance between samples u and v in an ordi-
nation space; 

ˆ
uvd  represents the fitted distance between samples u and v. 

Stress values are measured on a scale of 0 to 1 [39], with a stress value of 0 in-
dicating similarity between all rank order distances in the input data and final 
ordination. Stress values reduce with increasing NMDS dimensionality. Stress 
value less than 0.05 gives an excellent representation with no prospect of misin-
terpretation while stress values greater than 0.2 are likely to yield NMDS plots 
that are hard to interpret [29]. In this study, we take advantage of the funda-
mental outcome of RF to reduce the dimension of the 58 volatile organic com-
pounds of the three African nightshade species prior to application of NMDS, 
PERMANOVA and ANOSIM. 
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2.4. Distance Measures Used in Non-Metric Multidimensional  
Scaling 

NMDS uses distance measures for ordination and some of these distances in-
clude Euclidean, Manhattan, Bray-Curtis, Kulczynski as described below. 

2.4.1. Euclidean  
Euclidean distance measures distance between two samples in multidimensional 
space and is calculated as the square root of the sum, over all the variables, of the 
square of the difference between values of a pair of samples [40]. It has no upper 
limit and is strongly affected by large number of zeros in the data, which often 
lead to high similarities between samples not sharing same variables. Moreover, 
it is a symmetrical index which treats double zeros in the same way as double 
presences resulting to shrinking of distance between two samples. To make the 
resulting Euclidean distances asymmetrical, the data is first transformed using 
either Chord, Hellinger or chi-square transformation [41]. The Euclidean dis-
tance measure is given as: 

 ( )2
1 21

k
v vvD y y

=
= −∑  (2) 

where D is the distance measure, k is the number of variables, and 1vy  and 

2vy  are values of variable v in sample 1 and 2, respectively. 

2.4.2. Manhattan  
Manhattan distance is obtained by computing the sum of the absolute differenc-
es between distances of a pair of samples [42]. It has the same properties as Euc-
lidean distance and is majorly dominated by variables with large values. The 
distance measure is given as: 
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v i

D y y
=

= −∑  (3)  

2.4.3. Bray-Curtis  
Bray-Curtis is a modification of Manhattan distance measure where the sum of 
differences between samples across variables is standardized by the sum of vari-
able values across samples, also summed across variables. Standardization was 
introduced to ensure that each variable is maximum-adjusted to equalize their 
contributions, and to relativize samples to reduce the effect of differing summed 
quantities. Bray-Curtis distance ranges between zero (completely similar va-
riables) and one (completely dissimilar variables) [43]. The distance measure is 
given as: 
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2.4.4. Kulczynski  
The distance measure calculates dissimilarities between pairs of samples. It is 
calculated by summing variable minima and dividing this value by each sam-
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pling unit’s total. The distance between the two sampling units is one minus the 
average of these two values [44]. The distance measure is given as: 
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2.5. Test of Difference in Groups  

To compare overall variation in volatile compounds composition between the 
African nightshade species, analysis of similarities (ANOSIM) and permutation-
al multivariate analysis of variance (PERMANOVA) were used. 

Permutational multivariate analysis of variance (PERMANOVA) is a semipara-
metric method which tests and estimates sizes of main effects or interaction terms 
while retaining important statistical properties of rank based non-parametric mul-
tivariate methods such as flexibility to base the analysis on a dissimilarity meas-
ure of choice and distribution-free inferences achieved by permutations, with no 
assumption of multivariate normality [45]. Pseudo F-ratio is used as a test statis-
tic in PERMANOVA [44] and is given as: 

 ( )
( )

SSB 1
SSW

F
N
β

β
−

=
−

 (6) 

where SSB is the sum of squared dissimilarities between groups; SSW is the sum 
of squared dissimilarities within groups; (β − 1) is the degrees of freedom asso-
ciated with grouping variable; and (N − β) is the degrees of freedom associated 
with residuals. 

