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Abstract 
Credit card fraud remains a significant challenge, with financial losses and 
consumer protection at stake. This study addresses the need for practical, 
real-time fraud detection methodologies. Using a Kaggle credit card dataset, I 
tackle class imbalance using the Synthetic Minority Oversampling Technique 
(SMOTE) to enhance modeling efficiency. I compare several machine learn-
ing algorithms, including Logistic Regression, Linear Discriminant Analysis, 
K-nearest Neighbors, Classification and Regression Tree, Naive Bayes, Sup-
port Vector, Random Forest, XGBoost, and Light Gradient-Boosting Machine 
to classify transactions as fraud or genuine. Rigorous evaluation metrics, such 
as AUC, PRAUC, F1, KS, Recall, and Precision, identify the Random Forest 
as the best performer in detecting fraudulent activities. The Random Forest 
model successfully identifies approximately 92% of transactions scoring 90 
and above as fraudulent, equating to a detection rate of over 70% for all frau-
dulent transactions in the test dataset. Moreover, the model captures more 
than half of the fraud in each bin of the test dataset. SHAP values provide 
model explainability, with the SHAP summary plot highlighting the global 
importance of individual features, such as “V12” and “V14”. SHAP force 
plots offer local interpretability, revealing the impact of specific features on 
individual predictions. This study demonstrates the potential of machine 
learning, particularly the Random Forest model, for real-time credit card 
fraud detection, offering a promising approach to mitigate financial losses 
and protect consumers. 
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1. Introduction 

Financial fraud involves misleading or withholding information from victims 
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regarding promised benefits, commodities, or services frequently to obtain eco-
nomic advantage. In the U.S. financial sector, identity theft is a common theme 
in various credit card fraud schemes. Identity theft occurs when a fraudster ob-
tains access to or opens an account using the victim’s personal information, of-
ten by stealing utility bills or bank statements. Scams can happen over the phone 
or through email, with the con artist posing as a bank official and asking for pri-
vate information. The criminal then reports a missing card to the cardholder’s 
bank using this personal information, and the bank issues a new card to the 
criminal.  

Credit card fraud occurs through various channels, including online, over the 
phone (both by text and voice), and in-person [1]. It involves a wide range of il-
legal activities, such as card skimming, where fraudsters install skimmers on gas 
pumps, ATMs, and point of sale (POS) systems to steal card information where 
customers swipe their credit or debit cards [2]. In account takeovers, fraudsters 
use stolen personal information to contact credit card companies, pretending to 
be legitimate cardholders [3]. 

Credit card application fraud involves using stolen personally identifiable in-
formation, such as names, addresses, birthdays, and social security numbers, to 
apply for credit cards in card-not-present (CNP) and card-present transactions. 
Other forms of credit card fraud include complex online scams and synthetic 
identity fraud, where criminals create fake identities using a combination of real 
and fabricated PII. These fraudulent activities result in significant financial losses 
and emphasize the need for robust fraud detection and prevention measures.  

The growing popularity of credit cards has resulted in a rise in online business 
transactions and the convenience of electronic payment systems. However, this 
widespread adoption has also given rise to fraudulent activities. According to the 
Federal Trade Commission’s Consumer Sentinel Network data book for 2021 
([4], p. 8), the primary types of fraud reported in the United States were identity 
theft (25.01%), imposter scams (17.16%), issues with Credit Bureaus and online 
shopping scams (6.94%). Collectively, these fraudulent activities accounted for 
50% of all reported fraud cases in the country. 

The financial sector is increasingly alarmed by the escalating threat of credit 
card theft, which results in the loss of billions of dollars to fraudulent activity 
annually. The impact of credit card fraud is pervasive, affecting not only the in-
dividual consumer but also the issuing banks, businesses, and government agen-
cies. The consumer bears the brunt of financial losses and damage to their credit 
score due to unauthorized charges on their credit cards, impairing their access to 
loans and other financial services. Larger-scale credit card fraud inflicts a stag-
gering annual revenue loss of billions of dollars on banks. The Federal Trade 
Commission’s recent data for 2022 revealed that consumers reported a stagger-
ing $8.8 billion loss to fraud, a more than 30% increase from the previous year 
[5]. Furthermore, the FBI’s Internet Crime Report for 2022 highlighted that 
Credit Card/Check Fraud accounted for $264.1 million in reported losses, while 
Identity Theft led to $189.2 million in losses ([6], p. 29).  
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Fraud detection involves analyzing customers’ transaction behavior to deter-
mine the legitimacy of transactions. With the increasing prevalence of electronic 
transactions, detecting and preventing fraudulent activities has become more 
challenging. Traditional rule-based approaches adopted by banks and financial 
institutions often struggle to keep up with evolving fraud techniques and the 
sophisticated methods employed by fraudsters. 

Machine learning has emerged as a powerful and efficient methodology for 
combating credit card fraud. These systems leverage models trained with histor-
ical data on both fraudulent and legitimate activities to autonomously identify 
characteristic patterns and recognize them when they reoccur. By scrutinizing 
large volumes of transaction data and pinpointing suspicious patterns, machine 
learning models can accurately classify transactions as either genuine or fraudu-
lent, providing a robust defense against evolving fraud techniques. 

