
Journal of Computer and Communications, 2024, 12, 32-51
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2024.123003 Mar. 11, 2024 32 Journal of Computer and Communications

Deep Learning Recognition for Arabic Alphabet
Sign Language RGB Dataset

Rabie El Kharoua , Xiaoming Jiang

School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, China

Abstract
This paper introduces a Convolutional Neural Network (CNN) model for
Arabic Sign Language (AASL) recognition, using the AASL dataset. Recog-
nizing the fundamental importance of communication for the hear-
ing-impaired, especially within the Arabic-speaking deaf community, the
study emphasizes the critical role of sign language recognition systems. The
proposed methodology achieves outstanding accuracy, with the CNN model
reaching 99.9% accuracy on the training set and a validation accuracy of
97.4%. This study not only establishes a high-accuracy AASL recognition
model but also provides insights into effective dropout strategies. The
achieved high accuracy rates position the proposed model as a significant ad-
vancement in the field, holding promise for improved communication acces-
sibility for the Arabic-speaking deaf community.

Keywords
Convolutional Neural Network (CNN), AASL Dataset, Dropout, Deep
Learning, Communication Technology

1. Introduction

Effective communication is essential for social interaction, and its importance
becomes even stronger when considering the obstacles facing the deaf [1] com-
munity. For individuals with hearing disabilities, hand gesture recognition
emerges as a solid tool capable of bridging communication gaps [2] and offering
convenience. Sign language is a structured visual communication form involving
hand movements, and it plays a central role in the daily deaf and speech-
impaired community interactions [3].

Despite its importance, sign language is not unique nor universally unders-
tood, sign language is different from one country to another, posing a substantial

How to cite this paper: El Kharoua, R. and
Jiang, X.M. (2024) Deep Learning Recogni-
tion for Arabic Alphabet Sign Language
RGB Dataset. Journal of Computer and
Communications, 12, 32-51.
https://doi.org/10.4236/jcc.2024.123003

Received: February 15, 2024
Accepted: March 8, 2024
Published: March 11, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2024.123003
https://www.scirp.org/
https://orcid.org/0009-0002-7089-695X
https://doi.org/10.4236/jcc.2024.123003
http://creativecommons.org/licenses/by/4.0/

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 33 Journal of Computer and Communications

barrier between deaf communities all over the world and the general population.
Moreover, the absence of signs for all words necessitates the spelling of certain
terms letter by letter [4]. This communication gap necessitates the existence of
advanced technologies capable of recognizing and interpreting sign language
accurately.

This research aims to address this need by developing a deep learning-based
sign language recognition mode, focusing on the Arabic sign language alphabet
using the AASL dataset. Recognizing the complexity of hand gesture images, we
follow a deep-learning approach, a computer vision methodology known for its
prowess in image classification [5]. The novelty of our study lies in the use of the
AASL dataset which was never used before, the unique preprocessing of the da-
taset, and the dropout technique used in the training phase.

Various approaches employing Convolutional Neural Networks (CNNs) have
been proposed in many applications to bridge the communication gaps for indi-
viduals with hearing impairments. One study by C. M. Bishop et al. presented a
deep CNN architecture for hand sign language recognition, leveraging both spa-
tial and temporal information with convolutional and recurrent layers [6]. Their
approach achieved promising results on benchmark datasets such as American
Sign Language (ASL) recognition.

In another study, Z. Zhang et al. proposed a multi-modal fusion CNN model
for sign language recognition, combining depth and RGB images to enhance
feature representation and classification accuracy [7]. The fusion of multiple
modalities provided robustness against environmental variations and improved
performance in real-world scenarios.

R. Li et al. explored the effectiveness of transfer learning in hand sign language
recognition using pre-trained CNN models [8]. By fine-tuning CNN architec-
tures pre-trained on large-scale image datasets, they achieved notable improve-
ments in recognition accuracy, demonstrating the potential of transfer learning
for this task.

