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Abstract 
This paper introduces a Convolutional Neural Network (CNN) model for 
Arabic Sign Language (AASL) recognition, using the AASL dataset. Recog-
nizing the fundamental importance of communication for the hear-
ing-impaired, especially within the Arabic-speaking deaf community, the 
study emphasizes the critical role of sign language recognition systems. The 
proposed methodology achieves outstanding accuracy, with the CNN model 
reaching 99.9% accuracy on the training set and a validation accuracy of 
97.4%. This study not only establishes a high-accuracy AASL recognition 
model but also provides insights into effective dropout strategies. The 
achieved high accuracy rates position the proposed model as a significant ad-
vancement in the field, holding promise for improved communication acces-
sibility for the Arabic-speaking deaf community. 
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1. Introduction 

Effective communication is essential for social interaction, and its importance 
becomes even stronger when considering the obstacles facing the deaf [1] com-
munity. For individuals with hearing disabilities, hand gesture recognition 
emerges as a solid tool capable of bridging communication gaps [2] and offering 
convenience. Sign language is a structured visual communication form involving 
hand movements, and it plays a central role in the daily deaf and speech- 
impaired community interactions [3]. 

Despite its importance, sign language is not unique nor universally unders-
tood, sign language is different from one country to another, posing a substantial 

How to cite this paper: El Kharoua, R. and 
Jiang, X.M. (2024) Deep Learning Recogni-
tion for Arabic Alphabet Sign Language 
RGB Dataset. Journal of Computer and 
Communications, 12, 32-51. 
https://doi.org/10.4236/jcc.2024.123003 
 
Received: February 15, 2024 
Accepted: March 8, 2024 
Published: March 11, 2024 
 
Copyright © 2024 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2024.123003
https://www.scirp.org/
https://orcid.org/0009-0002-7089-695X
https://doi.org/10.4236/jcc.2024.123003
http://creativecommons.org/licenses/by/4.0/


R. El Kharoua, X. M. Jiang 
 

 

DOI: 10.4236/jcc.2024.123003 33 Journal of Computer and Communications 
 

barrier between deaf communities all over the world and the general population. 
Moreover, the absence of signs for all words necessitates the spelling of certain 
terms letter by letter [4]. This communication gap necessitates the existence of 
advanced technologies capable of recognizing and interpreting sign language 
accurately. 

This research aims to address this need by developing a deep learning-based 
sign language recognition mode, focusing on the Arabic sign language alphabet 
using the AASL dataset. Recognizing the complexity of hand gesture images, we 
follow a deep-learning approach, a computer vision methodology known for its 
prowess in image classification [5]. The novelty of our study lies in the use of the 
AASL dataset which was never used before, the unique preprocessing of the da-
taset, and the dropout technique used in the training phase. 

Various approaches employing Convolutional Neural Networks (CNNs) have 
been proposed in many applications to bridge the communication gaps for indi-
viduals with hearing impairments. One study by C. M. Bishop et al. presented a 
deep CNN architecture for hand sign language recognition, leveraging both spa-
tial and temporal information with convolutional and recurrent layers [6]. Their 
approach achieved promising results on benchmark datasets such as American 
Sign Language (ASL) recognition. 

In another study, Z. Zhang et al. proposed a multi-modal fusion CNN model 
for sign language recognition, combining depth and RGB images to enhance 
feature representation and classification accuracy [7]. The fusion of multiple 
modalities provided robustness against environmental variations and improved 
performance in real-world scenarios. 

R. Li et al. explored the effectiveness of transfer learning in hand sign language 
recognition using pre-trained CNN models [8]. By fine-tuning CNN architec-
tures pre-trained on large-scale image datasets, they achieved notable improve-
ments in recognition accuracy, demonstrating the potential of transfer learning 
for this task. 

The work of S. Hochreiter and J. Schmidhuber introduced Long Short-Term 
Memory (LSTM) networks, a type of recurrent neural network, for sequential 
hand sign language recognition tasks [9]. Their approach effectively captured 
temporal dependencies within sign sequences, leading to improved recognition 
performance compared to traditional CNN-based methods. 

Recent advancements in CNN-based hand sign language recognition have 
demonstrated promising results, with approaches ranging from deep CNN ar-
chitectures to multi-modal fusion and transfer learning strategies. These studies 
pave the way for developing robust and accurate systems to facilitate communi-
cation for individuals with hearing impairments. 

Our paper’s innovation lies in the novel approach to data preprocessing and 
the strategic implementation of dropout techniques. These methods are not only 
applicable to image classification tasks but can also be extended to enhance gen-
eral neural network training across various domains. Further elaboration on 
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these advancements will be provided in subsequent sections. 

