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Abstract 
The k-means algorithm is a popular data clustering technique due to its speed 
and simplicity. However, it is susceptible to issues such as sensitivity to the 
chosen seeds, and inaccurate clusters due to poor initial seeds, particularly in 
complex datasets or datasets with non-spherical clusters. In this paper, a 
Comprehensive K-Means Clustering algorithm is presented, in which mul-
tiple trials of k-means are performed on a given dataset. The clustering results 
from each trial are transformed into a five-dimensional data point, containing 
the scope values of the x and y coordinates of the clusters along with the 
number of points within that cluster. A graph is then generated displaying the 
configuration of these points using Principal Component Analysis (PCA), 
from which we can observe and determine the common clustering patterns in 
the dataset. The robustness and strength of these patterns are then examined 
by observing the variance of the results of each trial, wherein a different sub-
set of the data keeping a certain percentage of original data points is clus-
tered. By aggregating information from multiple trials, we can distinguish 
clusters that consistently emerge across different runs from those that are 
more sensitive or unlikely, hence deriving more reliable conclusions about 
the underlying structure of complex datasets. Our experiments show that our 
algorithm is able to find the most common associations between different 
dimensions of data over multiple trials, often more accurately than other al-
gorithms, as well as measure stability of these clusters, an ability that other 
k-means algorithms lack. 
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1. Introduction 

Data clustering is the process of grouping similar data points together based on 
their intrinsic characteristics or patterns, aiming to reveal the underlying struc-
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ture within a dataset. Data clustering has a variety of applications, ranging from 
biology and genomics, where it aids in the classification of genes with similar 
functions [1] to marketing and customer segmentation, where it helps businesses 
tailor their strategies to distinct customer groups [2]. K-means, which is one of 
the many clustering algorithms, partitions data into a predetermined number of 
clusters based on centroid proximity. Data is grouped based on the closest cen-
troids to those points, and then the centroids are adjusted to be the average of 
every point in its group. This process iterates until a stable configuration of 
clusters and centroids is reached [3]. Lloyd’s K-means, a popular k-means algo-
rithm and widely accepted as the “standard” k-means algorithm, initially 
emerged as a vector quantization technique for Pulse-Code Modulation (PCM) 
in signal processing. It starts with an initial “seed,” or a set of k randomly se-
lected centroids, and iteratively refines it to reach an optimal configuration. 
With each iteration, Lloyd’s k-means assigns each point to its nearest centroid; 
then, an average is taken from these points, becoming a new centroid. Lloyd’s 
k-means’s popularity, especially in machine learning and data mining, is due to 
its speed and simplicity [4]. However, it has two notable limitations. 

Inconsistency. The results of the k-means algorithm rely heavily on the algo-
rithm’s initial seeding strategy [5]. That is, different starting seeds are likely to 
yield different clusters. In such cases, a single trial of k-means may not encom-
pass the entire spectrum of underlying patterns or relationships present in the 
data, and multiple trials may result in widely different clusterings, many of them 
deviating from the most optimal solution. Therefore, it is difficult to find a defi-
nite set of clusters with this algorithm. 

Inaccuracy. In certain datasets, such as when the inherent data distribution 
deviates from kmeans’s idealized assumption of spherical clusters, the algorithm 
may create sub-optimal cluster assignments [5]. This limitation is especially sig-
nificant in the presence of outliers, which can disrupt the algorithm and produce 
clusters that do not accurately capture the underlying structure of the data. 

In this paper, a Comprehensive K-means algorithm is presented in order to 
enhance the robustness and adaptability of the original k-means algorithm, par-
ticularly for complex datasets with irregularly shaped clusters or outliers. In the 
following section, related work on improving k-means algorithms is discussed. 
Section 3 provides a detailed explanation of the presented algorithm, followed by 
experimental results using synthetic and real-world datasets in Section 4. Finally, 
the paper concludes with a summary and an overview of future work. 

2. Related Work 

In the standard version of k-means, otherwise known as Lloyd’s k-means, the 
goal is to identify a set of k centers, in which k is a predetermined value denoting 
the number of final clusters. Given a dataset X consisting of n data points in the 
d-dimensional space Rd, the k-means algorithm strives to discover a set C con-
taining k centers while minimizing the function ϕX(C), the sum of all distances 
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between each point Xn and the closest centroid to them [3] [4]. K-means++ is 
developed by Arthur and Vassilvitskii to improve Lloyd’s K-means by imple-
menting a more efficient seeding method [6]. That is, once a centroid C is cho-
sen randomly among the dataset X, the probability P that the point will be se-
lected as a centroid is calculated by squaring the distance between a point Xn 
and the nearest centroid C. These probabilities then “weight” their respective 
points, so the algorithm will favor points that are farther from existing centroids 
than closer points. This process continues until k centroids are selected, which 
are often further apart than those from Lloyd’s K-means. In comparison, 
K-means++ ensures more accurate results with a guaranteed approximation ra-
tio of O(log k). The computation time is also shorter because the algorithm 
reaches a stable state more quickly [6]. 