The test statistic compares the total sum of squared ranked dissimilarities 
among samples in different groups to those belonging to the same group. The 
p-value is used to validate the significance of Pseudo F-ratio. On the other hand, 
ANOSIM is a hypothesis testing procedure that uses a dissimilarity measure to 
test for differences among groups. The null hypothesis being tested is that the 
average rank dissimilarities among samples within groups are the same as the 
average rank dissimilarities among samples from different groups. ANOSIM test 
statistic (R) is based on the rank differences between the average between-group 
( )Br  and within-group ( )Wr  given as: 

 
( )1 4

B Wr r
R

n n
−

=
−

 (7)  

R is scaled within the range −1 to 1 with values greater than zero suggesting 
differences between groups, with more dissimilarity between groups than within 
groups. R values less than zero indicate more dissimilarities within groups than 
between groups, while R values of zero indicate that the dissimilarity within 
groups is the same as dissimilarity from different groups. 

The workflow of our study in terms of methodology is summarized in Figure 
1. The data under study is subjected to variable reduction techniques; thus, ran-
dom forest and similarity percentage (SIMPER) prior to analysis by NMDS,  
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Figure 1. The workflow of the analysis procedures. The dataset is subjected to variable reduction techniques; ran-
dom forest and similarity percentage (SIMPER) prior to analysis by NMDS, PERMANOVA and ANOSIM. NMDS, 
PERMANOVA and ANOSIM are also performed on the entire dataset for comparison purposes. 

 
PERMANOVA and ANOSIM. The NMDS, PERMANOVA and ANOSIM are 
likewise performed on the entire dataset to compare out with that of reduced 
dimension. 

2.6. The Analysis  

Random forest technique was used to reduce the 58 volatile organic compounds 
(VOCs) under study based on variable importance. The top 12 compounds were 
selected to be used in the discrimination of the three African nightshade species 
(Figure 2). On the other hand, SIMPER was also used to identify variables that 
showed significant difference between the African nightshade species at α = 0.05 
level of significance and a total of 13 compounds were obtained. The outcomes 
of RF and SIMPER were combined to give a total of 16 “relevant” variables dis-
played in the Venn diagram (Figure 3). The 16 volatile compounds were then 
used in NMDS analysis. Bray Curtis distance which was determined as the suita-
ble distance for these data was used to obtain pairwise similarity matrix, which 
determines the ecological distance between all pairs of nightshade species. Suita-
ble k dimension for the NMDS plot was determined using scree plot, which is a 
plot of stress values versus number of dimensions. PERMANOVA and ANOSIM 
were performed to test for significant difference in volatile compound profiles of 
the African nightshade species. The NMDS, PERMANOVA and ANOSIM out-
put on the reduced dataset (16 VOCs) was compared to NMDS, PERMANOVA 
and ANOSIM implemented on the entire dataset (58 volatile compounds).  

All analyses were implemented in R version 4.1.3 [46] using the following 
packages; randomForest [47] and vip [48] for Random Forest variable impor-
tance analysis, vegan [49] for NMDS, PERMANOVA and ANOSIM; goeveg 
[50], ggplot2 [51] and ggforce [52] for scree plot and NMDS plots. The R script 
for commands used in the study is available at  
https://github.com/icipe-official/non-metric-multidimensional-scaling/blob/mai
n/r-code  
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Figure 2. Random Forest variable importance plot based on permutation importance (mean decrease in accuracy). Only the top 
12 VOCs were selected. 
 

 
Figure 3. Venn diagram of the 16 selected “relevant” volatile compounds based on Ran-
dom Forest and similarity percentage (SIMPER). c3, c6, c7, c10, c12, c31, c32, c33, c38, 
c39, c40, c45, c46, c50, c52, c54 are the labels of the volatile organic compounds. 

3. Results  
3.1. Similarities of VOCs in the Three Nightshade Species  

The pairwise similarity matrix of VOCs in S. sarrachoides, S. scabrum and S. 
villosum indicated that all distances ranged between 0.210 to 0.902. This explains 
the variation in the VOCs emitted by the three African nightshade species 
(Table 1). 