2. Method 

Another version of the AASL [10] dataset is made where the background of all 
images is deleted, this second version of the AASL dataset is then prepossessed 
and augmented before being fed to the CNN model, the background removal is 
presented as a way to reduce the noise learned by the model on the training 
phase especially that the dataset is not big enough to avoid overfitting. 

3. Data Preparation and Processing for CNN 

The RGB Arabic Alphabet Sign Language (AASL) dataset [10] comprises 7856 
images of 5432 by 3830 pixels. ASSL was collected by more than 200 participants 
and according to the authors, ASSL is the first publicly available RGB dataset for 
Arabic Alphabet Sign Language, Figure 1 represents a sample extracted from the 
AASL dataset. 

3.1. Data Cleaning 

During the first tests and after a manual inspection of the different classes of the 
AASL dataset, some misclassified figures were found, Another problem found 
was some unclear figures where it was hard to decide where those specific figures 
belonged, these problems were fixed by reclassifying these images and deleting 
the ones that are not clear. 

 

 

Figure 1. Sample from AASL Dataset. 
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3.2. Data Resizing 

The images of the AASL Dataset [10] have an original size of 5432 by 3830 pixels 
and were all resized to a size of 224 by 224 pixels. 

3.3. AASL Background Removal 

To avoid noise and capturing irrelevant features by the CNN model during the 
training phase, the background of all dataset images was removed, leaving only the 
hand gesture that the model needs to learn and generalize on. This phase resulted 
in some corrupted images since background removal is not always easily obtained. 
Figure 2 displays a sample of images both before and after background removal. 

3.4. Final Cleaned Dataset 

The Final obtained dataset is a non-background RGB dataset of images with a 
size of 224 by 224 pixels for each image. The different phases of data preparation 
resulted in reducing the number of images from 7856 to 6985 images. The dis-
tribution shown in Figure 3 represents the distribution of the cleaned version of 
the AASL dataset. 

3.5. Data Split 

20% of our dataset is selected randomly to be used as a validation dataset which is 
1384 images as seen in Figure 4. The remaining 80% of the data amounts to 5601 
samples, as indicated in Figure 5, which will be utilized as the training dataset. 

 

 

Figure 2. Sample of Images before and after background removal. 
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Figure 3. Cleaned AASL dataset distribution. 
 

 

Figure 4. Validation classes distribution. 

3.6. Data Augmentation 

Since the size of AASL is not big enough and due to the loss of a part of this data 
during the phase of data cleaning and preparation, data augmentation will be 
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performed to handle this issue, Figure 6 serves as an illustrative example of this 
technique. Data augmentation is performed using the “ImageDataGenerator” 
module from the Keras library [11], the parameters used in our case are the fol-
lowing: 

• Shear Range: A shear transformation was applied with a range of 30%. This 
is a deformation effect applied by displacing one part of the image in relation to 
the other. 

 

 

Figure 5. Training classes distribution. 
 

 

Figure 6. Original and augmented sample from AASL. 
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• Zoom Range: A zoom transformation was applied with a range of 30%. This 
augmentation magnifies or reduces certain portions of the image. 

• Vertical Flip: This transformation is a simple vertical flip of the images. 
These augmentation strategies help in the creation of a more diverse training 

dataset which increases the model’s capability in generalizing on unseen data 
[12]. 

3.7. Convolutional Neural Network 

Figure 7 illustrates the Convolutional Neural Network (CNN) utilized, com-
prising the following essential layers: 

• Convolutional Layers: Convolutional layers are employed to extract fea-
tures from the input images, each convolutional layer consists of filters that 
convolve over the input to capture patterns and create a future map. 

• ReLU Activation: Rectified Linear Unit (ReLU) is an activation function 
applied after each convolutional layer, ReLU introduces non-linearity, enabling 
the model to learn complex relationships in the data [13]. 

• MaxPooling Layers: MaxPooling layers follow the convolutional layers to 
reduce the spatial dimensions. MaxPooling layers downsample the feature maps 
while retaining the important information [14]. 

• Dropout Layers: Dropout layers help prevent overfitting by randomly deac-
tivating a fraction of neurons during training, the strategy and rates of dropout 
layers will be presented in the following sections [15]. 

• Flatten Layer: The flattening layer is employed to transform the feature map 
from 3D dimensions to a 1D vector. 

• Dense Layers: The densely connected layers are introduced to capture 
high-level abstractions from the flattened feature vector. 

