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Abstract 
Lung cancer is one of the greatest threats to human health. It is a very effec-
tive way to detect lung cancer by pathological pictures of lung cancer cells. 
Therefore, improving the accuracy and stability of diagnosis is very impor-
tant. In this study, we develop an automatic detection scheme for lung cancer 
cells based on convolutional neural networks and Swin Transformer. Micro-
scopic images of patients’ lung cells are first segmented using a Mask R-CNN- 
based network, resulting in a separate image for each cell. Part of the back-
ground information is preserved by Gaussian blurring of surrounding cells, 
while the target cells are highlighted. The classification model based on Swin 
Transformer not only reduces the computation but also achieves better re-
sults than the classical CNN model, ResNet50. The final results show that the 
accuracy of the method proposed in this paper reaches 96.16%. Therefore, 
this method is helpful for the detection and classification of lung cancer 
cells. 
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1. Introduction 

Lung cancer is one of the leading culprits that threaten human health. According 
to the 2022 World Health Organization Cancer Report, 609,360 people will die 
from cancer in the United States in 2022, which is equivalent to nearly 1700 
deaths per day, including approximately 350 deaths per day from lung cancer, 
which is the leading cause of death from all cancers [1]. Lung cancer has an ex-
tremely high mortality rate, and early diagnosis and treatment can dramatically 
improve patients’ chances of survival [2]. Previous methods of lung cancer di-
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agnosis include computed tomography (CT), chest X-ray, and cytopathological 
identification. Screening and detecting lung cancer cells are crucial in cancer 
prevention and control efforts [3]. Lung cancer diagnosis and ancillary tests rely 
on cytology and small biopsy specimens obtained by minimally invasive means 
[4]. Specimens of lung cancer cells are usually obtained from patients’ sputum 
exfoliated cells, alveolar lavage fluid, bronchial secretions, or pleural effusions. 
Compared with other screening methods, this method is convenient, quick, and 
basically non-invasive, which is very suitable for the initial screening. 

Traditionally, lung cancer cytopathological images are used by pathologists or 
physicians to analyze cell morphology, number, differentiation, and other cha-
racteristics to reach a diagnosis. In recent years, as the number of patients with 
the disease has increased, the large number of lung cancer patients has brought 
thousands of data to be analyzed, and processing these data requires a large 
number of professionals. With the shortage of pathologists in some areas, it is 
unreasonable to use manual review data to cause a waste of human resources. The 
long-term repetitive and boring work also increases the possibility of misjudgment 
by professionals. Therefore, the research on cytopathological image-assisted diag-
nosis systems for lung cancer is of great practical significance. Combining ad-
vanced computer technology and the diagnostic experience of cytology experts 
can, to a certain extent, solve the current medical troubles of cancer cell diagno-
sis and reduce the workload and artificial influence of pathologists. This work 
can largely improve the efficiency of early lung cancer screening and reduce the 
mortality rate of lung cancer patients [5]. 

In the last decade, with the development of computer hardware and deep 
learning algorithms, artificial intelligence has been used to process the stream of 
data generated throughout the clinical pathway [6]. Computer-aided medical 
analysis techniques have also been rapidly developed with advances in image 
analysis algorithms and the rise of big data algorithms [7]. Using machine 
learning algorithms to identify and detect cancer has been shown to be feasible 
[8] [9] [10]. Today, many cytopathological recognition methods have been pro-
posed as the techniques for image classification are becoming mature. However, 
since cells in different organs and tissues have different characteristics, the 
guidelines for physicians to determine whether a cell is diseased or not may 
change accordingly. There is no universal cytopathological image recognition 
method. Current methods for lung cancer cell detection suffer from low predic-
tion accuracy, high resource consumption, and poor real-time performance. In 
this paper, we propose a transformer-based lung cancer cell detection network, 
which solves the above problems to some extent. 

2. Related Work 

The identification and detection of lung cancer cells consist of two main steps: 
cell nucleus segmentation and cell image classification. Segmentation of lung 
cancer cells involves segmenting one or more lung cells in an image to facilitate 
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pathologists to clearly observe their morphology, color, and other features. The 
cell nucleus segmentation is to prepare for the classification afterward. 

There are many traditional image segmentation methods, which are widely 
used in cell nucleus segmentation. Threshold segmentation [11] [12] is the sim-
plest method to distinguish foreground objects from the background. The basic 
idea of clustering segmentation [13] [14] is to calculate the similarity between 
each pixel point and group the pixels with high similarity into one class, so as to 
segment the image. There are some other traditional methods for segmenting 
cell nuclei, such as the watershed algorithm [15] [16] and the active contour 
method [17]. All these traditional methods have obvious advantages and disad-
vantages, and individual methods are only applicable in some specific scene 
conditions. And they often have limitations for the complex environments that 
occur in reality. Therefore, a combination of multiple methods is often used in 
practice, which also brings new problems such as great computational effort and 
complex computational principles. 