3.2. Variables Selected  

From the RF and SIMPER procedures, a total of 16 volatile organic compounds 
out of 58 were selected, nine of which were the same, while three were unique to 
RF and four unique to SIMPER according to our selection criterion. The 16 va-
riables are displayed in Figure 3. RF variable importance results had c46 as the  
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Table 1. Pairwise similarity matrix of volatile organic compounds concentration in three 
Af-rican nightshade species (S. sarrachoides, S. scabrum and S. villosum) based on 
Bray-Curtis distance. 

  African nightshade species 

  S. sarrachoides S. scabrum S. villosum 

 rep 1 2 3 1 2 3 1 2 3 

S. sarrachoides 
1          

2 0.8962         

3 0.7798 0.5532        

S. scabrum 

1 0.4873 0.8102 0.5505       

2 0.8738 0.3453 0.3856 0.7370      

3 0.8080 0.5722 0.2101 0.6152 0.4046     

S. villosum 

1 0.2813 0.9020 0.7664 0.4852 0.8743 0.8134    

2 0.7141 0.7760 0.6048 0.6932 0.6989 0.5879 0.7664   

3 0.7003 0.7375 0.4968 0.5552 0.6518 0.5732 0.6781 0.4922  

 
top-most important volatile compound (Figure 2; Table S2). This was consis-
tent with SIMPER results as c46 was significantly different between S. sarra-
choides and S. scabrum, and S. villosum and S. scabrum, respectively (Table S1; 
Table S2). These “relevant” volatile compounds were used to perform NMDS, 
PERMANOVA and ANOSIM analysis. 

3.3. NMDS on Reduced Dataset and Full Dataset  

Non-metric multi-dimensional scaling based on Bray Curtis distance was per-
formed with dimension k = 3 as suggested by the scree plot (Figure 4) on the full 
dataset (58 VOCs). Given a scree plot, the value of the dimension of NMDS is at 
the elbow of the line plot which is the value beyond which additional dimensions 
do not substantially lower the stress value. Such value provides a suitable dimen-
sion for visualizing the NMDS plot. 

We evaluated the NMDS ordination at different dimensions to obtain the 
stress value that optimizes the ordination fit based on Bray Curtis distance for 
both reduced dataset and full dataset. The stress values obtained at different di-
mensions with different number of input variables are presented in Table 2. 

Table 2 indicates that as the number of dimensions increase, the stress value 
reduces. Stress values are also higher for high-dimensional data in variable space 
as compared to low-dimensional data in variable space. The NMDS ordination 
algorithm could not converge when the “relevant” variables with dimension k = 
3 were used, as the stress value was nearly zero. Consequently, the reduced data-
set (16 VOCs) with lower stress value for dimension k = 2 was the ordination of 
choice as was also supported by the shephard plot that indicated goodness of fit 
with linear fit, r2 = 0.993 and non-metric fit, R2 = 0.998 (Figure 5(b)) which 
were both higher compared to the NMDS ordination using full dataset (Figure 
5(a)). 
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Table 2. NMDS ordination dimension and the corresponding stress values based on Bray 
Curtis distance for the full dataset of 58 VOCs and the reduced dataset of 16 VOCs. 

Dimension 
Stress value  

(full dataset 58 VOCs) 
Stress value  

(reduced dataset 16 VOCs) 

1 0.2453 0.1998 

2 0.0806 0.0403 

3 0.0320 No convergence 

Stress value < 0.05-Excellent; Stress value > 0.2-Poor. 
 

 

Figure 4. Scree plot based on Bray-Curtis distance to determine the dimensionality of NMDS or-
dination using all the 58 VOCs. Here, the suitable dimension k is 3, thus the value at the elbow of 
the line plot. 

 

 
Figure 5. Shepards plot for (a) all 58 variables (stress = 0.0806) and (b) 16 selected variables (stress = 0.0403) showing goodness of 
fit metrics for the NMDS ordination. 