The work of S. Hochreiter and J. Schmidhuber introduced Long Short-Term
Memory (LSTM) networks, a type of recurrent neural network, for sequential
hand sign language recognition tasks [9]. Their approach effectively captured
temporal dependencies within sign sequences, leading to improved recognition
performance compared to traditional CNN-based methods.

Recent advancements in CNN-based hand sign language recognition have
demonstrated promising results, with approaches ranging from deep CNN ar-
chitectures to multi-modal fusion and transfer learning strategies. These studies
pave the way for developing robust and accurate systems to facilitate communi-
cation for individuals with hearing impairments.

Our paper’s innovation lies in the novel approach to data preprocessing and
the strategic implementation of dropout techniques. These methods are not only
applicable to image classification tasks but can also be extended to enhance gen-
eral neural network training across various domains. Further elaboration on

https://doi.org/10.4236/jcc.2024.123003

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 34 Journal of Computer and Communications

these advancements will be provided in subsequent sections.

2. Method

Another version of the AASL [10] dataset is made where the background of all
images is deleted, this second version of the AASL dataset is then prepossessed
and augmented before being fed to the CNN model, the background removal is
presented as a way to reduce the noise learned by the model on the training
phase especially that the dataset is not big enough to avoid overfitting.

3. Data Preparation and Processing for CNN

The RGB Arabic Alphabet Sign Language (AASL) dataset [10] comprises 7856
images of 5432 by 3830 pixels. ASSL was collected by more than 200 participants
and according to the authors, ASSL is the first publicly available RGB dataset for
Arabic Alphabet Sign Language, Figure 1 represents a sample extracted from the
AASL dataset.

3.1. Data Cleaning

During the first tests and after a manual inspection of the different classes of the
AASL dataset, some misclassified figures were found, Another problem found
was some unclear figures where it was hard to decide where those specific figures
belonged, these problems were fixed by reclassifying these images and deleting
the ones that are not clear.

Figure 1. Sample from AASL Dataset.

https://doi.org/10.4236/jcc.2024.123003

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 35 Journal of Computer and Communications

3.2. Data Resizing

The images of the AASL Dataset [10] have an original size of 5432 by 3830 pixels
and were all resized to a size of 224 by 224 pixels.

3.3. AASL Background Removal

To avoid noise and capturing irrelevant features by the CNN model during the
training phase, the background of all dataset images was removed, leaving only the
hand gesture that the model needs to learn and generalize on. This phase resulted
in some corrupted images since background removal is not always easily obtained.
Figure 2 displays a sample of images both before and after background removal.

3.4. Final Cleaned Dataset

The Final obtained dataset is a non-background RGB dataset of images with a
size of 224 by 224 pixels for each image. The different phases of data preparation
resulted in reducing the number of images from 7856 to 6985 images. The dis-
tribution shown in Figure 3 represents the distribution of the cleaned version of
the AASL dataset.

3.5. Data Split

20% of our dataset is selected randomly to be used as a validation dataset which is
1384 images as seen in Figure 4. The remaining 80% of the data amounts to 5601
samples, as indicated in Figure 5, which will be utilized as the training dataset.

Figure 2. Sample of Images before and after background removal.

https://doi.org/10.4236/jcc.2024.123003

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 36 Journal of Computer and Communications

Figure 3. Cleaned AASL dataset distribution.

Figure 4. Validation classes distribution.

3.6. Data Augmentation

Since the size of AASL is not big enough and due to the loss of a part of this data
during the phase of data cleaning and preparation, data augmentation will be

https://doi.org/10.4236/jcc.2024.123003

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 37 Journal of Computer and Communications

performed to handle this issue, Figure 6 serves as an illustrative example of this
technique. Data augmentation is performed using the “ImageDataGenerator”
module from the Keras library [11], the parameters used in our case are the fol-
lowing:

• Shear Range: A shear transformation was applied with a range of 30%. This
is a deformation effect applied by displacing one part of the image in relation to
the other.

Figure 5. Training classes distribution.

