
Journal of Computer and Communications, 2024, 12, 84-100
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2024.123006 Mar. 20, 2024 84 Journal of Computer and Communications

Comparative Performance Measurement of the
Pareto Optimal Combination and
Multi-Objective Combination Models for
Controller Placement in Software-Defined
Networks

Mission Franklin, Constance Izuchukwu Amannah

Department of Computer Science, Ignatius Ajuru University of Education, Port Harcourt, Nigeria

Abstract
The evolution of the current network has challenges of programmability,
maintainability and manageability, due to network ossification. This chal-
lenge led to the concept of software-defined networking (SDN), to decouple
the control system from the infrastructure plane caused by ossification. The
innovation created a problem with controller placement. That is how to effec-
tively place controllers within a network topology to manage the network of
data plane devices from the control plane. The study was designed to empiri-
cally evaluate and compare the functionalities of two controller placement
algorithms: the POCO and MOCO. The methodology adopted in the study
is the explorative and comparative investigation techniques. The study eva-
luated the performances of the Pareto optimal combination (POCO) and
multi-objective combination (MOCO) algorithms in relation to calibrated
positions of the controller within a software-defined network. The network
environment and measurement metrics were held constant for both the POCO
and MOCO models during the evaluation. The strengths and weaknesses of
the POCO and MOCO models were justified. The results showed that the la-
tencies of the two algorithms in relation to the GoodNet network are 3100 ms
and 2500 ms for POCO and MOCO respectively. In Switch to Controller Av-
erage Case latency, the performance gives 2598 ms and 2769 ms for POCO
and MOCO respectively. In Worst Case Switch to Controller latency, the
performance shows 2776 ms and 2987 ms for POCO and MOCO respec-
tively. The latencies of the two algorithms evaluated in relation to the Savvis
network, compared as follows: 2912 ms and 2784 ms for POCO and MOCO
respectively in Switch to Controller Average Case latency, 3129 ms and 3017

How to cite this paper: Franklin, M. and
Amannah, C.I. (2024) Comparative Perfor-
mance Measurement of the Pareto Optimal
Combination and Multi-Objective Combi-
nation Models for Controller Placement
in Software-Defined Networks. Journal of
Computer and Communications, 12, 84-100.
https://doi.org/10.4236/jcc.2024.123006

Received: June 25, 2023
Accepted: March 17, 2024
Published: March 20, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2024.123006
https://www.scirp.org/
https://doi.org/10.4236/jcc.2024.123006
http://creativecommons.org/licenses/by/4.0/

M. Franklin, C. I. Amannah

DOI: 10.4236/jcc.2024.123006 85 Journal of Computer and Communications

ms for POCO and MOCO respectively in Worst Case Switch to Controller
latency, 2789 ms and 2693 ms for POCO and MOCO respectively in Aver-
age Case Controller to Controller latency, and 2873 ms and 2756 ms for POCO
and MOCO in Worst Case Switch to Controller latency respectively. The
latencies of the two algorithms evaluated in relation to the AARNet, network
compared as follows: 2473 ms and 2129 ms for POCO and MOCO respec-
tively, in Switch to Controller Average Case latency, 2198 ms and 2268 ms for
POCO and MOCO respectively, in Worst Case Switch to Controller latency,
2598 ms and 2471 ms for POCO and MOCO respectively, in Average Case
Controller to Controller latency, 2689 ms and 2814 ms for POCO and MOCO
respectively Worst Case Controller to Controller latency. The Average Case
and Worst-Case latencies for Switch to Controller and Controller to Control-
ler are minimal, and favourable to the POCO model as against the MOCO
model when evaluated in the Goodnet, Savvis, and the Aanet networks. This
simply indicates that the POCO model has a speed advantage as against the
MOCO model, which appears to be more resilient than the POCO model.

Keywords
Latency, Measurement, Metrics, Performance POCO, MOKO, Architecture,
Provision

1. Introduction

Software-defined networking (SDN) came into existence as a response to meet-
ing these industry difficulties. The dynamic reaction to changes in usage patterns
and availability of network resources is what SDN brings to the table. This en-
sures instant adjustment of Network architectures, making it respond to applica-
tions and user requests, and therefore, at a lower cost, services can far more ra-
pidly and effortlessly be introduced [1]. This is because networks these days
can expand beyond regional boundaries, with network devices located in different
parts of the globe. These devices need to be configured to work efficiently with
the other devices in the network, but the configuration is practically manual and
programmability is not possible.

SDN exemplar is what offers the network a future life, to handle the challenges
that the network faces. In SDN, the principal thing is the decoupling of the net-
work devices into separate planes and allows the network to be programmable,
with ease of maintainability and management. SDN is a fairly new concept that
promises to address the problem of deficiency of programmability in current
networking architectures and encourage quicker and stress-free network innova-
tion. The SDN paradigm is to divorce the control plane from the data plane, and
enable complex networking applications through software implementations over
the control plane [2]. Thus, this would ensure that the data plane functions as
forwarding devices, to transmit packets, while the control logic is moved out to a
separate plane called the control plane with network intelligence. In the control

https://doi.org/10.4236/jcc.2024.123006

M. Franklin, C. I. Amannah

DOI: 10.4236/jcc.2024.123006 86 Journal of Computer and Communications

plane, the function of control is then domiciled in a conventional computer sys-
tem as a network-controlling software architecture component. The idea is that
with the availability of cheaper hardware resources with lesser specifications, it
would be possible to have software applications that can control the hardware
through standardized interfaces. With the help of the available application pro-
gramming interfaces (APIs), the programmability of these devices becomes flex-
ible; therefore, we can dynamically programme additional operational features as
network applications [2].