This research aims to identify the most efficient methodology for detecting 
fraud, identify the most important features using the chosen model, and deter-
mine the percentage of fraudulent activities detected (detection rate) by the 
model in the riskiest bin in real-time. Specifically, this research adds value to the 
current literature by providing a real-time demonstration of an efficient metho-
dology for detecting and preventing fraud and also provides the percentage of 
fraudulent activities detected by the model in the riskiest bin. Additionally, 
SHAP values will be employed to study the global and local influence of each 
feature on fraud. These objectives are crucial in the ongoing battle against credit 
card fraud, as they will contribute to the development of more effective and ro-
bust fraud detection and prevention measures. 

2. Literature Review 

The existing literature extensively examines optimal approaches for detecting 
and preventing financial fraud through machine learning. In [7], four machine 
learning models: Support Vector Machine (SVM), Naïve Bayes (NB), K-Nearest 
Neighbor (KNN), and Logistic Regression (LR), were assessed alongside resam-
pling techniques to tackle data imbalance challenges. The study identified the 
optimal models for addressing fraud. LR (74%), NB (83%), KNN (72%), and 
SVM (72%) demonstrated the highest accuracy rates in capturing the fraud pat-
terns (unknown site address, ISO response code, suspicious transactions above 
$100), respectively. In [8], the usage of an artificial neural network (ANN) trained 
through the simulated annealing (SA) algorithm was optimal in real-time credit 
card fraud detection compared to alternative models such as decision trees, 
support vector machines, genetic algorithms, and back propagation. In a differ-
ent study [9], a supervised-based classification approach was employed, using 
Bayesian network classifiers, namely K2, Naïve Bayes, logistic, and J48 classifi-
ers1. After employing normalization and Principal Component Analysis, all clas-

 

 

1J48, also known as C4.5, is a decision tree classifier developed by Ross Quinlan for machine learning 
and data mining tasks. It constructs a tree by recursively partitioning data based on the most infor-
mative attributes, using measures like information gain. 
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sifiers achieved accuracy rates exceeding 95%. Furthermore, research conducted 
on how to detect fraudulent cash-back transactions in e-commerce platforms in 
Indonesia [10] compared three supervised classification algorithms: K-Nearest 
Neighbor (k-NN), Convolutional Neural Networks (CNN), and Long Short-Term 
Memory (LSTM), along with a combined CNN-LSTM model, to classify trans-
actions as fraudulent or not. The findings indicated that the K-NN algorithm 
outperformed the other models, achieving an accuracy of 83.82% on the test da-
ta, while the CNN-LSTM model demonstrated the lowest accuracy at 52.14%. 

Many credit card companies are hesitant to disclose detailed information 
beyond a basic acknowledgment of breaches, resulting in a significant amount of 
unreported breach data. This complexity, coupled with legal regulations safe-
guarding sensitive data, has led to a dearth of research in North America. Con-
sequently, existing literature predominantly focuses on the effectiveness of vari-
ous machine learning techniques in fraud detection using European datasets, 
highlighting the importance and complexity of this topic. 

In [11], the Kaggle European dataset was used to identify the optimal algo-
rithm for fraud detection. LR achieved an accuracy of 97.46%, NB demonstrated 
an accuracy of 99.23%, Multilayer Perceptron (MP) achieved 99.93% accuracy, 
and Random Forest (RF) produced the highest accuracy at 99.96%. The RF and 
Adaboost algorithms were also applied to the Kaggle credit card fraud dataset, 
and performance was evaluated based on accuracy, precision, recall, and 
F1-score [12]. The RF algorithm had the highest accuracy, precision, recall, and 
F1 score among the two algorithms. It also had the lowest false positive and false 
negative rate. Further, the ROC curve showed that the RF algorithm had a high 
area under the curve, indicating a good trade-off between sensitivity and speci-
ficity. On the contrary, while Random Forest demonstrates decent AUC and 
MCC metrics, it carries a higher failure cost than SVM, KNN, and CNN in [13] 
on the European dataset. 

Furthermore, in [14], various machine-learning techniques for detecting cre-
dit card fraud were explored on the European dataset. Accuracy, precision, and 
Matthews Correlation Coefficient were used as evaluation metrics. After ad-
dressing the class imbalance using the SMOTE technique, the results highlighted 
logistic regression, decision tree, and random forest as top performers. A hybrid 
sampling technique was also implemented to address data imbalance by over-
sampling the positive class (fraud) and undersampling the negative class [15] 
within the European dataset. The findings reveal that NB achieved the highest 
accuracy (97.92%), followed by KNN (97.69%) and LR (54.86%), respectively. 
Additionally, KNN outperformed NB and LR in specificity, precision, and MCC, 
demonstrating superior performance on the sampled data. 

While the previous literature [11] [12] [13] [14], and [15] focused on the ap-
plication of Machine Learning to detect and prevent credit card fraud using Eu-
ropean datasets, none illustrated the practical application of the models for 
real-time fraud detection. This research adds value to the current literature by 
addressing these gaps and providing a real-time demonstration of an efficient 
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methodology for detecting and preventing fraud on the European data set from 
Kaggle. 