Deshpande et al. developed Robust K-means++ [7], in which sampling is used 
to pick candidate centroids such that there is a configuration of k of these cen-
troids that will most optimally cluster the data. Even in the worst cases, this 
seeding method is not susceptible to outliers, as the algorithm discards outliers 
before finding a starting seed. 

Bradley et al. then developed Constrained K-means Clustering [8], to avoid 
“empty” clusters, which have too few points to find any notable meaning in da-
tasets, by specifying a minimum number of points per cluster. 

To reduce the influence of outliers and improve clustering efficiency on large 
datasets, MiniBatch K-means was presented to cluster a random subset of the 
dataset for each iteration, until stable clusters can be achieved [9] [10]. For each 
cluster, an initial data point is randomly selected as the starting point for that 
cluster. In each iteration, a certain number of points are selected from the data-
set, temporarily stored in the set M, a “mini-batch” that represents the set as a 
whole. Then, standard k-means is performed on the mini-batch. This approach 
greatly reduces computing time on large datasets [9]. 

Stability Analysis in K-means Clustering [11] is a method developed by Stein-
ley in which multiple clusterings, instead of the most optimal clustering, are 
used to analyze a dataset’s stability. With an object by object co-occurrence ma-
trix, data from locally optimal clusterings are collected and reordered by a 
steepest ascent quadratic assignment procedure to visualize the dataset’s struc-
ture. Then, the structure of the data and the most optimal number of clusters 
can be interpreted from the visualization and data. 

Robust Trimmed K-means [12], proposed by Doriabala et al., performs effi-
ciently in both single-membership (in which points can only belong to one clus-
ter) and multi-membership (in which points can belong to multiple clusters) 
scenarios. Each point has weights pertaining to each cluster, determining the ex-
tent to which the point belongs to that cluster. This lack of dichotomy in cluster 
allocations allows for more precision in clustering, and also reduces the influ-
ence of outliers on the accuracy of the clustering of a dataset. 

K-means Clustering Based on Observation Point Mechanism [13], proposed 
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by Zhang et al., aims to achieve results similarly to k-means with a smaller subset 
that mimics the structure of the original dataset, which greatly reduces computa-
tion time. Since outliers are removed while taking this representative subset, 
clustering results are often more accurate and stable. 

Some of k-means’s weaknesses are due to its sensitivity to outliers and inef-
ficiency with large datasets. Li et al. propose K-means Clustering with Bagging 
and MapReduce [14], which uses an ensemble learning method called bagging 
[15] and a distributed computing network named MapReduce [16] to make 
k-means less sensitive to outliers and more efficient computationally. Yang et 
al. used a Deep Neural Network (DNN) to perform dimension reduction on 
the dataset instead of using traditional methods such as PCA [17]. While the 
k-means algorithm itself isn’t modified, the usage of Deep Learning in dimen-
sionality reduction produces more accurate clusterings. The DNN, unlike tra-
ditional methods, assumes that any dataset is nonlinear, which results in better 
approximated datasets more efficiently and accurately. Shindler et al. devel-
oped Fast and Accurate k-means For Large Datasets [18], which efficiently 
deals with clustering large datasets, and uses approximate nearest neighbor 
search to compute k-means in O(nk) time, while also reducing the effect of 
outliers. 

There are many k-means algorithms presented that work effectively in spe-
cific fields, each with their own set of pros and cons. In this paper, we intro-
duce Comprehensive K-means, which is designed to handle a broader range of 
data types with increased accuracy and reliability. Unlike other algorithms 
based on k-means, it is able to measure the stability of the clusters which it 
creates by measuring the variance of these clusters over multiple trials, as well 
as finding the clustering arrangements that appear the most over differently 
seeded trials. 