SDN architecture brings a lot more promises to the network allowing for pro-
grammability, maintainability and manageability. The idea is to move the com-
plexity away from the hardware and implement the same functionality of flex-
ibility and innovation in software. With this concept in place, the complexity of
hardware design and functionality of forwarding traffic is now simplified, while
the software is responsible for network management and network resources as
well as the instructions to the forwarding devices, on how to route network traf-
fic, which is now abstracted as a flow. SDN promises to advance the concept of
programmability of these low-level devices. SDN provides split-up between data
plane (Switches/routers) and the control plane (Controller). The interaction be-
tween both planes is achieved through a communication protocol that forwards
instructions that effectively modify forwarding table flow entries in network
Switches.

According to [2], the concept of SDN was adopted from operating systems of
mobile phones such as Android (Google) and iOS (Apple), where the system al-
lows dynamic addition of applications. While businesses grow and impact the
performance of the network, the desire to reach low-level devices for quick re-
configuration becomes a challenge as the devices may be located in dispersed geo-
graphy. Therefore, making changes to these devices at run time is a major prob-
lem that needs to be solved through the concept of software-defined networking.
The new concept of divorcement of the data plane from the control plane creates
a mechanism where the low-level devices can be controlled by a conventional
computer system within a secure communication channel between the Switches
and the network Controller [3].

With the nature of SDN deployment, the network administrators have means
of innovatively managing the network. The network is centrally controlled by
software to manage all the data plane devices that are responsible for forwarding.
All network traffic is abstracted as a flow irrespective of whether it carries data
over IP, Ethernet or other lower layers. Also, network management is flexible
through dynamic updating of the forwarding rules in the forwarding devices.
Since the Controller is software-based, traffic analysis is done based on the soft-
ware that controls the behavior of the network through the analysis of the flows.
SDN separates switching software from the actual network hardware and the con-
trols of network devices from the data they transport.

The SDN architecture does not just separate the data plane from the control
plane, it also provides a controlling entity that has an all-inclusive logical view of

https://doi.org/10.4236/jcc.2024.123006

M. Franklin, C. I. Amannah

DOI: 10.4236/jcc.2024.123006 87 Journal of Computer and Communications

the entire network resources (Switches and routers), and their statuses, and the
applications can communicate in real-time. The possibility of networks to inte-
ract with applications and efficiently reconfigure themselves on a need basis
where necessary is enabled by a Controller, allowing multiple logical network
topologies implementation on a single common network [1]. The abstraction of
the central Controller, which ensures that the network topology and the network
state are maintained consistently, also detects and identifies the pattern for the
flows that transverse the network. Therefore, the network can be controlled from
the impacts of security attacks due to malicious and mutated packets that trans-
verse the network.

With SDN it is possible to optimize networks to respond swiftly to fluctua-
tions in network usage without the need to reconfigure existing network infra-
structure manually, or in some cases to procure a new hardware. These required
modifications will only be sustained in the current Internet through enormous
investment and changes in the architecture. It has become necessary to consider
an evolution of the Internet architecture based on the concept of software-defined
networks, which will lead to much more efficient use of available resources and
provide a business environment that encourages investment and network pro-
grammability [4].

To make this possible, the Open Network Foundation has proposed and de-
veloped the OpenFlow design for communication protocol between the control
plane and the data planes for effective and secure communication protocol [5].
OpenFlow has streamlined the communication protocol for interactions with the
aid of an application programming interface (API) towards the southbound de-
vices [6]. OpenFlow is popular though, but it is not the only implemented pro-
tocol for interaction with the forwarding devices. Much architecture exists to en-
sure improved capacitation and latency improvement trade-offs.

SDN deployment and research have increased due to its promises of network
innovation, flexibility, maintainability, programmability, and manageability [7].
Several SDN deployments have improved services of networks like cloud services
providers, data centre network management, automation of service provisions,
etc. With software-defined networking (SDN) we can build and deploy changes
with ease without time-consuming days of software upgrades, configuration
nightmares and steep learning curves [8].

In the search for a reliable solution for the placement of controllers for the ef-
ficient management of an SDN network, we have conceived the idea of hybridi-
zation of the features of the Pareto optimal controller placement (POCP) and the
multi-objective controller placement (MOCP) of the network parameters which
serves as synergy of functionalities that may guarantee better placement, howev-
er, with limitations in scalability, resiliency and energy awareness. Our research
then seeks to improve the hybridization of the POCP-MOCP by the enhance-
ment of the hybrid controller through the introduction of additional features of
energy-awareness, scalability and network resiliency to make our solution robust
for efficient management of the network, making it fault-tolerant, with energy

https://doi.org/10.4236/jcc.2024.123006

M. Franklin, C. I. Amannah

DOI: 10.4236/jcc.2024.123006 88 Journal of Computer and Communications

minimization and improved scalability.
The aim of the study was to measure the performance outputs of the Pareto

optimal combination (POCO) and multi-objective combination (MOCO) in de-
termining controller placement in a software-defined network. The study intended
to:

1) Evaluate the performance of the Pareto optimal combination (POCO) in
determining controller placement in a software-defined network;

2) Evaluate the performance of the multi-objective combination (MOCO) in
determining controller placement in a software-defined network;

3) Compare the results of the POCO and the MOCO models, given the same
environment and measurement metrics;

4) Justify the strengths and weaknesses of the POCO and MOCO models in de-
termining controller placement in a software-defined network.