There is a growing consensus on the necessity for real-time fraud detection [7] 
[8] [9] [16] [17] [18]. Although numerous studies in the literature discuss 
real-time fraud detection using machine learning models, none of them explicit-
ly demonstrate the quantitative effectiveness of these models, such as the 
amount or percentage of fraud detected in real-time. For example, in [18], a live 
credit card fraud detection system is introduced, utilizing deep neural network 
technology with an auto-encoder. The approach involves two phases: periodic 
offline training on historical data for model construction and real-time predic-
tion of new data using the established model. On the European dataset, these 
approaches were compared to four other binary classification methods—linear 
SVM, LR, non-linear auto-regression NN, and NN classification. Though the fi-
nal results indicate that the deep NN with auto-encoder achieved the highest F1 
score and precision, closely followed by LR in accuracy and recall, the percentage 
of fraud detected by the models on the European data sets was not discussed.  

To address this gap in the existing literature, I determine the percentage of 
fraudulent transactions detected by the optimal model in the riskiest bin in 
real-time. 

With the increasing adoption of ML models, there has equally been growing 
consensus on the inherent challenges of explainability in complex and black-box2 
models, such as deep neural networks and ensemble methods. Several techniques 
and frameworks have been proposed to address these challenges, including Local 
Interpretable Model-agnostic Explanations (LIME) and model-specific interpre-
tability methods. However, none of the studies on the European data set afore-
mentioned have explored the use of SHAP values in interpreting fraud. The final 
part of the study focuses on leveraging SHAP values to assess the contribution of 
each variable to fraud detection.  

3. Methodology 

The primary research methodology involves comparing various machine learn-
ing approaches logistic regression (LR), Linear Discriminant Analysis (LDA), 
K-nearest Neighbors (KNN), Classification and Regression Tree (CART), Naive 
Bayes (NB), Support Vector Machine (SVM), Random Forest (RF), XGBoost 
(XGB), Light Gradient-Boosting Machine (LightGBM) and selecting the best op-
timal model based on evaluation metrics such as AUC, PRAUC, F1, KS, Recall, 
and Precision. The chosen model will then be employed in subsequent analyses 
to determine how features contribute to and explain fraud detection using fea-
ture importance scores and SHAP values.  

3.1. Data Processing and Feature Selection 

The research used a credit card dataset sourced from Kaggle [19], which consists 

 

 

2Black-box models are pre-packaged ML algorithms such as Gradient Boosting etc. Unlike the tradi-
tional ML Models like Logistic regression, black-box models are opaque and non-transparent. 
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of transactions conducted by European cardholders over two days in Septem-
ber 2013. The dataset presents transactions that occurred in two days with 
492 frauds out of 284,807 transactions. As is customary in fraud datasets, 
non-fraudulent transactions vastly outnumber fraudulent ones, with 284,315 
(99.83%) non-fraudulent transactions and 492 (0.17%) fraudulent transactions. To 
protect the confidentiality of customer features, Principal Component Analysis 
(PCA) transformation was applied to the original dataset, excluding identifiable 
information features such as “time” and “amount.” Thus features V1, V2…V28 
are the principal components obtained with PCA. The “Time” feature contains 
the seconds elapsed between each transaction and the first transaction in the da-
taset. The “Amount” feature is the transaction amount. The target “Class” is the 
response variable and it takes the value of 1 in case of fraud and 0 for non-fraud.  

To ensure accurate modeling, one of any two features with a correlation coef-
ficient of 0.99 is excluded from the model training process. To address the class 
imbalance [11] [17] [20] used the highly effective synthetic minority oversam-
pling technique. This technique tackles class imbalance in machine learning by 
generating synthetic samples for the minority class. It identifies the minority 
class instances, selects their nearest neighbors, and creates new artificial exam-
ples along the lines connecting these neighbors, effectively expanding the dataset 
with realistic representations of the underrepresented class. To address the class 
imbalance for efficient modeling, the Synthetic Minority Oversampling Tech-
nique (SMOTE) is applied to the minority class (non-fraud). This results in a fi-
nal balanced dataset comprising 199,002 instances of fraud and 199,002 in-
stances of non-fraud. 

 

 
Figure 1. Top 27 features with highest importance score. 

 
Random Forest feature importance is used to select the top 27 features in the 

early run. This selection aims to achieve faster training times, prevent overfit-
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ting, and improve overall model predictions. Figure 1 shows the top 27 features 
selected using the Random Forest importance metric. Subsequently, the final 
dataset, containing only the selected features, is divided into a 70% train set and 
a 30% test set for further analysis. 

3.2. Model Building 

The primary research methodology involves comparing machine learning ap-
proaches and selecting the best model based on evaluation metrics. An automatic 
algorithm with 10-fold cross-validation is implemented in the building process to 
achieve this goal. This process comprises the following models: 

Logistic Regression (LR) is a linear classification model that plays a crucial 
role in binary classification tasks. It predicts the relationship between a depen-
dent variable and one or more independent variables. This model leverages the 
logistic function, the sigmoid function, to transform a linear combination of in-
dependent variables into a probability score.  

LR offers interpretability, enabling an easy understanding of the impact of in-
dependent variables on outcomes, and allows probability estimation for assessing 
prediction uncertainty. It demonstrates robustness to noise and irrelevant fea-
tures, ensuring effectiveness in high-dimensional datasets, and boasts computa-
tional efficiency, making it suitable for large-scale applications. However, LR 
assumes a linear relationship between variables, limiting its expressiveness in 
capturing complex patterns, and it can be sensitive to outliers, potentially skew-
ing predictions. Additionally, LR is primarily designed for binary classification, 
requiring modifications for multi-class tasks, and it assumes independence 
among observations, which might not hold in all scenarios. 