The success of deep learning has brought new life to medical image segmenta-
tion. In 2019, Yiming Liu et al. [18] used a combination of coarse and fine seg-
mentation methods, and first trained Mask-RCNN to obtain coarse segmenta-
tion results. The local fully connected conditional random field is used in fine 
segmentation, and finally the two are fused. In 2020, Cai et al. [19] proposed a 
Dense U-Net structure based on the U-Net model, which uses a dense cascade 
form to segment the body skin cell images. In 2021, Liu Z [20] proposed an im-
proved backpropagation (BP) neural network model for color fundus image seg-
mentation. It can be seen that deep learning techniques are widely used in medical 
images and can be used to solve the segmentation problems of the skin, MRI, re-
tinal images, and cell images to achieve automatic segmentation of targets. 

The traditional method of lung cancer cell classification requires manual ex-
traction of cell features. The advent of deep learning has simplified this step [21]. 
The global linking and weight sharing features of convolutional neural networks 
make them well suited for processing images, which has led to the derivation of 
many classical CNN models. In 2014, Simonyan and Zisserman proposed the 
VGG model [22] with a deeper network structure. Compared to other neural 
networks, it uses a smaller size convolutional kernel, which increases the nonli-
near representation of the network while reducing the parameters. In 2015, 
ResNet was introduced to solve the gradient vanishing problem, which is com-
mon in neural networks [23]. It introduced residual blocks, and the network 
performed Identity Mapping through shortcuts with good results. In 2016, 
Huang G, et al. [24] effectively alleviated the gradient disappearance problem by 
reusing the feature map in the network while enhancing the transfer of features 
in the network. In 2017, Teramoto et al. [25] developed an automatic classifica-
tion scheme for lung cancer based on microscopic images using deep convolu-
tional neural networks (DCNN). And their classification accuracy was evaluated 
using triple cross-validation. In the obtained results, about 71% of the images 
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were correctly classified. In 2020, Daniel Gonzalez et al. [26] used three different 
convolutional neural networks for small cell lung carcinoma (SCLC), large cell 
neuroendocrine carcinoma (LCNEC), and mixed/unclassifiable three categories 
for classification and diagnosis, which eventually achieved good results on a li-
mited dataset. 

In 2017, the transformer framework proposed by Google [27] attracted a lot of 
attention. It not only became a mainstream model in the field of natural lan-
guage processing, but also started to expand to the field of computer vision. In 
2020, Google proposed Vision Transformer (ViT) [28]. The direct use of trans-
formers for image classification in the article broke the reliance on CNN—the 
method used in most image processing work—in the CV field. In 2021, Liu Z et 
al. proposed Swin Transformer [29], which surpasses backbone networks such as 
EfficientNet in terms of performance. It introduced a sliding window mechan-
ism and a hierarchical structure, making the Swin Transformer the new Back-
bone of machine vision. It reached the SOTA level in a variety of machine vision 
tasks such as image classification, target detection, and semantic segmentation. 
ViT has also been used in medical image processing. For example, the staff of 
[30] [31] used transformers to distinguish COVID-19 from other types of 
pneumonia by computed tomography (CT) or X-ray images, meeting the urgent 
need for fast and effective treatment of COVID-19 patients. 

As can be seen from the references, the current lung cancer cytopathology 
image detection technology is not mature enough, and the accuracy of detection 
is low. CNN can only extract local features through a convolution kernel, while 
the ViT model can learn the features of the whole image through an attention 
mechanism, which can better analyze the image. Therefore, the work in this pa-
per is very meaningful in the field of early diagnosis of lung cancer. 

3. Materials and Methods 
3.1. Image Data Set 

A total of 347 images of lung washout cells were collected from 10 patients by 
exfoliation or interventional cytology under bronchoscopic guidance. The pixel 
size of the images was all 512 × 512. Each image contained one or more 
HE-stained lung cells. The nuclei of the lung cells were dark blue in color. After 
labeling and counting by professional pathologists, there were finally 2473 lung 
cells, which contained 143 cancerous cells, 724 normal cells and 1606 noisy 
blocks containing impurities and incomplete cells. 

3.2. Cell Segmentation and Data Enhancement 

In this study, NucleAIzer [32], a deep learning framework for cell nucleus seg-
mentation, was used to segment each lung cancer cell image, and 2473 images of 
individual cell nuclei were obtained. The paper provides a deep learning frame-
work for cell nucleus segmentation called nucleAIzer, in which the paper first 
uses mask-RCNN for initial training. Then the training images are clustered into 
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134 classes based on image styles. Next, new image/mask pairs are generated for 
each style of images in the training set using cycleGAN. The mask-RCNN model 
is updated with these enhanced data. Finally, u-Net is used to calibrate the edges. 
The framework is able to segment the images with different styles and types of 
cell nuclei more accurately. The final segmentation of the test set data in the 
2018 DSB competition is higher than the first place. NucleAIzer also shows very 
good segmentation results on our dataset.  