3. Comprehensive K-Means Clustering 

Comprehensive K-means Clustering is a newly designed algorithm that aims to 
achieve the goals explained in Section 2, as well as improve the algorithm’s ac-
curacy and consistency. The implementation flowchart of the Comprehensive 
K-means Clustering algorithm is shown in Figure 1, which contains two similar 
processes with different inputs: random seeds and random subsets. In the ran-
dom seed process, a random set of centroids is chosen; in the random subset 
process, a user inputs a certain percentage, p%, of data points to be clustered. 
Random seeding results in a graph of the trial distributions, called the seed 
graph, with each point representing the results from one randomly seeded trial 
on that dataset. By observing the seed graph, we can discover the differences in 
clustering results over multiple trials and identify the most common solutions. 
Meanwhile, the result from random subsets is called the subset graph, which 
represents the trial’s results after taking p% of the data as a subset. From the dis-
tribution of these points and the distance which the graph spans, we can under-
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stand the dataset’s stability. This algorithm is an improvement over current ones 
as it explores both popular patterns and measures variability from multiple trials 
of k-means, hence it being named Comprehensive K-means. This information 
can be used to study the strength of a dataset’s clusters. Furthermore, Compre-
hensive K-means can be run with multiple k-values to find the most consistent 
k-value for the dataset. 

The random seed process is shown on the left side of Figure 1. Given the da-
taset X, the k-value k, and the number of trials T: 

1) Each trial starts with a random set of k centroids, or points selected from X. 
This set of centroids is known as the seed. T trials of Lloyd’s k-means are per-
formed with this seed on X, and each trial will result in k clusters. 

 

 

Figure 1. Flowchart of comprehensive K-means. 
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2) Each cluster generated is described as a 5 dimensional dataset (x1, x2, y1, y2, 
n): the left-bound of the domain x1, the right-bound of the domain x2, the lower 
bound of the range y1, the upper bound of the range y2, and the number of 
points in the cluster n.  

An example of the dataset is shown in Figure 2. For instance, Cluster 1 is 
stored in the format (x11, x21, y11, y21, 18). This method takes into consideration the 
cluster’s location, span, and membership while also being computationally effi-
cient and accounting for the potential influence of outliers. The result of this step 
is a set of “cluster-points,” containing all clusters across all trials stored as points. 

3) In the relabeling step, a set of k centroids is chosen from the set of clus-
ter-points. 

For every k cluster-points, a matrix is formed, holding all cosine similarities 
between all k centroids and these cluster-points. The purpose of the distance 
matrix is to be used to optimally assign each cluster-point to a centroid. Cosine 
similarities are used, as when the data is normalized around the origin, cosine 
similarities will guarantee accurate labeling compared to Euclidean distance. 

4) The maximum value in the matrix is chosen, and the cluster assigned to 
that value is assigned to the centroid it shares the value with. 

5) Steps 4 and 5 are reiterated for each trial until every cluster has been assigned. 
6) Then, each centroid is updated as the average of the set of all clusters that 

have been as-signed to it, similarly to k-means. 
7) Steps 4-7 are repeated until the centroids converge. 
8) Each cluster in a trial will be given labels from 1 through k so that across 

trials, the most similar clusters all have the same label, and when the trial points 
are being constructed, clusters 1 through k will be ordered in the form 1, 2, … k, 
and the ensuring trial-point will be a point with k*5 dimensions in the form (x11, 
x21, y11, y21, n1, x12, x22, …, x1k, x2k, y1k, y2k, nk). 

9) These points are then projected onto the two-dimensional plane using 
Principal Component Analysis (PCA), creating a dataset with all T trials in point 
form. The two-dimensional form allows these points to be visualized on a graph. 

 

 

Figure 2. The “bounding box” method of converting clusters 
into points. 
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PCA is a dimensionality reduction method that can reduce the number of di-
mensions in a dataset to a value less than or equal to the former number of di-
mensions. The graph at the end of this process displays each trial as a 
2-dimensional point, showing the similarities and differences of each trial of 
k-means performed on the data. This information collected over multiple trials 
is graphed in two dimensions so that the similarities and differences among all 
trial points can easily be visualized. 

The same process is carried out with random subsets, shown at the right side 
of the flow chart. The constants k, T, and X are all defined as before, and the 
percentage of points kept in each trial p is determined by the user. In each trial, a 
subset of p% of the original dataset is randomly selected as the input, and the 
algorithm generates one constant seed that is used to start all trials. The follow-
ing steps are the same as the random seed process, and the generated subset 
graph reveals the extent at which the removal of a certain number of points 
might impact the clustering of the dataset. 

The time complexity for the Comprehensive K-means algorithm can be ex-
pressed as O(TNIK), where: 

T: number of trials of the k-means algorithm performed 
N: number of data points in the dataset 
I: number of iterations 
K: chosen k-value 
The most computationally intensive step in k-means is assigning points to 

centroids, which iterates through each point of the dataset K times; hence, the 
time complexity of k-means is NK. This occurs for I iterations for T trials, hence 
the time complexity of TNIK. The algorithm comprises four main components: 
Scanning each data point in the dataset; the time complexity is O(N). Executing 
T trials of the k-means algorithm on the dataset; the time complexity is 
O(TNIK). Performing the relabeling step; the time complexity is O(TIK2). Ap-
plying Principal Component Analysis (PCA) to T final points; the time com-
plexity is O(25K2N + 125K3). 