2. Related Literature

Transmission rates have improved. The capacity of transmission scheme and
network devices’ performance has also improved. However, traditional network
has consistently proved to be inadequate [9]. This is due to the increasing com-
plexity, expansive variability, and high volume of load that the system is cur-
rently absorbing, coupled with the quality of experience (QoE) and quality of
service (QoS) imposed as network requirements by several applications on the
network. The ability of the orthodox network to respond effectively to these de-
mands requires an improved traffic load handling with sophistication and agili-
ty. Though the traditional Internetworking uses the TCP/IP protocol architec-
ture approach, the approach is functionally dependent on these characteristics:
1) Two-level end system addressing, 2) Routing based on destination, and 3)
Distributed, autonomous control [10].

The traditional network has heavy reliance on the identity of the network in-
terface. The architecture at the networking level is a network of networks, with
layers within layers. TCP/IP was used to support the networking of autonomous
network, with distributed control. The architecture provides scale and reliability
in terms of growth. Routes are discovered and used all over the Internet with the
help of IP and distributed protocol. Also, using TCP which is a transport level
protocol, decentralized and distributed algorithms can be implemented. These
algorithms help to decongest the network [11] [12]. In traditional networks,
routing was based on the packet’s destination address (MAC/IP). The transmis-
sion uses a datagram technique of the packets traversing the network of routes
with less delay to reach the destination. However, this technique has its draw
back on the quality of service (QoS). The QoS requirements treat packets in
terms of flows. A flow is a “sequence of packets between a source and destination
that are recognized by the network as related and are treated in a uniform fa-
shion [5]. Every packet that is related to a particular flow has definite QoS cha-
racteristics that define the routing for the entire flow. The orthodox networks

https://doi.org/10.4236/jcc.2024.123006

M. Franklin, C. I. Amannah

DOI: 10.4236/jcc.2024.123006 89 Journal of Computer and Communications

were mainly static and end systems are in largely fixed location, due to the dis-
tributed and autonomous approach adopted in the development framework [2]
[9].

There are limitations that the traditional network was ailed with, and that
made it necessary to give way for a new model design. The open networking
foundation (ONF) identifies four general limitations of out-of-date network ar-
chitectures.

1) The static and complex nature of the architecture, making it difficult to
manage different level of QoS, security requirement, changing traffic volume,
which has created vendor dependent protocol to address the issues. However,
issues are not fully addressed, rather more problems are generated like configu-
ration of network devices (Switches, routers, firewall); updates on LAN setting,
adjustment of QoS parameters based on changing user requirements and traffic
patterns. In most cases manual configuration is adopted to achieve the objective.

2) Policy inconsistency is a problem when network wide security policies can-
not be applied; in large network an unreasonable amount of time is spent to re-
configure devices across the network.

3) Scalability issue is also a major drawback, as demand on networks grows
rapidly with varying features, creating challenges that are due to network expan-
sion. This challenge is due to the static and complex nature of the network. Even
with the strategy of oversubscription of the links, has not yield much solution,
due to increased virtualization and the use of the increasing variety of multime-
dia applications, which has made the traffic pattern unpredictable.

4) Vendor lock-in/Lack of open interfaces, has left the enterprises with a rela-
tively slow product cycles of vendor equipment, therefore the deployment of new
capabilities and services that would respond rapidly to changing business needs
of user demands is not available [9] [10].

The birth of software-defined networking (SDN) is necessitated by the com-
plexity of the computing demands that impressed upon the services that the
current network architecture supports. The current architecture is laden with a
wide spectrum of networking services demand ranging from network applica-
tions, network control, bandwidth and other network resources, network agility,
efficient network management and service innovation [13].

The idea of network programmability and management did not come from
the desire to change network architecture. The notion stems from the challenges
that the current network architecture is facing. Also, the growth and popularity
of new network services models such as social media, cloud computing, big data
analytics, and mobile applications; security of data and information has placed
high demand for network efficiency, flexibility, reliability, effective access to sto-
rage and computational resources, and agility of the network environment are
now very critical factors in the assessment of performance of the network [14].

In the midst of this challenge, and with the desire by both industry and aca-
demic professional to find solution to this problem, several networking technol-

https://doi.org/10.4236/jcc.2024.123006

M. Franklin, C. I. Amannah

DOI: 10.4236/jcc.2024.123006 90 Journal of Computer and Communications

ogy solutions were proposed, developed and implemented with huge invest-
ments of financial and technical resources. This was done to enhance and expand
the network infrastructure and capability to meet the increased demands of net-
work services.

The conception of SDN was a novel idea to address the challenge that current
networks face due to the overwhelming demand placed by networks users and
applications because the network complexity that is observed with the current
architecture is as a result of the network protocol solutions being defined with-
out consideration of other existing problems and does not take advantage of fun-
damental coherence [1] [10].

It is this complexity that makes current network not able to meet the service
requirements of future networks. Because the network today is limited by “static
rigidity”, which is a source of concern for the operators of the network, as they
sought to reduce the phenomenon of service disruption risk. Static rigidity ne-
gates network dynamism; therefore dynamic service provisioning is not sup-
ported by current networks, which is a requirement for future networks. In ad-
dition, the complexity in the current network adds to the difficulty experienced
when enforcing consistent network policies across heterogeneous network de-
vices [12].

The OpenFlow procedure for communication was an initiated protocol de-
velopment by Stanford University researchers in 2008. The first implementation
of this protocol was 2011 by Google, to support their network backbone. The suc-
cess recorded at Google, necessitated its management by a consortium of net-
working companies under the umbrella body known as open networking foun-
dation (ONF), which has worked from the initial version of OpenFlow 1.0 to its
current version of OpenFlow 1.5 [15] [16].