Like the training of CNNs, the training of transformers requires a sufficient 
amount of data. To maximize the use of each data, we treat each individual seg-
mented cell as separate data in the experiment. In this case, the amount of data 
increased from 347 to 2473 sheets. Considering the surrounding environment, 
when a doctor or pathologist determines whether a cell is cancerous or not, the 
information is added to the reference. Two conditions were combined—to retain 
the environmental information of the target cells and to highlight the target to 
be analyzed to distinguish other cells in the same picture. We adopted a com-
promise approach: Gaussian blurring of the region outside the target. The results 
of several experiments show that the best results are achieved when the size of 
the Gaussian kernel is set to (65, 65), the cells before and after splitting and 
Gaussian blurring are shown in Figure 1. 

It is noted that the number of the three categories in the data is unevenly dis-
tributed. Also, in order to increase the training data and avoid overfitting the 
model, we increased the number of cancerous and normal cells in the dataset. 
The different image orientations of the microscope during data acquisition can 
lead to differences in the position and angle of individual cells in the plane. 
Therefore, the experiments are performed by rotating, inverting and adding 
noise operations for data enhancement while enhancing the robustness of the 
model. In the rotation operation, the images are rotated clockwise by a random 
number of degrees in the range of 0 to 180. For the add noise operation, two 
types of noise, pretzel noise and Gaussian noise, are added to the images. The 
final enhanced data totaled 3106, which contained 500 cancerous cells, 1000 
normal cells and 1606 noisy data. 

3.3. Swin Transformer Structure 

The transformer structure used for lung cancer cytopathology image classifica-
tion is shown in Figure 2(a). Each stage in the figure consists of Patch Merging 
and Swin Transformer Block. The input H * W three-channel image first passes 
through a Patch Partition module. The image is divided into multiple patches of  

size 4 × 4, and the dimensionality becomes 48
4 4
H W
∗ ∗ . Then it passes through  

a Linear Embedding layer, which can embed features into any dimension. At this 
point, the dimension is recorded as C. After that, it passes through the core 
module Swin Transformer Block, and the number of tokens remains the same. 
All these are the work of stage 1. 
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Figure 1. Sample images of lung cancer cells before segmentation, after segmentation and af-
ter Gaussian blur. 

 
In stage 2, a Patch Merging module is first employed. The purpose is to fuse 

patches in the 2 × 2 region to produce a hierarchical feature representation. The 
feature dimension of each new patch is thus changed to 4C. The dimensionality is 
then reduced to 2C in order to reduce the subsequent computation. The dimen-
sionality is then kept constant after the Swin Transformer Block. The subsequent 
stage3-stage4 repeats the previous operations, continuously fusing the adjacent  

patches. The size of the feature map output from the stage4 is 8
32 32
H W C∗ ∗ . 

The structure of one of the core modules, the Swin Transformer Block, is 
shown in Figure 2(b). Compared with the traditional transformer, Swin Trans-
former uses W-MSA (Window MSA) and SW-MSA (Shifted Window MSA) in-
stead of MSA (Multi-head self-attention module). Traditional transformers 
compute attention based on the global picture, so the computational complexity 
is very high. The Swin Transformer reduces the computation by limiting the at-
tention computation to each window. In order not to lose global information, 
Shifted Window is added to better interact with other windows. This makes the 
hierarchical feature and linear time complexity possible. 

4. Experiment 
4.1. Experimental Environment 

The experiments in this paper were conducted on Ubuntu 18.04.5 LTS operating 
system. The pytorch = 1.10.1 deep learning framework is used. Python language 
version is 3.6. The GPU used in the experiments is NVIDIA GeForce RTX 
2080Ti. In training, Adam is used as the optimizer, and the batch size is set to 
12. The initial learning rate is set to 0.0001. Every 30 epochs are trained. The ini-
tial learning rate is set to 0.0001. Every 30 epochs are trained, the learning rate 
becomes 10% of the original. The ratio of the training set to test set was 7:3, and 
the epoch is 100. 
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(a)                                  (b) 

Figure 2. (a) Architecture of the Swin Transformer used for lung cancer cell classifica-
tion; (b) Two successive Swin Transformer Blocks. 