Linear Discriminant Analysis (LDA): This model predicts the class of the 
dependent variable by using the linear combination of the independent va-
riables. LDA aims to maximize class separation while minimizing within-class 
variance by identifying a linear combination of independent variables. Discri-
minant functions derived from this process are then used to classify new obser-
vations using a designated decision rule. Additionally, LDA can reduce dimen-
sionality by projecting data into a lower-dimensional space while preserving the 
distinct separation between classes. 

LDA offers the advantage of dimensionality reduction by projecting data into 
a lower-dimensional space while preserving distinct class separation. However, 
LDA can be sensitive to outliers and assumes that independent variables are 
normally distributed within each class, potentially leading to biased parameter 
estimates.  

K-nearest Neighbors (KNN): KNN, a versatile algorithm, uses proximity to 
make classifications or predictions about the grouping of an individual data 
point. It is applicable to both classification and regression problems, assessing 
similarity by considering the k-nearest neighbors in the feature space. In classi-
fication, KNN assigns a data point to the majority class among its neighbors, 
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while in regression, it calculates the average of their values. This algorithm 
proves effective for diverse predictive tasks, adapting its approach based on the 
specific requirements of the problem at hand, giving you a wide range of options 
to choose from. 

KNN’s simplicity and adaptability make it accessible to beginners and suitable 
for diverse predictive tasks. However, KNN’s computational complexity and 
memory intensity can pose challenges, especially with large datasets, and its pre-
dictions may be sensitive to noise and outliers. Additionally, selecting an optimal 
value for the parameter k is crucial for achieving optimal performance and often 
requires a great amount of time for experimenting and tuning. 

Classification and Regression Tree (CART): CART, a widely used algorithm 
for predictive modeling and decision-making, can be employed for both classifi-
cation and regression tasks. It provides a tree-like structure that represents deci-
sion rules and splits in the data. In classification, the tree categorizes instances 
into different classes, while in regression, it predicts numerical values. The in-
terpretability of CART makes it a powerful tool, giving you confidence in your 
understanding of the model’s decision-making process. 

CART’s interpretability is a significant advantage, it provides transparency 
into the model’s decision-making process, which instills confidence in its out-
comes. However, CART also has limitations. While it is easy to interpret and vi-
sualize, it can be prone to overfitting, particularly when the tree depth is not 
adequately controlled. Additionally, CART may lack robustness when faced with 
small variations in the data, potentially leading to unstable predictions. 

Naive Bayes (NB): Naive Bayes, a computationally efficient and straightfor-
ward algorithm, uses Bayes’ theorem to assign a probability to every possible 
value in the target class, and the resulting distribution is then condensed into a 
single prediction. It calculates the likelihood of each class based on observed data 
and combines it with prior probabilities for making predictions. NB offers quick 
and effective predictions. Its efficiency provides reassurance about performance, 
particularly with large datasets.  

However, NB assumes feature independence, which may not always hold in 
real-world scenarios. This assumption can limit its ability to capture complex 
relationships between features, potentially leading to suboptimal performance in 
certain cases. 

Support Vector Machine (SVM): SVM finds a hyperplane that best fits the 
data points in a continuous space instead of fitting a line to the data points. It 
can be used in regression and classification tasks. SVM aims to find the hyper-
plane that maximizes the margin between different classes. While versatile 
enough for regression and classification tasks, SVM excels particularly in solving 
classification problems. Its ability to handle complex data and find non-linear 
decision boundaries makes SVM a powerful tool in various fields of machine 
learning. SVM’s strengths lie in its effectiveness in high-dimensional spaces and 
its robustness to overfitting, especially when using appropriate regularization.  
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However, SVM’s computational complexity increases with the size of the da-
taset, making it less suitable for large-scale applications. Additionally, SVM’s 
performance heavily depends on the choice of kernel function and its associated 
parameters and requires careful tuning to achieve optimal results. 

Random Forest (RF): Random Forest involves the creation of multiple deci-
sion trees, each constructed using distinct random subsets of the data and its 
features. Each decision tree functions as an individual “expert,” offering its 
perspective on the data classification. To make predictions, the algorithm com-
putes predictions from each decision tree and ultimately selects the most fre-
quently occurring outcome among these individual results. 

RF boasts high accuracy due to its ability to reduce overfitting and handle 
noise effectively. It is versatile, accommodating different types of data, and pro-
vides insights into feature importance. However, RF models can be complex and 
computationally expensive to train, especially with large datasets. Additionally, 
they may exhibit a bias towards majority classes in imbalanced datasets. Despite 
these challenges, Random Forest remains widely used and valued for its robust-
ness, accuracy, and versatility in classification tasks. 

XGBoost (XGB): XGBoost is particularly popular in various data science and 
machine learning competitions on platforms like Kaggle due to its high predic-
tive accuracy and versatility. It is designed for classification and regression tasks 
and is known for its efficiency, scalability, and ability to handle complex struc-
tured data. Its success in handling a wide range of datasets and delivering robust 
performance has made XGBoost a go-to choice for analysts seeking superior 
predictive models in various applications. XGB advantages include high predic-
tive accuracy, efficient computational performance, scalability to large datasets, 
and the ability to handle complex structured data.  