The computational burden associated with the scanning step is negligible 
compared to the time required for executing the k-means trials, considering that 
TIK > 1. Consequently, as the number of data points N surpasses the threshold 
of 125K3/(TIK − 25K2), which is highly likely in the case of large datasets, the 
time complexity O(TRNTK) becomes more computationally demanding than 
the PCA time complexity O(25K2N + 125K3). 

4. Case Study 

A Gaussian is an arrangement of points in which points are arranged around the 
Gaussian’s center based on the Gaussian probability distribution. That is, 66% of 
the points will be generated within 1 std from the Gaussian’s center, 95% of the 
points will be within 2 std of the Gaussian, and henceforth. By generating syn-
thetic Gaussians with tens of thousands of points, we simulated large datasets 
with defined clusters. An example Gaussian is shown in Figure 3(a). Figure 
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3(b) represents the results of the algorithm run on Figure 3(a), with the graph 
on the left representing seeding results with a k-value of 2 over 100 trials, and 
the graph on the right representing subset results with a k-value of 2 over 100 
trials with 50% of points kept each trial run. To validate the algorithm’s efficacy, 
we started with one Gaussian with no definite clusters to test if our algorithm 
could find that the Gaussian has no definite clustering based on the subset 
chart’s spread. Then, we tested two Gaussian datasets with the same number of 
points and standard deviation, which had centers set at a certain number of 
standard deviations apart. The results from Comprehensive K-means stayed 
consistent, even as the two Gaussians’ centers reached within 0.125 standard 
deviations of each other, but the number of different clustering results drastically 
increased under 0.25 standard deviations, as seen on Table 1. The spread is cal-
culated by approximating the distance between the two farthest points in the 
graph. Besides, we also observed that as the number n of Gaussians increased, so 
did the minimum standard deviation for our results to begin destabilizing. 

Gaussians with differing numbers of points were used to simulate skewed da-
ta; we also inserted artificial outliers to visualize the effect such as outliers would 
have on the stability of the clusterings of otherwise stable datasets, as shown in 
Figure 4(a).  

 
Table 1. Results of two-Gaussian data with differing standard deviations. 

StDev Center 1 Center 2 Points Observed Patterns Subset Spread 

1 −0.5, 0 0.5, 0 5 1 1.0 

0.5 −0.25, 0 0.25, 0 4 1 1.8 

0.25 −0.125, 0 0.125, 0 3 1 1.9 

0.125 0.0625, 0 0.0625, 0 14 1 2.1 (3.1 w/outlier) 

0 0, 0 NA 14 4 3.9 
 

 
(a) 
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(b) 

Figure 3. Single dataset results. (a) A Gaussian centered at (0, 0) with standard deviation 1; (b) The results of performing 
Comprehensive K means Clustering on the Gaussian shown in Figure 3(a). 

 
Through the tests, we noticed that the presented algorithm generally showed 

consistent clustering patterns for these data. The left graph in Figure 4(b) is the 
seed graph; the right graph of Figure 4(b) is the subset graph with 50% of points 
kept in each run. Both graphs have had a k-value of 2 performed on the data for 
100 trials. The seed graph is stable due to the main body of the dataset; yet, the 
subset graph’s spread is higher than expected due to the two outliers, meaning 
that the presence of the outliers heavily affected the stability of the dataset, re-
sulting in vastly different configurations of clusters when subsets of the data 
were taken. Furthermore, we observed that as the data became more difficult to 
cluster, the common clustering patterns began diversifying. In the data with 
synthetic outliers, our subset results were much more spread apart compared to 
relatively stable data. 

Real-World Data Results 

We evaluated our algorithm using datasets from Kaggle, a data science commu-
nity website that shares a variety of datasets, and several example datasets from 
CellRank, a computational framework used in single-cell RNA sequencing data 
analysis [19]. The algorithm is tested with a wine dataset [20], a California housing 
dataset [21], and a zebrafish dataset from CellRank, k, as shown in Figure 5. 

PCA has been used on each of these datasets to reduce them into two dimen-
sions. 