OpenFlow is an application software based control mechanism that controls
and manages flow processes in an SDN based network. The OpenFlow based
Controller serves as the network operating system (NOS). It is regarded as the
communication channel between the network applications and the network de-
vices, interfaced by the network Controller. The network controller interme-
diates through its OpenFlow control protocol, by taking the information from
the decisions of the applications, transform them into flow entries and pass it on
to the network devices. The flow entries are to direct the network devices where
to send the packet information, using the best path possible path, based on the
instructions stored in the (forwarding table) flow table [17].

OpenFlow outlines the standard of communication between the intelligent
Controller and the dumb data plane network devices. Basically OpenFlow is a
standard southbound protocol for interactions between the Switch and the Con-
troller, via the OpenFlow APIs. Due to the overall control and management of
the Controller, applications information in the form of decisions are passed
through the Controller to the Switches, via OpenFlow protocol implemented in
APIs [18]. With the aid of OpenFlow the Switches and their ports can be moni-

https://doi.org/10.4236/jcc.2024.123006

M. Franklin, C. I. Amannah

DOI: 10.4236/jcc.2024.123006 91 Journal of Computer and Communications

tored, for its statistics and management. The activity for which OpenFlow is in-
volved does not affect any other part of the network, but strictly the interactions
between the Controller(s) and the Switch(es). The inter-Switch interactions be-
tween Switches, do not reveal to each other their respective interactions with the
Controller. The Switches obediently and confidentially perform their functions
of forwarding the packets according to the instructions stored in their respective
flow tables [19].

OpenFlow implementation is via software in the control plane, which resides
in the central entity identified as the Controller that communicates with the data
plane, where the network nodes are physically distributed. With the specifica-
tions of OpenFlow, a Switch can be programmed to operate like Switches in the
conventional network with similar outcomes. This is achievable only with ma-
nual configuration and reconfiguration of the network devices at the data plane
where the network changes.

OpenFlow protocol messages were intended to be brief, powerful and minimal
in construct. There three type of OpenFlow messages: 1) Controller to Switch mes-
sages, 2) Switch to Controller, 3) symmetric messages.

1) Controller to Switch messages writes instructions (entries) to the flow tables
that the Switch uses to forward packets, and also request for statistics from the
Switch.

2) Switch to Controller messages are asynchronous message type, send packets
or bytes counter for flows defined in the Switch, and send packets not matching
a flow defined in the Switch.

3) Symmetric messages are messages for initiating interaction, originating from
the Switch to the Controller. These messages includes hello (startup), experi-
mental messages for extensions, and echoes (example, a measure of control path
latency, heartbeats).

SDN architecture is a subdivision of the network system based on SDN con-
cept into functional parts and the interfaces between the parts. The SDN archi-
tecture is consistent, open and useful, without the revelation of contractions
when observed from multiple-perspectives. The SDN architecture is an open
architecture because it is extensible. The SDN architecture describes the main
components and the key functionalities of each component as well as the inte-
raction interfaces between the components parts. The architecture of SDN is the
principle component structure; it offers the procedures for SDN technical de-
velopment. All network-related standard organizations like ONF, ITU-T, IRTF
have developed specification for [9].

The main object of SDN was to offer open interfaces that defines data for-
warding and processing operations, to be carried out by a set of traffic flows on
the network resources through a software means. This is achievable by the sepa-
ration of data forwarding function that is controlled by a devoted entity at the
control plane called SDN Controller. The Controller offers a means of managing
and controlling of network resources software, usually known as SDN applica-

https://doi.org/10.4236/jcc.2024.123006

M. Franklin, C. I. Amannah

DOI: 10.4236/jcc.2024.123006 92 Journal of Computer and Communications

tions [14] [17] [20].
The Controller provides controlling and management functionality to net-

work resources through software which functions as SDN applications. Concep-
tually, the architectural characteristic components of the SDN are categorized
and formalized into three distinct groups of structures: Data plane, Control
plane, and Application plane [8]. While the interfaces which ensure that interac-
tion of the layers are, the north bound interface, southbound interface, and the
east-west interface [6] [11] [21] [22].

The SDN architecture generates challenges in terms of the controlling entity
effectively controlling the data plane, this is due to the asynchronous nature of
the communication channel between the Controller and the Switches; therefore,
communications is initiated with different latencies. The communication between
network applications and the Controller is also affected by different latencies;
hence, it generates different control decisions. The configuration of the flow tables
in the Switches is also impacted by different latencies depending on the load on
the Controller or the Switches [23].

The method of information exchange among several Controllers in an SDN is
what is referred to as inter-Controller communication. In this concept, a partic-
ular Controller is connected to a set of Switches, and these Switches commu-
nicate with their connected Controller through information published between
each other to have a global network view. And Controllers send information to
their neighbours about their local state to generate a global network state view.
Centralized and distributed architectures implement well established routing
protocols such as immediate system-immediate system (IS-IS), an internet ga-
teway protocol (IGP), OSPF and BGP to have a consistent view, although gene-
rating a global network view has issues of consistency, due to time taken between
updates of Controller, and the simultaneous reading of the updates by multiple
Controller which impacts the network performance [12] [24].

Scholars suggested that only latency related issues are not sufficient to deter-
mine effective Controller placement; and that resilience of the Controller should
be a major consideration for the Controller placement [25]. The authors posited
that Controller failures, and reassignment to backup Controller would impact
the latencies of the reassigned Switches on the network. Network disruptions can
affect the stability of the network, as well as the topology of the network, and in
some cases, affects a greater part of the network. Load imbalance may occur due
to inconsistency in the assignment of network load on the Controller from con-
nected Switches, due to queuing delay on the Controllers. Inter-Controller la-
tency that results from Controller to Controller communication affects the syn-
chronization of the global network state. The experimentation used POCO for
the evaluation of the strategy adopted; evaluation, visualization of the network
Controller placement scenario were looked at and analysis was performed with
different use cases, the result show that POCO could be used to effectively ana-
lyze different options of placement to find an effective placement for the Con-
troller based on certain parameters with respect to number of Controllers, nodes

https://doi.org/10.4236/jcc.2024.123006

M. Franklin, C. I. Amannah

DOI: 10.4236/jcc.2024.123006 93 Journal of Computer and Communications

and Controller outages, and failure-free scenarios. The authors suggested the
possibility of several parameters as inputs, however did not experiment with the
identified parameters [20].