3.4. NMDS Ordination Plots  

When all volatile organic compounds were used, the ordination ellipses showed 
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heavy overlaps among the three African nightshade species (Figure 6). On the 
other hand, when only the selected “relevant” variables were put into considera-
tion, it was possible to distinguish the three African nightshade species (Figure 
7). NMDS plots the distances between points in the same rank order as distances 
(or similarities) in the original matrix. The closer two samples are on the plot the 
more similar those samples are in terms of the underlying data. Further, the 
samples enclosed within an ellipse or close to the ellipse belong to the same 
group. The NMDS plots showed that S. scabrum had dissimilar volatile com-
pounds as compared to S. villosum and S. sarrachoides. Further, S. sarrachoides 
had dissimilar volatiles profiles as compared to S. scabrum and S. villosum 
(Figure 7). 

The dissimilarities of VOCs in the three African nightshade species showed by 
NMDS ordination plots, was supported by hypothesis testing using PERMANOVA 
and ANOSIM. PERMANOVA results showed that there was no significant dif-
ference between the three African nightshade species (p-value = 0.554) when all 
the VOCs were considered while there was significant difference between the 
plants (p-value = 0.022) when only “relevant” VOCs were considered. This was 
further supported by ANOSIM test that showed similar conclusion (Table 3). 

4. Discussion  

The data in this study are characterized by high dimensionality and small sample 
size, which tends to reduce the statistical power of tests. The classical statistical 
methods do not appropriately regulate type 1 error rate when sample sizes are  
 

 
Figure 6. Non-metric multidimensional scaling (NMDS) ordination biplot (stress = 0.08, k = 2) based on Bray Curtis distance 
showing similarities of the African nightshade species (S. sarrachoides, S. scabrum and S. villosum). c1, c2, …, c58 are the labels of 
all the volatile organic compounds. 
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Figure 7. Non-metric multidimensional scaling (NMDS) ordination biplot (stress = 0.04, k = 2) based on Bray Curtis distance 
showing similarities of the African nightshade species (S. sarrachoides, S. scabrum and S. villosum). c3, c6, c7, c10, c12, c31, c32, 
c33, c38, c39, c40, c45, c46, c50, c52, c54 are the labels of the selected “relevant” volatile organic compounds for discrimination of 
the species. 

 
Table 3. PERMANOVA (number of permutations = 999) and ANOSIM hypothesis tests 
on volatile organic compounds for the three African nightshade species. 

Test  
58 Volatile organic 

compounds 
16 Volatile organic 

compounds 

PERMANOVA 
Pseudo F-ratio 0.8176 2.7595 

p-value 0.554 0.022 

ANOSIM 
ANOSIM R statistic −0.07 0.4733 

p-value 0.589 0.018 

 
very small as they require moderate to large sample sizes for analysis. Such me-
thods as multivariate analysis of variance (MANOVA) either behave liberally 
and over-reject the null hypothesis, or behave conservatively [53]. Chang et al. 
[54] highlighted the need of a large sample size for an accurate type 1 error con-
trol.  

Non-metric multidimensional scaling has been used in small sample situation 
to reveal patterns in multivariate datasets visualized in a reduced dimension 
space. As such its application in chemical ecology characterized by high dimen-
sional small sample size datasets has become of notable interest. For instance, 
Hufnagel [55] visualized differences in the amount of glycoalkaloid α-solanine 
among Solanum tuberosum L., S. chacoense Bitter, S. pinnatisectum Dunal and 
S. immite Dunal using NMDS. Suinyuy et al. [56] analyzed volatile composition 
of male and female of African cycad species using headspace technique and gas 
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chromatography-mass spectrometry (GC-MS) where the species were clustered 
using NMDS according to shared chemical volatiles. NMDS efficiency in the 
chemical ecology field has been contributed by the technique’s properties such as 
being less sensitive to variation in species response curve [57] and its require-
ment of only two dimensions to visualize similarity patterns compared to other 
ordination techniques which requires a minimum of three dimensions [43]. 

In our study, NMDS results revealed that when all the chemical volatiles were 
used in the analysis, the nightshade species were highly overlapping. This might 
have been caused by the “curse of dimensionality” problem where, in high di-
mensional space an exponential increase in the space volume is experienced as 
the data becomes relatively small [58]. This makes it hard to find patterns in data 
samples shown by the ellipses overlap. Further, since the data was projected to a 
two-dimensional space from 58 dimensions, the similarities revealed by the 
NMDS plot might have been contributed by it.  