The wine dataset is a 13-dimensional dataset, containing information on va-
riables like wine quality, acidity, etc. about 178 different variants of the “Vinho 
Verde” wine [20]. With Comprehensive K-means, we can discover associations 
between variables like wine acidity, sulfur dioxide content, pH, etc. and wine  
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(a) 

 
(b) 

Figure 4. Outlier Gaussian results. (a) Two Gaussians that are 2 standard deviations apart with 2 artificial outliers; (b) Re-
sults of using Comprehensive K-means on data shown in Figure 4(a).  

 
quality. To convert the data into two dimensions, we converted all of the other 
variables into one dimension, and then created two-dimensional points with 
those as the x-coordinates and their associated normalized quality variables as 
the y-coordinates. As shown on Table 2, we tested a variety of k-values on the 
dataset’s two-dimensional form and found that the k-value of 2 yielded the most 
consistent results, but a k-value of 3 had the lowest sensitivity. The clustering 
result using our optimal k-value shows the associativity between quality and the 
other variables. For instance, by analyzing the most common clusterings, we 
found that wine with higher quality often had higher alcohol, sulfates, and citric 
acid levels, while also having lower volatile acidity, density and sulfur dioxide. 
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Figure 5. Real-world datasets. 2-dimensional representations of the real-world datasets. The wine data is on the left, the housing 
data is in the middle, and the zebrafish data is on the right. 
 

Table 2. Wine dataset results. 

K-value Num. Points Observed Patterns Subset Spread 

2 4 2 5.9 

3 29 4 2.6 

4 47 3 3.4 

5 9 Not Discernible 10.5 

 
The housing dataset has 10 dimensions and originally contains information 

about 20,640 houses from the 1990 California census [21]. As a popular machine 
learning dataset, this housing dataset is an effacious test case for our algorithm, 
allowing us to explore clusters between variables like location, number of bed-
rooms, price, etc. In its two dimensional form, we found that k-values of 2 and 3 
worked very well, yet 3 created slightly more stable clusters compared to 2, as 
shown in Table 3. Some information can be found from the dataset by analyzing 
the clustering result; for instance, by using our optimal k-value to cluster the da-
ta, we found that as houses gradually converged on a specific latitude and de-
creased in longitude, the median house value, median income, number of 
households, population, and number of rooms would all increase, suggesting 
that areas in the mid-west portion of California are more densely populated and 
have larger houses than other areas in California. 

The zebrafish dataset is an example dataset from CellRank, originally con-
taining information about single-cell RNA sequencing of zebrafish embryos. 
This dataset is a real-world, biological dataset with 2434 dimensions and 27,934 
points. Specific information about the dataset, including associativity among 
cells, is available on CellRank. By using the presented algorithm on the dataset, 
we found that while a k-value of 2 seemed to work best in terms of finding only 
one clustering pattern, a k-value of 4 yielded the most stable clusterings, as its 
graph had the smallest spread, shown in Table 4. 
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Table 3. Housing dataset results. 

K-value Num. Points Observed Patterns Subset Spread 

2 2 1 3.9 

3 3 1 3.5 

4 12 2 4.0 

5 60 Not Discernible 5.0 

 
Table 4. Zebrafish dataset results. 

K-value Num. Points Observed Patterns Subset Spread 

2 1 1 1040 

3 3 1 1000 (1600 w/outlier) 

4 12 2 800 (2000 w/outlier) 

5 45 4 1290 (2000 w/outlier) 

5. Conclusions and Future Work 

Comprehensive K-means Clustering is an insightful and consistent algorithm 
that is capable of detecting instability in clusters formed by k-means and com-
mon patterns of clustering. Its method of gathering data over multiple trials 
makes it more favorable over other k-means variations such as k-means++ and 
Mini-batch k-means in that aspect. By evaluating the algorithm using several 
synthetic and real datasets, we have evidence showing that the algorithm can 
gather much more information compared to the original k-means. 

In Comprehensive K-means, k-means is iterated through multiple trials, and 
then k points from the clusters in each trial are created in order to find common 
patterns and instability. Yet, if we use other algorithms such as k-means++ in-
stead of k-means to collect data, the results and the computation time of Com-
prehensive K-means could change due to the increased efficiency of each trial. 
K-means++’s seeding algorithm is “too accurate,” which causes it to ignore “er-
roneous” clusters generated by k-means. These clusters, as proof of a dataset’s 
instability, are necessary to analyze a dataset’s consistency. Thus, in future work, 
we plan to further enhance Comprehensive K-means using other variations of 
k-means in order to find a balance between efficiency and variability. 

We also only enabled the algorithm to work with two-dimensional data; the 
cluster-points and trial-points generally were restricted to 5 variables per cluster, 
due to the use of bounding boxes to describe them. Future work could be done 
to expand the algorithm to process higher-dimensional data and also to find 
more precise ways to turn clusters into points. 
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