• Batch Normalization: Batch Normalization normalizes the activations of 
the neurons, ensuring a zero mean and a unit variance. The normalization helps 
stabilize and expedite the training process by reducing internal covariant shifts 
[16]. 

The upcoming sections will outline the configurations employed and the pa-
rameters utilized in each layer, including the dimensions of the filters applied in 
certain layers. 

3.8. Model Architecture 

Table 1 and Table 2 reveal the Convolutional Neural Network (CNN) utilized, 
providing a detailed overview of its architecture, including details on each layer 
with its associated parameters: 

The presented CNN model exhibits a total of 22,828,063 parameters where 
22,821,919 parameters are trainable, and the rest of the parameters are 6144 
non-trainable. The large number of trainable parameters in the model highlights 
its complexity. This complexity allows it to better understand intricate patterns 
and details in the input data. 
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Figure 7. CNN Model visualization. 
 

Table 1. Model architecture. 

Layer Description Layer Configuration 

1 InputLayer - 

2 Conv2D Filters: 128 

3 Activation - 

4 MaxPooling2D Pooling Window: (2, 2) 

5 Conv2D Filters: 256 

6 Activation ReLu 

7 MaxPooling2D Pooling Window: (2, 2) 

8 Conv2D Filters: 256 

9 Activation ReLu 

10 MaxPooling2D Pooling Window: (2, 2) 

11 Conv2D Filters: 512 

12 Activation ReLu 

13 MaxPooling2D Pooling Window: (2, 2) 

14 Conv2D Filters: 512 

15 Activation ReLu 

16 MaxPooling2D Pooling Window: (2, 2) 

17 Conv2D Filters: 1024 

18 Activation ReLu 

19 MaxPooling2D Pooling Window: (2, 2) 

20 Conv2D Filters: 1024 

21 Activation ReLu 

22 MaxPooling2D Pooling Window: (2, 2) 

23 Dropout Initial Rate: 0.5 

24 Flatten - 

25 Dense Nodes: 2048 

26 BatchNormalization - 

27 Activation - 

28 Dropout Initial Rate: 0.5 

29 Dense Nodes: 1024 

30 BatchNormalization - 

31 Activation ReLu 

32 Dense Nodes: 31 
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Table 2. Summary of the model parameters. 

 Layer Type Output Shape Parameters 

1 InputLayer (None, 224, 224, 3) 0 

2 Conv2D (None, 224, 224, 128) 3584 

3 Activation (None, 224, 224, 128) 0 

4 MaxPooling2D (None, 112, 112, 128) 0 

5 Conv2D (None, 112, 112, 256) 295,168 

6 Activation (None, 112, 112, 256) 0 

7 MaxPooling2D (None, 56, 56, 256) 0 

8 Conv2D (None, 56, 56, 256) 590,080 

9 Activation (None, 56, 56, 256) 0 

10 MaxPooling2D (None, 28, 28, 256) 0 

11 Conv2D (None, 28, 28, 512) 1,180,160 

12 Activation (None, 28, 28, 512) 0 

13 MaxPooling2D (None, 14, 14, 512) 0 

14 Conv2D (None, 14, 14, 512) 2,359,808 

15 Activation (None, 14, 14, 512) 0 

16 MaxPooling2D (None, 7, 7, 512) 0 

17 Conv2D (None, 7, 7, 1024) 4,719,616 

18 Activation (None, 7, 7, 1024) 0 

19 MaxPooling2D (None, 3, 3, 1024) 0 

20 Conv2D (None, 3, 3, 1024) 9,438,208 

21 Activation (None, 3, 3, 1024) 0 

22 MaxPooling2D (None, 1, 1, 1024) 0 

23 Dropout (None, 1, 1, 1024) 0 

24 Flatten (None, 1024) 0 

25 Dense (None, 2048) 2,099,200 

26 BatchNormalization (None, 2048) 8192 

27 Activation (None, 2048) 0 

28 Dropout (None, 2048) 0 

29 Dense (None, 1024) 2,098,176 

30 BatchNormalization (None, 1024) 4096 

31 Activation (None, 1024) 0 

32 Dense (None, 31) 31,775 

 
The Figure illustrates the proposed CNN model architecture, providing a vis-

ual representation of each layer. The layer numbers in the figure align with the 
numbers specified in the Table. 
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4. Model Training and Results  
4.1. Experimental Setup 

The framework employed in constructing the system was Keras, with Tensor-
Flow serving as the underlying engine. A high-performance workstation was 
used with 4 CPUs and 2 Nvidia Tesla T4 GPUs [17], more information is pre-
sented in Table 3. 