Experts suggested and presented a Pareto optimal controller (POCO) Place-
ment framework, with Pareto optimal placement with regards to distinct per-
formance metrics, where an exhaustive evaluation of possible placement were
performed [19] [26]. For small and medium size network POCO is feasible but
completely unrealistic for a large size network or networks with dynamic prop-
erties changing with time. The authors extended POCO with faster time com-
plexity though less accurate. The experimentation was performed on a set of
network topologies from the Internet Topology Zoo. The metric was the quanti-
zation of error introduced by the heuristics mechanism, with the trade-off of
time and accuracy, and the method was extensible to virtual functions in virtua-
lized network environment. The metrics of communication latencies includes
Switch to Controller, and Controller to Controller latencies, resilience against link
and node failures and well as load balancing. The algorithm did not take advantage
of network partition to improve efficiency and reduce load on the controller
throughput [5].

Zhang et al. formulated an algorithm for multi-objective optimization con-
troller placement (MOCP) problem [27]. The object of the formulation was to
determine a metric for maximizing Controller load balancing, network reliability
and minimizing Controller latencies between Controller and Switches; also de-
ciding an optimal location for Controller placement within nodes under the
control of the SDN Controllers. A mathematical model was formulated with ob-
jective function for the optimization. Adaptive bacterial foraging optimization
(ABFO) algorithm was developed as a computational model to compute com-
plexity based on the current network state. Evaluation results after simulations
on real network topologies show positivity with potentials to optimize the objec-
tive function efficiently. The ABFO, though allows for multiple inputs, but did
not optimize the placement based on the parameters inputted; however, an en-
hancement may be needed to take advantage of the resourcefulness of the algo-
rithm.

3. Method Adopted in the Study

The study adopted explorative and comparative investigation techniques in eva-
luating the POCO and MOCO models of controller placement in software-defined
networks.

3.1. Analysis of the Existing Systems

The existing systems are two systems with varied functionality: Pareto optimal
combination (POCO) and multi-objective combination (MOCO).

3.1.1. Pareto Optimal Combination
The POCO controller functionality finds the optimal placement as a single ob-

https://doi.org/10.4236/jcc.2024.123006

M. Franklin, C. I. Amannah

DOI: 10.4236/jcc.2024.123006 94 Journal of Computer and Communications

jective function using the heuristics to search the database of network features in
order to have a placement. However, that functionality is based only on a single
parameter (distances of the nodes) in the network, but not any other parameters
that would ensure the continuous and reliable existence of the network. The
component architecture of POCO as an existing system is shown in Figure 1.
POCO Controller takes an initial parameter with the injection of the function of
Pareto optimality finder; the system searches the network database and finds an
appropriate location for the placement of the Controller.

3.1.2. Multi-Objective Combination
The multi-objective input function does take some network input parameters to
improve the placement objectives. MOCO takes latency and network load as pa-
rameters, however, it does not consider network resiliency, scalability, energy
awareness. These functions highlighted above are stakeholder functionalities that
have the capability to render the network useless. Energy usage, resiliency, and
scalability issues due to latencies occur in a case of switch or controller failure.

The process of finding optimality in MOCO also requires improvement, when
compared with POCO that uses Pareto optimality concept in arriving at an op-
timal solution for a single objective. The component architecture of MOCO as
an existing system is shown in Figure 2. The MOCO Controller accepts multiple
input parameters, with multi-objective search optimization function as a tra-
deoff, which the Controller uses to search the network database and finds an ap-
propriate placement. However, the output of the controller did not create ave-
nues for scalability, energy awareness and resiliency which are vital components
for network survivability.

4. Results and Discussion

The study evaluated the POCO and MOCO controller algorithms against three
network topologies:

1) Goodnet network;
2) AARNet network;
3) SAVVIS network.

Figure 1. Component architecture of the POCO controller.

https://doi.org/10.4236/jcc.2024.123006

M. Franklin, C. I. Amannah

DOI: 10.4236/jcc.2024.123006 95 Journal of Computer and Communications

Figure 2. Component architecture of an existing system: MOCO controller.

The tabulated results in Table 1 show the performance of the models; POCO

and MOCO. POCO-MOCO controller placement mechanisms for the Goodnet
network are shown in Table 1, highlighting the visualization of the trends. The
latencies of the algorithms were measured in microseconds against the positions
and number of Controllers in the placements over the network.

The POCO-MOCO Controller executes individually in the four measurement
scenarios, as the latencies improves with more controllers added within the net-
work that reduced the latencies:

1) 3100 ms and 2500 ms for POCO and MOCO respectively in Switch to Con-
troller Average Case latency;

2) 2598 ms and 2769 for POCO and MOCO respectively in Worst Case Switch
to Controller latency;

3) 2776 ms and 2987 ms for POCO and MOCO respectively in Average Case
Controller to Controller latency;

4) 2984 ms and 2759 for POCO and MOCO respectively in Worst Case Con-
troller to Controller latency.