Figure 6. Original and augmented sample from AASL.

https://doi.org/10.4236/jcc.2024.123003

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 38 Journal of Computer and Communications

• Zoom Range: A zoom transformation was applied with a range of 30%. This
augmentation magnifies or reduces certain portions of the image.

• Vertical Flip: This transformation is a simple vertical flip of the images.
These augmentation strategies help in the creation of a more diverse training

dataset which increases the model’s capability in generalizing on unseen data
[12].

3.7. Convolutional Neural Network

Figure 7 illustrates the Convolutional Neural Network (CNN) utilized, com-
prising the following essential layers:

• Convolutional Layers: Convolutional layers are employed to extract fea-
tures from the input images, each convolutional layer consists of filters that
convolve over the input to capture patterns and create a future map.

• ReLU Activation: Rectified Linear Unit (ReLU) is an activation function
applied after each convolutional layer, ReLU introduces non-linearity, enabling
the model to learn complex relationships in the data [13].

• MaxPooling Layers: MaxPooling layers follow the convolutional layers to
reduce the spatial dimensions. MaxPooling layers downsample the feature maps
while retaining the important information [14].

• Dropout Layers: Dropout layers help prevent overfitting by randomly deac-
tivating a fraction of neurons during training, the strategy and rates of dropout
layers will be presented in the following sections [15].

• Flatten Layer: The flattening layer is employed to transform the feature map
from 3D dimensions to a 1D vector.

• Dense Layers: The densely connected layers are introduced to capture
high-level abstractions from the flattened feature vector.

• Batch Normalization: Batch Normalization normalizes the activations of
the neurons, ensuring a zero mean and a unit variance. The normalization helps
stabilize and expedite the training process by reducing internal covariant shifts
[16].

The upcoming sections will outline the configurations employed and the pa-
rameters utilized in each layer, including the dimensions of the filters applied in
certain layers.

3.8. Model Architecture

Table 1 and Table 2 reveal the Convolutional Neural Network (CNN) utilized,
providing a detailed overview of its architecture, including details on each layer
with its associated parameters:

The presented CNN model exhibits a total of 22,828,063 parameters where
22,821,919 parameters are trainable, and the rest of the parameters are 6144
non-trainable. The large number of trainable parameters in the model highlights
its complexity. This complexity allows it to better understand intricate patterns
and details in the input data.

https://doi.org/10.4236/jcc.2024.123003

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 39 Journal of Computer and Communications

Figure 7. CNN Model visualization.

Table 1. Model architecture.

Layer Description Layer Configuration

1 InputLayer -

2 Conv2D Filters: 128

3 Activation -

4 MaxPooling2D Pooling Window: (2, 2)

5 Conv2D Filters: 256

6 Activation ReLu

7 MaxPooling2D Pooling Window: (2, 2)

8 Conv2D Filters: 256

9 Activation ReLu

10 MaxPooling2D Pooling Window: (2, 2)

11 Conv2D Filters: 512

12 Activation ReLu

13 MaxPooling2D Pooling Window: (2, 2)

14 Conv2D Filters: 512

15 Activation ReLu

16 MaxPooling2D Pooling Window: (2, 2)

17 Conv2D Filters: 1024

18 Activation ReLu

19 MaxPooling2D Pooling Window: (2, 2)

20 Conv2D Filters: 1024

21 Activation ReLu

22 MaxPooling2D Pooling Window: (2, 2)

23 Dropout Initial Rate: 0.5

24 Flatten -

25 Dense Nodes: 2048

26 BatchNormalization -

27 Activation -

28 Dropout Initial Rate: 0.5

29 Dense Nodes: 1024

30 BatchNormalization -

31 Activation ReLu

32 Dense Nodes: 31

https://doi.org/10.4236/jcc.2024.123003

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 40 Journal of Computer and Communications

Table 2. Summary of the model parameters.