4.2. Dropout Strategy 

To make the model achieve a high validation accuracy in a short period of 
training time, a dropout rate change strategy was executed. The model is capable 
of converging to a high validation accuracy just with a fixed dropout rate but in 
this case, the training time will be longer and 250 epochs will not be enough to 
achieve the stated validation accuracy. In many cases even increasing the num-
ber of training epochs was not enough to achieve the stated validation accuracy 
which highlights the importance of this dropout strategy. Figure 8 illustrates the 
dropout strategy, which comprises the following phases: 

 
Table 3. High-Performance desktop computer specs. 

Parameter Value 
CPUs 4 

Memory (GiB) 31.36 
Memory per CPU (GiB) 7.84 

CPU Architecture 64 bit 
GPU 2 

GPU Architecture Tesla T4 
Video Memory (GiB) 14.75 Per GPU 

FPGA 0 
 

 

Figure 8. Dropout rate change. 
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• Initial Phase: From epoch 1 to 79 the value of both dropout rates was fixed 
at 0.5 allowing the model a stable learning phase without disturbance. 

• Suppression Phase: From epoch 80 to 119, both dropout rates were elevated 
to 0.9 to challenge the model to classify the images using only 10% of the neu-
rons. 

• Interphase: From epoch 120 to 129 the values of both dropout rates are set 
back to the initial rate of 0.5 allowing the model to adjust its weights again and 
preparing it to the next phase. 

• Extreme Suppression: From epoch 130 to 219 the first dropout rate was set 
to 0.0 while the second one was set to 0.99 challenging the model to use only 1% 
of its neurons to classify the images. During this phase, the first dropout rate was 
changed over time slowly going up from a value of 0.0 to 0.5. 

• Complete Release: From epoch 220 to 250 we give a value of 0.0 for both 
dropout rates allowing the model to use its full capacities to classify the images, 
this phase is important to fight the underfitting faced during past phases. 

The highest validation accuracy achieved was not possible without this dro-
pout strategy which highlights the importance and the role of this strategy. 

4.3. Training and Validation Accuracy 

The training parameters can be found in Table 4, in this section, we will assess 
the effectiveness of our CNN model by examining the performance metrics 
shown in Table 5. 

In Figure 9, the depicted chart illustrates the training and validation accuracy 
trends [18]. Starting with a low value in the initial epochs, the accuracy progres-
sively rises over subsequent epochs. Notably, the validation data attains a peak 
accuracy of 97.4%, signifying the model’s adeptness at generalizing its learned 
features. 

The successive drop in accuracy is due to the extreme change in the dropout 
rate, which is normal since only a fraction of the neurons will be used, hence the 
model needs to adjust the few neurons’ weights to be capable of classifying all 
classes using only a small number of neurons; The same drop is seen on training 
and validation loss. 

 
Table 4. Training parameters. 

Parameter Value 

Batch Size 50 

Epochs 250 

 
Table 5. Model performance. 

Parameter Value Comment 

Training-data Accuracy 99.4% 

Validation-data Accuracy 97.4% 
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Figure 9. Training and validation accuracy. 
 

The training and validation losses exhibit a descending trajectory, culminating 
in minimal values for both metrics. This pattern is indicative of a well-fitted 
model that effectively captures the data without overfitting, as shown in Figure 
10. 

4.4. Precision, Recall and F1-Score 

The dataset is imbalanced, which means the accuracy and validation accuracy 
are not enough to evaluate the performance of our model, for this matter Preci-
sion, Recall, and F1-Score [19] are calculated. The weighted average (W.avg) of 
these metrics is used to evaluate the performance. The CNN model used achieved 
a performance of 97% across the three metrics. More details are shown in the 
classification report in Table 6. 

The confusion matrix [20] is a perfect way to distinguish between true posi-
tives, true negatives, false positives, and false negatives which provides good in-
sight into the system’s accuracy and its errors. The confusion matrix of the CNN 
model is shown in Figure 11 which proves that the performance of the CNN 
model is perfect with negligible inaccuracies. 

4.5. Results Overview 

The results underscore the CNN model’s exceptional efficacy across all classes. 
The model consistently achieves precise classification for all categories, except 
for a few distinctive cases. Within the confusion matrix, the highest value ob-
served is 6, associated with the “Qaf” and “Heh” classes. This confusion can be 
ascribed to the inherent similarity between these two classes, leading to a degree 
of overlap. 
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Figure 10. Loss function. 
 

 

Figure 11. Confusion matrix. 
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Table 6. Classification report. 