The result of the performance evaluation of the AARNet network is shown in
Table 2, with the four metrics of measure of the algorithm on the network to-
pology. The tabulated results in Table 2 show the performance of the algorithms;
POCO and MOCO Controller placement mechanisms. Figure 3 shows the visu-
alization of the trends. The latencies of the algorithms were measured in micro-
seconds against the positions and number of Controllers in the placements over
the network.

The POCO-MOCO Controller executes individually in the four measurement
scenarios, as the latencies improves with more controllers added within the net-
work that reduced the latencies:

1) 2473 ms and 2129 ms for POCO and MOCO respectively in Switch to Con-
troller Average Case latency;

2) 2198 ms and 2268 ma for POCO and MOCO respectively in Worst Case
Switch to Controller latency;

3) 2598 ms and 2471 ms for POCO and MOCO respectively in Average Case
Controller to Controller latency;

https://doi.org/10.4236/jcc.2024.123006

M. Franklin, C. I. Amannah

DOI: 10.4236/jcc.2024.123006 96 Journal of Computer and Communications

Table 1. Test results of communication latencies for GoodNet.

Network Name GoodNet 2011 (USA)

Network Nodes (N, E) (12, 16)

Parameters POCO MOCO

Average Case Latency: Switch to Controller 3100 2500

Worst Case Latency: Switch to Controller 2598 2769

Average Case Latency: Controller to Controller 2776 2987

Worst Case Latency: Controller to Controller 2984 2759

Table 2. Test results of communication latencies for AARNet.

Network Name AARNet 2010 (Australia)

Network Nodes (N, E) (14, 22)

Parameters POCO MOCO HYBRID

Average Case Latency: Switch to Controller 2473 2129 2078

Worst Case Latency: Switch to Controller 2198 2268 2124

Average Case Latency: Controller to Controller 2598 2471 2299

Worst Case Latency: Controller to Controller 2689 2814 2365

Figure 3. Trend analysis of communication latencies for GoodNet.

4) 2689 ms and 2814 for POCO and MOCO respectively in Worst Case Con-

troller to Controller latency.
Table 2 shows the worst-case and average-case latencies of switch to control-

ler, and worst-case and average-case latencies of controller to controller.
The result of the performance evaluation of the Savvis network is shown in

Table 3, with the four metrics of measure of the algorithm on the network to-
pology. The tabulated result in Table 3 shows the performance of the algo-
rithms; POCO and MOCO Controller placement mechanisms. Figure 4 shows
the visualization of the trends. The latencies of the algorithms were measured in
microseconds against the positions and number of Controllers in the placements
over the network.

The POCO and MOCO performed individually in the four measurement sce-
narios as follows:

0
500

1000
1500
2000
2500
3000
3500

Average case latency:
Switch to Controller

Worst case latency:
Switch to Controller

Average case latency:
Controller to

Controller

Worst case latency:
Controller to

ControllerCo
m

m
un

ic
at

io
n

La
te

nc
ie

s(
m

s)

Performance Metrics

Algorithm Performance on GoodNet

POCO

MOCO

HYBRID

https://doi.org/10.4236/jcc.2024.123006

M. Franklin, C. I. Amannah

DOI: 10.4236/jcc.2024.123006 97 Journal of Computer and Communications

Table 3. Test results of communication latencies for Savvis.

Network Name SAVVIS 2011 (USA)

Network Nodes (N, E) (10, 14)

Parameters POCO MOCO HYBRID

Average Case Latency: Switch to Controller 2912 2784 2539

Worst Case Latency: Switch to Controller 3129 3017 2773

Average Case Latency: Controller to Controller 2789 2693 2598

Worst Case Latency: Controller to Controller 2873 2756 2614

Figure 4. Trend analysis of communication latencies for AARNet.

1) 2912 ms and 2784 ms for POCO and MOCO respectively in Switch to Con-

troller Average Case latency;
2) 3129 ms and 3017 for POCO and MOCO respectively in Worst Case Switch

to Controller latency;
3) 2789 ms and 2693 ms for POCO and MOCO respectively in Average Case

Controller to Controller latency;
4) 2873 ms and 2756 for POCO and MOCO respectively in Worst Case Con-

troller to Controller latency.

5. Conclusions

The ultimate task of this study was to evaluate and compare the functionalities of
the POCO and the MOCO models provided in controller placement in a soft-
ware-defined networking. The localization of network Controller(s) within a de-
fined topology that efficiently manages the network state and the global view of
the network topology with reduced latency. The study is on software-defined
networking (SDN) in general with a particular focus on the Controller place-
ment. The study evaluated the POCO and MOCO algorithms that have the ca-
pability to address the issues of Controller placement. Although research find-
ings show that algorithm design is greatly influenced by network features, archi-
tectural parameters, and topologies. This study found that other factors play sig-
nificant roles in the proper placement of the Controllers, with the understanding
that, continuous availability of the network requires: resiliency of the network,
scalability of the network, and energy availability to keep the network alive, apart

0
500

1000
1500
2000
2500
3000
3500

Average case latency:
Switch to Controller

Worst case latency:
Switch to Controller

Average case latency:
Controller to

Controller

Worst case latency:
Controller to

Controller

Co
m

m
un

ic
at

io
n

La
te

nc
ie

sm
(m

s)

Performance Metrics

Algorithm Performance on Aarnet

POCO

MOCO

HYBRID

https://doi.org/10.4236/jcc.2024.123006

M. Franklin, C. I. Amannah

DOI: 10.4236/jcc.2024.123006 98 Journal of Computer and Communications

from the placement of the Controllers in the appropriate locations to control the
data plane devices that focuses mostly on the packet forwarding.