4.2. Evaluation Method 

Accuracy, precision, recall and specificity were used in the experiments to eva-
luate the performance of the lung cancer cell classification model. The number 
of positive samples with accurate prediction was recorded as true positive (TP). 
The number of negative samples with accurate prediction was recorded as true 
negative (TN). The number of negative samples predicted to be positive was 
recorded as false positive (FP). The number of positive samples predicted to be 
negative is a false negative (FN). Precision denotes the probability of the number 
of correctly predicted positive samples to the number of all samples predicted to 
be positive. Recall denotes the ratio of the number of correctly predicted positive 
samples to the number of actual positive samples. Accuracy is the ratio of the 
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number of correctly predicted to the total number of samples. Specificity 
represents the probability of being correctly judged as negative among the actual 
negative samples. The calculation formulas of the above four evaluation indica-
tors are as follows. 

TP TNAccuracy
TP FP TN FN

+
=

+ + +
 

TPPrecision
TP FP

=
+

 

TPRecall
TP FN

=
+

 

Specificit TN
F T

y
P N

=
+

 

4.3. Experimental Results and Analysis 

The performance of the Swin Transformer model on the test set is shown in Ta-
ble 1. The average precision, recall and specificity of lung cancer cell detection 
on the test set were calculated to be 95.20%, 92.60% and 98.17%, respectively. 
The accuracy of model classification was 96.14%. It proved that the detection of 
lung cancer cells using Swin Transformer is feasible. The confusion matrix of the 
test set is shown in Figure 3. In the confusion matrix, we can see that all the im-
ages in the noise category are classified correctly, and only a small number of 
errors are generated in the abnormal and normal categories. 

 
Table 1. Precision, recall and specificity of lung cancer cell classification. 

 Precision Recall Specificity 

Abnormal 0.944 0.801 0.991 

Noise 1.0 1.0 1.0 

Normal 0.912 0.977 0.954 

 

 
Figure 3. Confusion matrix of classification result. 

https://doi.org/10.4236/jct.2022.137041


Y. R. Chen et al. 
 

 

DOI: 10.4236/jct.2022.137041 472 Journal of Cancer Therapy 
 

Table 2. Accuracy, average precision, average recall and average specificity of different 
models on different datasets. 

Models (dataset) Acc Avg.P Avg.R Avg.S (%) 

Resnet50 (lung cells) 94.21 92.14 92.31 97.18 

Resnet50 + FPN (lung cells) 93.56 91.70 92.40 96.63 

Swin Transformer (lung cells) 96.14 95.20 92.60 98.17 

Resnet50 (Herlev) 66.30 70.33 68.39 94.24 

Resnet50 + FPN (Herlev) 46.74 54.64 49.30 90.87 

Swin Transformer (Herlev) 70.29 75.06 73.57 94.79 

Resnet50 (SIPaKMeD) 98.02 98.00 98.02 99.52 

Resnet50+FPN (SIPaKMeD) 90.37 90.42 90.46 97.60 

Swin Transformer (SIPaKMeD) 96.95 97.00 97.02 99.24 

4.4. Extended Experiments 

In order to observe the performance of the Swin Transformer model, the res-
Net50 and resNet50 + FPN models, which perform very well in the field of im-
age classification, are selected for comparison with the current model, where 
FPN stands for Feature Pyramid Network. This is a feature fusion technique. 
The basic idea of FPN is to improve the effectiveness of the network by fusing 
the features of higher and lower layers together, i.e., multi-scale feature fusion, 
so as to fully utilize the features of each stage of the network. 

Then experiments were conducted using three different models in two pub-
licly available cervical cell datasets—Herlev and SIPaKMeD—as a way to dem-
onstrate the generalization performance of the model. The SIPaKMeD dataset is 
a five-category labeled cervical cell dataset with a total of 4049 cervical cells. The 
overall precision, recall, and specificity of the model were calculated by calculat-
ing the mean of the different categories. The experimental setup and dataset di-
vision was the same as before. 

Table 2 shows the results of the different data sets on the different models. 
The results show that Swin Transformer performs slightly worse than ResNet50 
on the SIPaKMeD dataset, except on the other two datasets, where the results are 
significantly better than all other classification models. The accuracy of the lung 
cancer cell dataset, which is our main focus, reached 96.14, which is nearly two 
percentage points higher than the resNet50 model. This demonstrates the effec-
tiveness of the Swin Transformer for lung cancer cell image classification and 
that it can perform well on other cell image datasets as well. 

5. Conclusion 

In this paper, a Swin Transformer-based lung cancer cell classification model is 
proposed. The experiments firstly segmented the lung cancer cell images to sep-
arate each cell, then defocused the background of the target cells using Gaussian 
blur, and finally put them into the Swin Transformer model for classification. 
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The experimental results showed that the accuracy of classification reached 
96.16%. Therefore, it can be proved that using Swing Transformer to detect lung 
cancer cells is effective. 
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