Class Precision Recall F1-Score Support 

Ain 0.96 1.00 0.98 45 

Al 1.00 1.00 1.00 52 

Alef 0.98 0.98 0.98 55 

Beh 0.92 0.98 0.95 58 

Dad 1.00 0.95 0.98 44 

Dal 1.00 0.82 0.90 39 

Feh 0.83 0.94 0.88 47 

Ghain 1.00 0.95 0.98 42 

Hah 0.91 0.95 0.93 44 

Heh 0.90 0.92 0.91 48 

Jeem 0.94 0.81 0.87 37 

Kaf 1.00 0.96 0.98 52 

Khah 0.96 1.00 0.98 43 

Laa 1.00 1.00 1.00 50 

Lam 1.00 1.00 1.00 47 

Meem 0.98 0.96 0.97 47 

Noon 0.96 1.00 0.98 44 

Qaf 0.88 0.88 0.88 40 

Reh 0.91 1.00 0.95 39 

Sad 0.95 0.89 0.92 45 

Seen 1.00 1.00 1.00 52 

Sheen 1.00 1.00 1.00 53 

Tah 0.95 0.93 0.94 40 

Teh 1.00 0.96 0.98 56 

Teh_Marbuta 1.00 1.00 1.00 44 

Thal 0.90 0.93 0.92 30 

Theh 0.96 0.98 0.97 55 

Waw 1.00 0.98 0.99 43 

Yeh 1.00 1.00 1.00 45 

Zah 1.00 0.93 0.96 41 

Zain 0.89 1.00 0.94 33 

Accuracy   0.96 1410 

Macro Avg 0.96 0.96 0.96 1410 

Weighted Avg 0.96 0.96 0.96 1410 
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4.6. Performance Verification 

In this phase, we will test our CNN model using a sample from another dataset, 
the background of the images is removed, we apply the same preprocessing as 
before and we feed the images to the CNN model. The model shows a perfect 
performance across all images as seen in Figure 12. 

4.7. Model Predictions Explanation  
4.7.1. Using Lime 
LIME (Local Interpretable Model-agnostic Explanations) [21] is a framework for 
explaining the predictions for machine learning models by perturbing input 
features and observing the changes in predictions. Lime is used in our case for 

 

 

Figure 12. Performance verification. 
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the same images used in the performance verification phase where regions are 
visualized using green and red colors, with yellow lines marking the boundaries 
of the interesting parts. The goal is to make the model’s decision understandable 
and interpretable. 

The findings shown in Figure 13 indicate that the classification of hand ges-
tures heavily relies on specific and discernible regions, while other portions of the 
hand are systematically disregarded. This observation is particularly noteworthy, 
as certain hand segments are recurrent across multiple classes. Consequently, the 
model tends to overlook these recurrent segments, deeming them inconsequential 
in distinguishing between distinct classes. This phenomenon underscores the 
model’s capacity to focus on the salient aspects of hand gestures crucial for accu-
rate classification, thereby enhancing its discriminatory capabilities. 

 

 

Figure 13. Model predictions explanation with LIME. 
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4.7.2. Using LASSO 
LASSO (Least Absolute Shrinkage and Selection Operator) [22] is a regulariza-
tion technique used in machine learning and statistics. In the context of linear 
models, LASSO adds a penalty term to the objective function, encouraging the 
model to prefer sparse solutions by shrinking some coefficients to exactly zero. 
This promotes feature selection and can be used to identify the most important 
features in a model. In our case, LASSO performed almost the same as Lime 
which confirms the features learned by the model as seen in Figure 14. The red 
dots represent the most important parts or features learned by the model.  
 

 

Figure 14. LASSO for verification data. 
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Figure 15. Convolutional filter visualization. 

4.7.3. Using Filters of Convolution Layers 
We visualize in this section one of the filters of the third convolutional layer ap-
plied to the same data, this specific layer is chosen on purpose since it gives good 
insights into what the model is learning, the more in-depth layers are more 
complex and not easy to understand. Figure 15 shows the important features 
detected by this filter in red color where the less important features or pixels are 
represented in blue color. 

5. Conclusions 

In this paper, we proposed the first CNN model for Arabic Alphabet Sign Lan-
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guage classification using the AASL dataset. 
The architecture of this model has been described in detail. The results of the 

test, validation, and verification steps are described in detail along with the 
unique dropout strategy employed. The CNN model has shown perfect perfor-
mance in categorizing the 31 categories of the AASL dataset with an accuracy 
score of 97.4% and an accuracy of 100% in the verification performance phase. 

To the best of our knowledge, this is the first CNN model trained on the 
AASL dataset. This contribution provided the first step in the development of 
machine-learning models dedicated to Arabic Sign Language. 
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