The study identified specific influences and implementation challenges that
affect the network sustainability in terms of the locational problems associated
with Controller placement, while not overlooking the impact of architectural in-
fluences on the model of networks, which is expected to respond to dynamic
changes of the network based on users and network environmental require-
ments.

When evaluated in relation to the Savvis network, POCO has a higher Average
Case Switch to Controller latency (2912 ms) as against MOCO’s (2784 ms). Simi-
larly, POCO has a higher Worst-Case Switch to Controller latency (2789 ms) as
against MOCO’s (2693 ms). Also, POCO has a higher Average Case Controller to
Controller latency (2789 ms) as against MOCO’s (2693 ms). In the same vein,
POCO has a higher Average Case Controller to Controller latency (2873 ms) as
against MOCO’s (2756 ms). The Average Case and Worst-Case latencies for Switch
to Controller and Controller to Controller are minimal, and favourable to the
POCO model as against the MOCO model when evaluated in the Goodnet, Sav-
vis, and Aanet networks. This simply indicates that the POCO model has a speed
advantage as against the MOCO model, which appears to be only more resilient
in terms of storage than the POCO model.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Salvendy, G. and Wei, J. (2022) Design, Operation and Evaluation of Mobile Com-

munications. Springer, Cham. https://doi.org/10.1007/978-3-031-05014-5

[2] Braun, W. and Menth, M. (2014) Software-Defined Networking Using Open Flow:
Protocols, Applications and Architectural Design Choices. Future Internet, 6, 302-336.
https://doi.org/10.3390/fi6020302

[3] Long, Q., Chen, Y., Zhang, H. and Lei, X. (2019) Software Defined 5G and 6G Net-
works: A Survey. Mobile Networks and Applications, 27, 1792-1812.
https://doi.org/10.1007/s11036-019-01397-2

[4] Foukas, X., Marina, M.K. and Kontovasilis, K. (2014) Software Defined Networking
Concepts. In: Liyanage, M., Gurtov, A. and Ylianttila, M., Eds., Software Defined
Mobile Networks (SDMN): Beyond LTE Network Architecture, John Wiley & Sons,
Ltd., Hoboken. https://doi.org/10.1002/9781118900253.ch3

[5] Open Network Foundation (2014) OpenFlow Switch Specification Version 1.5.0
(Protocol Version 0x06).
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.0.n
oipr.pdf

[6] Kreutz, D., Ramos, F.M.V., Verissimo, P., Rothenberg, C.E., Azodolmolky, S. and
Uhlig, S. (2014) Software-Defined Networking: A Comprehensive Survey. Proceed-
ings of the IEEE, 103, 14-76. https://doi.org/10.1109/JPROC.2014.2371999

https://doi.org/10.4236/jcc.2024.123006
https://doi.org/10.1007/978-3-031-05014-5
https://doi.org/10.3390/fi6020302
https://doi.org/10.1007/s11036-019-01397-2
https://doi.org/10.1002/9781118900253.ch3
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.0.noipr.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.0.noipr.pdf
https://doi.org/10.1109/JPROC.2014.2371999

M. Franklin, C. I. Amannah

DOI: 10.4236/jcc.2024.123006 99 Journal of Computer and Communications

[7] Stein, Y. and Haleplidis, E. (2015) SDN & NFV OpenFlow and ForCES: IETF-93.
https://www.ietf.org/proceedings/93/slides/slides-93-edu-openflow-9.pdf

[8] Jammal, M., Singh, T., Shami, A., Asal, R. and Li, Y. (2014) Software Defined Net-
working: State of the Art and Research Challenges. Computer Networks, 72, 74-98.
https://doi.org/10.1016/j.comnet.2014.07.004

[9] Duan, Q., Ansari, N. and Toy, M. (2016) Software-Defined Network Virtualiza-
tion—An Architectural Framework for Integrating SDN and NFV for Service Pro-
visioning in Future Networks. IEEE Network, 30, 10-16.
https://doi.org/10.1109/MNET.2016.7579021

[10] Stallings, W., Agboma, F. and Jelassi, S. (2016) Foundations of Modern Networking:
SDN, NFV, QoE, IoT, and Cloud. Pearson Education, Indianapolis.

[11] Dimogerontakis, E., Vilata, I. and Navarro, L. (2013) Software Defined Networking
for Community Network Testbeds. 2013 IEEE 9th International Conference on Wire-
less and Mobile Computing, Networking and Communications (WiMob), Lyon, 7-9
October 2013, 111-118. https://doi.org/10.1109/WiMOB.2013.6673348

[12] Killi, B.P.R. and Rao, S.V. (2016) Capacitated Next Controller Placement in Software
Defined Networks. IEEE Transactions on Network and Service Management, 14,
514-527. https://doi.org/10.1109/TNSM.2017.2720699

[13] Lee, M. (2012) Introduction to Software-Defined Networking. UG3 Computer Com-
munications & Networks (COMN).
https://www.inf.ed.ac.uk/teaching/courses/comn/lecture-notes/lec18.pdf

[14] Duan, Q., Wang, Y., Bernstein, A. and Toy, M. (2017) Virtualization in Networking
in Virtualized Software-Defined Networks and Services. Artech House, Boston.

[15] Amazonas, J.R.A., Santos-Boada, G. and Solé-Pareta, J. (2014) A Critical Review of
OpenFlow/SDN-b. 16th International Conference on Transparent Optical Networks
(ICTON), Graz, 6-10 July 2014, 1-5.