However, XGBoost also has its limitations. It can be computationally expen-
sive, especially when dealing with large datasets and complex models. Addition-
ally, XGBoost’s performance heavily depends on hyperparameter tuning which 
requires careful optimization to achieve optimal results. 

Light Gradient-Boosting Machine (LightGBM): LightGBM is a fast, distri-
buted, high-performance gradient-boosting framework based on decision tree al-
gorithms. It is used for ranking, classification, and many other machine-learning 
tasks. Its capability to handle large datasets and deliver quick, accurate results 
makes LightGBM particularly well-suited for applications where speed and per-
formance are crucial, solidifying its popularity in the machine-learning commu-
nity. 

However, LightGBM’s performance can be sensitive to hyperparameters, ne-
cessitating careful tuning for optimal results. Additionally, its inner workings 
may pose complexity, demanding a deeper understanding for effective utiliza-
tion, especially among users less familiar with gradient boosting and decision 
tree algorithms. While scalability challenges may arise in setting up distributed 
training environments, and there’s a risk of overfitting with high-capacity mod-
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els. 

3.3. Model Selection Metrics 

Due to the class imbalance, accuracy may not be the most suitable metric for 
performance evaluation [11]. Instead, additional metrics, including AUC, F1 
score, Precision, and Recall, were employed in evaluating model performance. 
To ensure a thorough evaluation of the model’s effectiveness in handling class 
imbalance, PRUAC was incorporated. KS was also included, which quantifies 
the maximum separation between the cumulative distribution of fraud and 
non-fraud instances. Descriptions of these performance metrics are provided 
below. 

TP TN
TP

Accura
TN F

c
P FN

y +
=

+ + +
: This metric measures the number of correct  

predictions made by a model in relation to the total number of predictions 
made. The range ∈  [0, 1].  

Precision TP
TP FP

=
+

: Precision calculates the ratio of correctly classified fraud 

transactions to all transactions classified as fraud. The range ∈  [0, 1]. 

Recall or T TP
T F

PR
P N

=
+

: This measures the ratio of correctly classified fraud 

transactions to all actual fraudulent transactions. The range ∈  [0, 1]. 
Precision Recall2
Precis

F
i

1 Score
on Recall

×
×

+
= : This combines the precision and recall using  

the harmonic mean. It provides a balanced measure of a model’s performance. 
The range ∈  [0, 1].  

FP
F T

FPR
P N

=
+

: This measures the proportion of non-fraud transactions that 

are incorrectly classified as fraudulent transaction. The range ∈  [0, 1].  
Where: 
TP is the number of transactions correctly classified as fraud.  
TN is the number of transactions correctly classified as non-fraud.  
FN is the number of fraud transactions wrongly classified as non-fraud.  
FP is the number of non-fraud transaction wrongly classified as fraud 
KS: The Kolmogorov Smirnov test (KS) measures the maximum separation 

between fraudulent and non-fraudulent transaction distribution, which is in the 
range ∈  [0, 1]. 

AUC: This metric summarizes the trade-off between a classifier’s true and 
false favorable rates. It quantifies a classifier’s ability to distinguish between pos-
itive and negative classes—the range ∈  [0, 1]. 

PRAUC: PRAUC summarizes the precision-recall trade-off across different 
classification thresholds. It calculates the area under the precision-recall curve, 
which plots precision against recall. A high PRAUC indicates a model that 
maintains high precision while achieving high recall. This metric is often used 
for fraud detection, anomaly detection, and imbalanced classification prob-
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lems—the range ∈  [0, 1]. 

4. Results and Discussion 
4.1. Model Performance in Train Data 

The Random Forest model emerged as the best-performing model, achieving the 
highest KS score of 99.99% and an AUC of 99.99%, demonstrating its robust 
ability to effectively distinguish between fraudulent and non-fraudulent transac-
tions in Table 1. Similar results were obtained in [1] [14] [19] where the RF 
produced the best accuracy of 99.96% from among a list of classifiers on the Eu-
ropean data set.  

Moreover, the Random Forest model produced the highest accuracy rate of 
99.99%, along with the highest precision and recall rates of 99.98% and 99.99%, 
respectively. This high F1 score of 99.99% signifies a well-balanced trade-off be-
tween precise positive predictions (precision) and the comprehensive capture of 
positive instances (recall) by the RF model. Furthermore, the PRAUC value of 
99.99% obtained from the Random Forest model shows its superior ability to 
differentiate between positive and negative classes compared to all other models. 
See Table 1. 

 
Table 1. Model performance metric on train data sets. 

Model KS AUC F1-Score Recall PRAUC Precision Accuracy 

LR 0.8937 0.9904 0.9405 0.9125 0.9912 0.9702 0.9422 

LDA 0.8710 0.9774 0.9080 0.8437 0.9784 0.9828 0.9145 

KNN 0.9993 0.9997 0.9989 1.0000 0.9993 0.9979 0.9989 

CART 0.9965 0.9983 0.9983 0.9991 0.9970 0.9974 0.9983 

NB 0.8262 0.9501 0.9063 0.8487 0.9542 0.9722 0.9122 

SVM 0.9675 0.9984 0.9836 0.9862 0.9982 0.9810 0.9836 

RF 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 0.9999 

XGB 0.9980 0.9999 0.9989 0.9998 0.9999 0.9979 0.9989 

Light GBM 0.9992 0.9999 0.9993 0.9999 0.9999 0.9986 0.9993 

4.2. Detection of Overfitting (Performance on Test Set) 

Assessing the performance of the models on the test data is crucial because it 
provides an unbiased evaluation of how well each model generalizes to unseen 
data. This evaluation ensures that the models have not merely memorized the 
training data (a phenomenon known as overfitting) but can accurately predict 
new, real-world examples. Evaluating performance on a separate, unseen dataset 
helps determine the model’s reliability and potential to perform well in practical 
applications, aiding in selecting the best model. 