 Layer Type Output Shape Parameters

1 InputLayer (None, 224, 224, 3) 0

2 Conv2D (None, 224, 224, 128) 3584

3 Activation (None, 224, 224, 128) 0

4 MaxPooling2D (None, 112, 112, 128) 0

5 Conv2D (None, 112, 112, 256) 295,168

6 Activation (None, 112, 112, 256) 0

7 MaxPooling2D (None, 56, 56, 256) 0

8 Conv2D (None, 56, 56, 256) 590,080

9 Activation (None, 56, 56, 256) 0

10 MaxPooling2D (None, 28, 28, 256) 0

11 Conv2D (None, 28, 28, 512) 1,180,160

12 Activation (None, 28, 28, 512) 0

13 MaxPooling2D (None, 14, 14, 512) 0

14 Conv2D (None, 14, 14, 512) 2,359,808

15 Activation (None, 14, 14, 512) 0

16 MaxPooling2D (None, 7, 7, 512) 0

17 Conv2D (None, 7, 7, 1024) 4,719,616

18 Activation (None, 7, 7, 1024) 0

19 MaxPooling2D (None, 3, 3, 1024) 0

20 Conv2D (None, 3, 3, 1024) 9,438,208

21 Activation (None, 3, 3, 1024) 0

22 MaxPooling2D (None, 1, 1, 1024) 0

23 Dropout (None, 1, 1, 1024) 0

24 Flatten (None, 1024) 0

25 Dense (None, 2048) 2,099,200

26 BatchNormalization (None, 2048) 8192

27 Activation (None, 2048) 0

28 Dropout (None, 2048) 0

29 Dense (None, 1024) 2,098,176

30 BatchNormalization (None, 1024) 4096

31 Activation (None, 1024) 0

32 Dense (None, 31) 31,775

The Figure illustrates the proposed CNN model architecture, providing a vis-

ual representation of each layer. The layer numbers in the figure align with the
numbers specified in the Table.

https://doi.org/10.4236/jcc.2024.123003

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 41 Journal of Computer and Communications

4. Model Training and Results
4.1. Experimental Setup

The framework employed in constructing the system was Keras, with Tensor-
Flow serving as the underlying engine. A high-performance workstation was
used with 4 CPUs and 2 Nvidia Tesla T4 GPUs [17], more information is pre-
sented in Table 3.

4.2. Dropout Strategy

To make the model achieve a high validation accuracy in a short period of
training time, a dropout rate change strategy was executed. The model is capable
of converging to a high validation accuracy just with a fixed dropout rate but in
this case, the training time will be longer and 250 epochs will not be enough to
achieve the stated validation accuracy. In many cases even increasing the num-
ber of training epochs was not enough to achieve the stated validation accuracy
which highlights the importance of this dropout strategy. Figure 8 illustrates the
dropout strategy, which comprises the following phases:

Table 3. High-Performance desktop computer specs.

Parameter Value
CPUs 4

Memory (GiB) 31.36
Memory per CPU (GiB) 7.84

CPU Architecture 64 bit
GPU 2

GPU Architecture Tesla T4
Video Memory (GiB) 14.75 Per GPU

FPGA 0

Figure 8. Dropout rate change.

https://doi.org/10.4236/jcc.2024.123003

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 42 Journal of Computer and Communications

• Initial Phase: From epoch 1 to 79 the value of both dropout rates was fixed
at 0.5 allowing the model a stable learning phase without disturbance.

• Suppression Phase: From epoch 80 to 119, both dropout rates were elevated
to 0.9 to challenge the model to classify the images using only 10% of the neu-
rons.

• Interphase: From epoch 120 to 129 the values of both dropout rates are set
back to the initial rate of 0.5 allowing the model to adjust its weights again and
preparing it to the next phase.

• Extreme Suppression: From epoch 130 to 219 the first dropout rate was set
to 0.0 while the second one was set to 0.99 challenging the model to use only 1%
of its neurons to classify the images. During this phase, the first dropout rate was
changed over time slowly going up from a value of 0.0 to 0.5.