[16] Rawal, A. (2021) The Supercloud Platform for API-First Applications.
https://www.section.io/engineering-education/openflow-sdn/

[17] Allied Telesis (2021) OpenFlowTM Protocol Feature Overview and Configuration
Guide.
https://www.alliedtelesis.com/ng/en/documents/openflow-feature-overview-and-co
nfiguration-guide

[18] Hu, Y.N., Wang, W.D., Gong, X.Y., Que, X.R. and Cheng, S.D. (2012) On the Place-
ment of Controllers in Software-Defined Networks. The Journal of China Universi-
ties of Posts and Telecommunications, 19, 92-97, 171.
https://www.sciencedirect.com/science/journal/10058885

[19] Ran, L., Taiyi, F., Yunfeng,G., Cong,Y.L., Yang,H., & Huilong, D. (2015) The Re-
search of OpenFlow Management and Control Interface Protocols Based on SDN
Technology. 2015 IEEE International Conference on Computer and Communica-
tions (ICCC), Chengdu, 10-11 October 2015, 45-49.
https://doi.org/10.1109/CompComm.2015.7387538

[20] Li, T., Gu, Z., Lin, X., Li, S. and Tan, Q. (2018) Approximation Algorithms for Con-
troller Placement Problems in Software Defined Networks. 2018 IEEE Third Inter-
national Conference on Data Science in Cyberspace, Guangzhou, 18-21 June 2018,
250-257. https://doi.org/10.1109/DSC.2018.00043

[21] Borcoci, E. (2013) Software Defined Networking and Architectures. NetWare 2013
Conference, August 25 2013, Barcelona.
https://www.iaria.org/conferences2013/filesAFIN13/NetWare%202013-SDN%20an
d%20Architectures%20v1.2-%20August%2025,%202013.pdf

https://doi.org/10.4236/jcc.2024.123006
https://www.ietf.org/proceedings/93/slides/slides-93-edu-openflow-9.pdf
https://doi.org/10.1016/j.comnet.2014.07.004
https://doi.org/10.1109/MNET.2016.7579021
https://doi.org/10.1109/WiMOB.2013.6673348
https://doi.org/10.1109/TNSM.2017.2720699
https://www.inf.ed.ac.uk/teaching/courses/comn/lecture-notes/lec18.pdf
https://www.section.io/engineering-education/openflow-sdn/
https://www.alliedtelesis.com/ng/en/documents/openflow-feature-overview-and-configuration-guide
https://www.alliedtelesis.com/ng/en/documents/openflow-feature-overview-and-configuration-guide
https://www.sciencedirect.com/science/journal/10058885
https://doi.org/10.1109/CompComm.2015.7387538
https://doi.org/10.1109/DSC.2018.00043
https://www.iaria.org/conferences2013/filesAFIN13/NetWare%202013-SDN%20and%20Architectures%20v1.2-%20August%2025,%202013.pdf
https://www.iaria.org/conferences2013/filesAFIN13/NetWare%202013-SDN%20and%20Architectures%20v1.2-%20August%2025,%202013.pdf

M. Franklin, C. I. Amannah

DOI: 10.4236/jcc.2024.123006 100 Journal of Computer and Communications

[22] Mousa, M., Bahaa-Eldin, A.M. and Sobh, M. (2016) Software Defined Networking
Concepts and Challenges. 2016 11th International Conference on Computer Engi-
neering & Systems (ICCES), Cairo, 20-21 December 2016, 79-90.
https://doi.org/10.1109/ICCES.2016.7821979

[23] Su, J., Wang, W. and Liu, C. (2019) A Survey of Control Consistency in Software-
Defined Networking. CCF Transactions on Networking, 2, 137-152.

[24] Das, S., Parulkar, G. and McKeown, N. (2012) Why OpenFlow/SDN Can Succeed
Where GMPLS Failed. European Conference and Exhibition on Optical Communi-
cation, Amsterdam, 16-20 September 2012.
https://doi.org/10.1364/ECEOC.2012.Tu.1.D.1

[25] Hock, D., Gebert, S., Hartmann, M., Zinner, T. and Tran-Gia, P. (2014) POCO-
Framework for Pareto-Optimal Resilient Controller Placement in SDN-Based Core
Networks. 2014 IEEE Network Operations and Management Symposium (NOMS),
Krakow, 5-9 May 2014, 1-2. https://doi.org/10.1109/NOMS.2014.6838275

[26] Lange, S., Gebert, S., Zinner, T., Tran-Gia, P., Hocky, D., Jarschelz, M. and Hoff-
mann, M. (2015) Heuristic Approaches to the Controller Placement Problem in Large
Scale SDN Networks. IEEE Transactions on Network and Science Management, 12,
4-17. https://doi.org/10.1109/TNSM.2015.2402432

[27] Zhang, B., Wang, X., Ma, L. and Huang, M. (2016) Optimal Controller Placement
Problem in Internet-Oriented Software Defined Network. 2016 International Con-
ference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Cheng-
du, 13-15 October 2016, 481-488. https://doi.org/10.1109/CyberC.2016.98

https://doi.org/10.4236/jcc.2024.123006
https://doi.org/10.1109/ICCES.2016.7821979
https://doi.org/10.1364/ECEOC.2012.Tu.1.D.1
https://doi.org/10.1109/NOMS.2014.6838275
https://doi.org/10.1109/TNSM.2015.2402432
https://doi.org/10.1109/CyberC.2016.98

	Comparative Performance Measurement of the Pareto Optimal Combination and Multi-Objective Combination Models for Controller Placement in Software-Defined Networks
	Abstract
	Keywords
	1. Introduction
	2. Related Literature
	3. Method Adopted in the Study
	3.1. Analysis of the Existing Systems
	3.1.1. Pareto Optimal Combination
	3.1.2. Multi-Objective Combination

	4. Results and Discussion
	5. Conclusions
	Conflicts of Interest
	References