To identify patterns in the volatile compounds, RF and SIMPER were em-
ployed to reduce the data dimensions. RF performance was contributed by its ef-
ficiency in recognizing data patterns, no assumptions related to data properties, 
user-friendly parameters and ability to flexibly address the interactions between 
predictive variables [27]. On the other hand, SIMPER determined the contribu-
tion of individual compounds to the separation of the three African nightshades 
as reflected in the NMDS plots. The performance of the data reduction tech-
niques used in this study is supported by Muthoni [59], who used SIMPER and 
one way ANOSIM to compare the chemical profiles of the leaf volatiles of 
healthy and infected tomato plants and further visualized the clustering of the 
volatiles using NMDS. 

Bray Curtis distance was considered as the best distance measure in obtaining 
the NMDS plots since the other distance measures; Euclidean, Manhattan and 
Kulcynski had poor ordination fit. This might have been contributed by some of 
the properties of the distance measures. For instance, Junker [60] highlighted 
that Euclidean distance often lead to high similarities between samples not shar-
ing the same variables as it is affected by large number of zeros in the data [43] 
[61]. This contradicts with what Legendre and Legendre [43] stated on the 
properties of a good ecological distance in describing differences in species 
composition. Species sharing the same or most of the volatiles should have a 
small ecological distance than those not sharing any volatiles. Tomašev et al. [62] 
observed that Euclidean and Manhattan distances had similar trends in their re-
sults, which was in agreement with the similar NMDS plots obtained based on 
the two distance measures. 

Bray-Curtis distance only takes the value zero for identical variables and ig-
nores other variables having zeros [63]. Ecological distances based on Bray Cur-
tis range from 0 to 1, with 0 indicating complete similarity and 1 indicating 
complete dissimilarity. Hence, interpreting the distances based on Bray Curtis is 
easier than the other distances which do not have an upper bound making it dif-
ficult to understand how similar two species are, as they are only understood in a 
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relative way [41]. This is not to say that the distance does not have its limita-
tions; Bray Curtis and related measure such as Kulcynski tend to under estimate 
true ecological distances when distances become large. Therefore, the distance 
measure is as useful so far as it produces reasonable ecological ordinations 
through the ranks used for NMDS [45] [64].  

Although NMDS performed well in revealing the patterns and reducing the 
dimension, it did not rigorously express the nature and degree of uncertainty 
concerning a priori hypotheses. Therefore, non-parametric methods that tested 
hypothesis concerning the three nightshades species were required to make 
probabilistic statements about the VOCs data [45]. The results obtained from 
the two non-parametric tests (PERMANOVA and ANOSIM) were in agreement. 
These two tests as discussed by Somerfield et al. [65] are complementary tests 
rather than alternative. Additionally, Rojas et al. [66] used NMDS to visualize 
the seed disperser functional types, and their relationships with fruit traits, the 
patterns observed were supported by PERMANOVA results. 

In spite of the patterns among sampling units being visualized with an NMDS 
plot, use of rank orders to represent points in low dimensional space makes the 
solution obtained unstable and can even degenerate when applied to a small da-
taset [67]. In using NMDS, normality assumption is not required, however this 
necessitates use of intensive iterative algorithm since optimal solution may not 
be obtained from a single run. Therefore, multiple NMDS solutions with speci-
fied dimensionality is necessary to ensure a stable and optimal ordination con-
figuration [67]. Further, multivariate visualization of samples by any ordination 
technique is not the end point of analysis but should be viewed as a framework 
in which patterns of individual subjects can be interpreted. 