The fitted models are employed to predict the test dataset, and the perfor-
mance results from the test dataset are compared to those obtained in the training 
data to detect the possibility of overfitting. Overfitting occurs when a model 
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performs exceptionally well on the training data but fails to generalize effectively 
to new, unseen data. 

Among the models, the Random Forest (RF) model exhibits the lowest reduc-
tion in performance metrics when transitioning from the training dataset to the 
test dataset. A comparison of performance metrics in the training data, as shown 
in Table 1, to those in the test data, as presented in Table 2, reveals a reduction 
of less than 20% for all metrics in the test dataset. The RF declined by KS 
(9.09%), AUC (8.09%), F1-Score (16.47%), Recall (16.15%), PRAUC (16.46%), 
Precision (16.78%) and Accuracy (0.04%). Consequently, the RF model is se-
lected as the final model for further use in real-time fraud detection and for Shap 
value explainability. 

 
Table 2. Model performance on the test data set. 

Model KS AUC F1-Score Recall PRAUC Precision Accuracy 

LR 0.9090 0.9517 0.0937 0.9308 0.4901 0.0493 0.9726 

LDA 0.9090 0.9153 0.1408 0.8462 0.4616 0.0768 0.9843 

KNN 0.9090 0.9337 0.5622 0.8692 0.6424 0.4154 0.9979 

CART 0.9090 0.8949 0.4671 0.7923 0.5619 0.3312 0.9972 

NB 0.9090 0.9261 0.0971 0.8769 0.4643 0.0514 0.9752 

SVM 0.9090 0.9293 0.1258 0.8769 0.4724 0.0678 0.9815 

RF 0.9090 0.9191 0.8352 0.8385 0.8354 0.8321 0.9995 

XGB 0.9090 0.9412 0.5239 0.8846 0.6285 0.3722 0.9976 

Light GBM 0.9090 0.9339 0.6141 0.8692 0.6721 0.4748 0.9983 

4.3. Final Model Output and Adjustment 

Following Visa’s approach to its Provisioning Intelligence [20] the model output 
(predicted probabilities) generated by the Random Forest (RF) model were 
rounded to two decimal points and then multiplied by 100 to bring them within 
a range of 0 to 100 with one-point increments. In this scale, a score of 100 de-
notes the highest risk, while a score of 0 indicates the lowest risk. 

In real-time fraud detection, the final model output is also converted to a 
score tie with a set of rules for use in decisioning. Based on the score and the 
rules, a transaction could be approved or sent for manual review pending the 
customer’s authentication or declined outright. Subsequently, these scores and 
predicted probabilities were sorted and equally grouped into 10 bins. To assess 
the appropriateness of this scoring approach, a histogram comparison of pre-
dicted probabilities and the score associated with fraudulent transactions in the 
test dataset was generated. 

As depicted in Figure 2, fraudulent transactions exhibit distinct distributions 
across the binned probabilities and scores. The predicted probabilities and the 
scores for fraudulent transactions display a right-skewed distribution, with ap-
proximately 92% of fraudulent transactions falling within the highest bins, spe-
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cifically in the ranges [0.9 to 1] and [90 to 100] for predicted probabilities and 
scores, respectively. Thus the conversion of the predicted probabilities to scores 
did not alter the distribution of fraud transactions. 

 

 
Figure 2. Histogram of predicted probabilities and scores for fraudulent transactions. 

4.4. Detection Rate in the Test Data 

To assess the detection rate, which represents the proportion of fraudulent 
transactions detected by the model, a total transaction count per score bin was 
tabulated, with each bin corresponding to a specific probability range. As illu-
strated in Table 3, the highest score bin, ranging from 90 to 100, aligns with the 
highest probability bin [0.9 - 1]. This particular bin contains 92 fraudulent 
transactions out of 100 transactions. In simpler terms, approximately 92% of 
transactions scoring 0.9 and above (riskiest bin) are identified as fraudulent, 
equating to a detection rate of approximately 70.77% at a lower false positive ra-
tio of 0.09 for all fraudulent transactions in the test dataset. 

 
Table 3. Fraud detection in the test data set. 