5. Conclusion  

Our results showed that there was a dissimilarity between African nightshade 
species of S. sarrachoides, S. scabrum and S. villosum when the data dimension 
was reduced to only 16 volatile compounds as compared to using all the 58 vola-
tile compounds depicted in the NMDS plots and outputs of PERMANOVA and 
ANOSIM hypothesis tests. Our study shows the merit of reducing variables us-
ing RF and SIMPER to enhance visualization and in turn increase the power of 
PERMANOVA or ANOSIM in analysis of high dimensional small sample data-
set as encountered in chemical ecology. Based on our results, we recommend use 
of RF, SIMPER or any other applicable data reduction technique when dealing 
with small samples in high dimensional data. Although the data reduction tech-
niques used in our study performed well in discriminating the African night-
shade species, the selected variables that were identified by RF and SIMPER 
might not necessarily be biologically important for chemical ecologists.  
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Supplementary Information 

Table S1. Average contribution of the three nightshade species based on pairwise com-
parison of the three African nightshade species, S. sarrachoides (sarr) and S. scabrum 
(sca), and S. villosum (vill) using similarity percentage (SIMPER). 

Volatiles 
Average 

contribution 
Standard 
deviation 

P-value 
Pairwise 

comparison 

c54 0.0104 0.0087 0.027 sarr vs villo 

c3 0.0063 0.0054 0.019 sarr vs villo 

c40 0.0040 0.0043 0.027 sarr vs villo 

c46 0.0129 0.0063 0.012 sarr vs sca 

c45 0.0085 0.0035 0.011 sarr vs sca 

c31 0.0001 0.0000695 0.035 sarr vs sca 

c12 0.0471 0.0272 0.018 sarr vs sca 

c32 0.0153 0.0132 0.022 sarr vs sca 

c461 0.0143 0.0052 0.006 villo vs sca 

c39 0.0103 0.0093 0.041 villo vs sca 

c451 0.0094 0.0027 0.006 villo vs sca 

c33 0.0065 0.0053 0.022 villo vs sca 

c6 0.0053 0.0038 0.038 villo vs sca 

c38 0.0028 0.0021 0.047 villo vs sca 

c10 0.0020 0.0016 0.034 villo vs sca 

 
Table S2. All 58 volatile organic compounds with their actual name and code as used in 
this study. 

Chemical volatile volatile code 

hexanal c1 

2-hexenal c2 

(Z)-3-hexen-1-ol c3 

heptanal c4 

3-Methyl-2-butenal c5 

1R-a-Pinene c6 

Benzaldehyde c7 

b-Pinene c8 

6-Methyl-5-hepten-2-one c9 

Beta Myrcene c10 

Octanal c11 

Limonene c12 

Benzyl alcohol c13 

Dihydromyrcenol c14 

3,7-Dimethyl-1-octanol (Geraniol tetrahydride) c15 

Methyl benzoate c16 
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Continued 

Linalool c17 

Nonanal c18 

1,2,4,5-Tetramethylbenzene (Durol) c19 

Isophorone c20 

2-Ethylhexanoic acid c21 

Octanoic acid c22 

à-Terpineol c23 

Decanal c24 

2,3,3-Trimethyl-2-(3-methylbutyl)-cyclohexanone c25 

Isothymol methyl ether (anisole) c26 

Nonanoic acid c27 

Isobornyl acetate c28 

Isobutyl butanoate c29 

Butyl butanoate c30 

Copaene c31 

B-Elemene c32 

7-Epi-Sesquithujene c33 

Longifolene c34 

a-Cedrene c35 

Caryophyllene c36 

B-Cedrene c37 

Gemacrene B c38 

Geranyl acetone c39 

Humulene c40 

2,5-Di-tert-butylbenzoquinone c41 

Epizonarene c42 

Butylated hydoxytoluene c43 

D-Cadinene (+)- c44 

Geranyl linalool c45 

4,8,12-Trimethyl-1,3 (E), 7 (E)-11-Tridecatetraene c46 

Caryophyllene oxide c47 

Cedrol c48 

Humulene epoxide II c49 

Methyl dihydrojasmonate c50 

7-Methyl-Z-tetradecen-1-ol acetate c51 

Ethylhexyl benzoate c52 

Isopropyl myristate c53 

Hexadrofarnesyl acetone c54 

Hexadecanoic acid c55 

Isopropyl palmitate c56 

10,18-Bisnorabieta-8,11-triene c57 

(Z)-9-Octadecanoic acid c58 
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