Score Probabilities 
Non 

Fraud 
Fraud 

Total  
Transaction 

Fraud Rate 
Cum Non 

Fraud 
Cum 
Fraud 

Det Rate FPR 

90 - 100 [0.9 - 1] 8 92 100 92.00% 8 92 70.77% 0.09 

80 - 89 [0.8 - 0.9) 1 8 9 88.89% 9 100 76.92% 0.09 

70 - 79 [0.7 - 0.8) 1 3 4 75.00% 10 103 79.23% 0.1 

60 - 69 [0.6 - 0.7) 5 2 7 28.57% 15 105 80.77% 0.14 

50 - 59 [0.5 - 0.6) 8 3 11 27.27% 23 108 83.08% 0.21 

40 - 49 [0.4 - 0.5) 6 2 8 25.00% 29 110 84.62% 0.26 

30 - 39 [0.3 - 0.4) 16 2 18 11.11% 45 112 86.15% 0.4 

20 - 29 [0.2 - 0.3) 42 2 44 4.55% 87 114 87.69% 0.76 

10 - 19 [0.1 - 0.2) 217 2 219 0.91% 304 116 89.23% 2.62 

0 - 9 [0 - 0.1) 85,009 14 85,023 0.02% 85,313 130 1 656.3 

Total 
 

85,313 130 85,443 
     

 
A similar trend is observed across the remaining score bins, where the fraud 
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rate within each bin progressively decreases compared to the riskiest bin in 
terms of fraud risk. Table 3 also reveals that the RF model captures more than 
half of the fraud (resulting in a detection rate of over 50%) for each bin in the 
test dataset. These findings further affirm the Random Forest (RF) model’s ro-
bust performance in detecting fraudulent activities in unseen data. 

4.5. In Rank Ordering/Monotonicity Testing 

The rank-ordering is a visual assessment that illustrates the model’s ability to 
consistently rank the fraud rates in decreasing order as the scores decrease. To 
evaluate this ability, the scores are plotted against the corresponding fraud rates3 
in Table 3. As depicted in Figure 3, the plot exhibits an expected, monotonically 
decreasing trend in the marginal fraud rate across the score bins. This observa-
tion shows the model’s robust rank-ordering ability, exemplified by the highest 
fraud rate of 92% recorded in the riskiest score bins [90 to 100]. This further 
reaffirms the best model (RF) model’s ability in detecting fraudulent activities. 
 

 
Figure 3. Rank ordering of fraud rates. 

4.6. Distribution of Score by Fraud Tag 

To conduct a visual examination of the model’s output, a comparison of histo-
grams depicting the distribution of scores derived from the predicted probabili-
ties for the fraud labels (true outcomes) using the test data is generated. As de-
picted in Figure 4 on the left, the scores for legitimate transactions (fraud = 0) 
exhibit a right-skewed distribution. The peak of the distribution for legitimate 
transactions occurs at the lowest, least risky score (0), aligning with expectations 
and reflecting the low incidence of fraud rate in the test data. 

 

 

3Fraud Rate is Fraud/Total Transaction for each bin. 
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Figure 4. Histogram of score by fraud tag. 

 
Conversely, the scores for fraudulent transactions (fraud = 1) display a 

left-skewed distribution, with a peak in the highest, riskiest score range, as ex-
pected. Based solely on visual inspection, the RF model’s discriminatory power is 
reaffirmed as obtained by the KS and AUC as discussed in Table 1 and Table 2.  

5. Explainability 

Machine learning models are frequently characterized as “black boxes” because 
of their inherent complexity, which makes it challenging to understand the rea-
soning behind their predictions. Consequently, there is a growing demand for 
methods that render these models more explainable and interpretable, shedding 
light on the intricacies of their predictions [21] [22] [23]. ML explainability is 
important to ensure algorithmic fairness, identify potential bias in the training 
data, and ensure that the final model performs as expected [24].  

Machine learning interpretability encompasses a wide array of techniques that 
are used to clarify and understand the decision-making processes of machine 
learning models. These techniques include feature importance scores, partial 
dependence plots, LIME (Local Interpretable Model-Agnostic Explanations), 
SHAP (Shapley Additive explanations) values, and many others. Among these, 
SHAP values are often preferred due to their robust theoretical foundation, con-
sistency, and ability to explain complex models by providing coherent feature 
attributions. 

5.1. Shapley Additive Explanations (SHAP) 

The use of Shapley Additive explanations (SHAP) for explainability developed 
by Lundberg and Lee [25] is rooted in cooperative game theory, which distri-
butes the total gain among players according to their respective contributions. 
Within the game theory framework, the model represents the game’s rules, and 
the input features are hypothetical individuals who could either play the game 
(an observed feature) or not (an unobservable characteristic). Therefore, the 
SHAP technique determines the Shapley values by assessing the model under 
various feature combinations and figuring out the average difference in the pre-

https://doi.org/10.4236/jdaip.2024.122011


B. Borketey 
 

 

DOI: 10.4236/jdaip.2024.122011 204 Journal of Data Analysis and Information Processing 
 

diction (outcome) between the presence and absence of a feature. 

5.2. Global Explainability: SHAP Value Feature Importance Plot 

I generated a SHAP summary plot to gain a deeper insight and create a more 
informative plot to visualize the feature’s importance. This plot organizes the 
contributions of the features from the most influential to the least influential. 
Figure 5 summarizes each feature’s impact on the final prediction for the test 
dataset. The plot clearly shows that “V12” is the most influential feature when 
making predictions, followed closely by “V14.” Conversely, “V27” is identified 
as the least important feature, exerting minimal influence on the model’s pre-
dictions. 
 

 
Figure 5. Shap value importance score. 

5.3. Local Explainability 

The SHAP values force plot provides local interpretability for each data point 
predicted by the model. In Figures 6-8, I present force plots generated using 
SHAP values for the 15th, 20th, and 40th instances, respectively. 
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These force plots vividly demonstrate how specific features, each with its 
unique contribution, influence the prediction for each of these instances. Some 
features exert a positive impact, pushing the prediction higher, while others have 
a negative effect, pulling it lower. The cumulative effect of all feature contribu-
tions adds up to the final prediction value. 

In these force plots, features with red coloring indicate contributions that in-
crease the model’s prediction, while features with blue coloring indicate contri-
butions that decrease the prediction. The intensity of the color reflects the mag-
nitude of the contribution. Wider bars on the plot indicate a more extensive 
range of values for a feature, emphasizing its more significant influence on the 
prediction. 
 

 
Figure 6. Shap value explanation for instance 15. 

 

 
Figure 7. Shap value explanation for instance 20. 

 

 
Figure 8. Shape value explanation for instance 40. 

6. Conclusions 

The study focused on fraud detection using machine learning; I employed a cre-
dit card dataset sourced from Kaggle. After preprocessing and feature selection, I 
evaluated several machine learning models, including Logistic Regression, Li-
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near Discriminant Analysis, K-nearest Neighbors, Classification and Regression 
Tree, Naive Bayes, Support Vector Machine, Random Forest, XGBoost, and 
Light Gradient-Boosting Machine. 

The Random Forest model emerged as the top-performing model, showcasing 
remarkable results in distinguishing between fraudulent and non-fraudulent 
transactions. It exhibited high accuracy, precision, recall, F1 score, and AUC, 
demonstrating its robustness in identifying fraudulent activities. 

To assess overfitting, I evaluated model performance on a separate test data-
set, and the Random Forest model maintained its strong performance, indicating 
its ability to generalize effectively. 

I also explored model interpretability using SHAP (Shapley Additive exPlana-
tions) values. The SHAP summary plot highlighted the importance of individual 
features, with “V12” being the most influential and “V14” closely following. Ad-
ditionally, SHAP force plots provided local interpretability, revealing how spe-
cific features impacted predictions for individual instances. 

In conclusion, the Random Forest model, supported by SHAP values for ex-
plainability, represents a powerful tool for real-time fraud detection in credit 
card transactions. Its strong performance and interpretability make it a valuable 
asset for financial institutions seeking to enhance security and minimize fraudu-
lent activities. 

7. Limitation and Future Work 

While this study demonstrates the effectiveness of the Random Forest model for 
real-time credit card fraud detection, there are some limitations to consider. 
Firstly, although widely used in similar studies, the dataset used in this study is 
from a European credit card issuer and may not fully represent global fraud pat-
terns. Future research could explore the model’s performance on datasets from 
different geographical regions to assess its generalizability. Also, as discussed 
above, PCA transformation was applied to the original data, excluding identifia-
ble information features such as “time” and “amount.” Applying PCA transfor-
mation to original data for machine learning introduces challenges such as loss 
of interpretability and difficulty explaining results due to the transformation of 
features into orthogonal components. Additionally, PCA may lead to informa-
tion loss, especially if essential information is discarded. Despite these chal-
lenges, PCA remains a valuable technique for dimensionality reduction; future 
research could explore methods to utilize actual features to mitigate the loss of 
interpretability. 

Secondly, credit card fraud techniques continuously evolve, and fraudsters 
adapt their strategies to circumvent detection systems. Therefore, the model’s 
performance may degrade if not regularly updated with new, representative data. 
Future work could investigate online shopping habits to enable the model to 
dynamically adapt to emerging fraud patterns.  

The RF model is chosen as the best performing model because it requires few 
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hyperparameters to optimize which is advantageous given the limited computa-
tional resources. Moreover, the performance of a model could vary depending 
on the specific characteristics of the data and the problem at hand. The RF mod-
el has performed better than other classification models on the European data in 
the literature. Thus, it would be essential for future research to experiment with 
another dataset with high computational resources to determine the perfor-
mance of the model in a different environment or to actual credit card fraud de-
tection system. I would also recommend for future work to consider the 
real-time and scalability of the model, as well as how it handles the challenges of 
large-scale data and high-speed transaction traffic. 

Lastly, this study focuses on the binary classification of transactions as frau-
dulent or non-fraudulent. However, fraud detection systems often incorporate 
additional actions in real-world scenarios, such as manual review or authentica-
tion challenges. Future work could extend the model to a multi-class classification 
problem, incorporating these intermediate actions to better align with real-world 
fraud management strategies. 

8. Policy Implication 

The findings from this study have significant policy implications for financial 
institutions, regulators and consumers. The demonstrated effectiveness of ma-
chine learning, particularly the Random Forest Model, in detecting credit card 
fraud in real-time highlights the potential for these techniques to enhance secu-
rity measures and protect consumers from financial losses.  

Financial institutions should consider integrating machine learning-based 
fraud detection systems into their existing risk management frameworks. By le-
veraging the power of real-time fraud detection, banks and credit card issuers 
can proactively identify and prevent fraudulent transactions, reducing financial 
losses and minimizing the impact on affected customers.  

Regulators and policymakers should encourage the adoption of advanced 
fraud detection technologies, such as machine learning, to strengthen the overall 
security of financial systems. This could involve providing guidance and incen-
tives for final institutions to invest in these technologies and establishing stan-
dards for their implementation and monitoring.  
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