• Complete Release: From epoch 220 to 250 we give a value of 0.0 for both
dropout rates allowing the model to use its full capacities to classify the images,
this phase is important to fight the underfitting faced during past phases.

The highest validation accuracy achieved was not possible without this dro-
pout strategy which highlights the importance and the role of this strategy.

4.3. Training and Validation Accuracy

The training parameters can be found in Table 4, in this section, we will assess
the effectiveness of our CNN model by examining the performance metrics
shown in Table 5.

In Figure 9, the depicted chart illustrates the training and validation accuracy
trends [18]. Starting with a low value in the initial epochs, the accuracy progres-
sively rises over subsequent epochs. Notably, the validation data attains a peak
accuracy of 97.4%, signifying the model’s adeptness at generalizing its learned
features.

The successive drop in accuracy is due to the extreme change in the dropout
rate, which is normal since only a fraction of the neurons will be used, hence the
model needs to adjust the few neurons’ weights to be capable of classifying all
classes using only a small number of neurons; The same drop is seen on training
and validation loss.

Table 4. Training parameters.

Parameter Value

Batch Size 50

Epochs 250

Table 5. Model performance.

Parameter Value Comment

Training-data Accuracy 99.4%

Validation-data Accuracy 97.4%

https://doi.org/10.4236/jcc.2024.123003

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 43 Journal of Computer and Communications

Figure 9. Training and validation accuracy.

The training and validation losses exhibit a descending trajectory, culminating
in minimal values for both metrics. This pattern is indicative of a well-fitted
model that effectively captures the data without overfitting, as shown in Figure
10.

4.4. Precision, Recall and F1-Score

The dataset is imbalanced, which means the accuracy and validation accuracy
are not enough to evaluate the performance of our model, for this matter Preci-
sion, Recall, and F1-Score [19] are calculated. The weighted average (W.avg) of
these metrics is used to evaluate the performance. The CNN model used achieved
a performance of 97% across the three metrics. More details are shown in the
classification report in Table 6.

The confusion matrix [20] is a perfect way to distinguish between true posi-
tives, true negatives, false positives, and false negatives which provides good in-
sight into the system’s accuracy and its errors. The confusion matrix of the CNN
model is shown in Figure 11 which proves that the performance of the CNN
model is perfect with negligible inaccuracies.

4.5. Results Overview

The results underscore the CNN model’s exceptional efficacy across all classes.
The model consistently achieves precise classification for all categories, except
for a few distinctive cases. Within the confusion matrix, the highest value ob-
served is 6, associated with the “Qaf” and “Heh” classes. This confusion can be
ascribed to the inherent similarity between these two classes, leading to a degree
of overlap.

https://doi.org/10.4236/jcc.2024.123003

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 44 Journal of Computer and Communications

Figure 10. Loss function.

Figure 11. Confusion matrix.

https://doi.org/10.4236/jcc.2024.123003

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 45 Journal of Computer and Communications

Table 6. Classification report.

Class Precision Recall F1-Score Support

Ain 0.96 1.00 0.98 45

Al 1.00 1.00 1.00 52

Alef 0.98 0.98 0.98 55

Beh 0.92 0.98 0.95 58

Dad 1.00 0.95 0.98 44

Dal 1.00 0.82 0.90 39

Feh 0.83 0.94 0.88 47

Ghain 1.00 0.95 0.98 42

Hah 0.91 0.95 0.93 44

Heh 0.90 0.92 0.91 48

Jeem 0.94 0.81 0.87 37

Kaf 1.00 0.96 0.98 52

Khah 0.96 1.00 0.98 43

Laa 1.00 1.00 1.00 50

Lam 1.00 1.00 1.00 47

Meem 0.98 0.96 0.97 47

Noon 0.96 1.00 0.98 44

Qaf 0.88 0.88 0.88 40

Reh 0.91 1.00 0.95 39

Sad 0.95 0.89 0.92 45

Seen 1.00 1.00 1.00 52

Sheen 1.00 1.00 1.00 53

Tah 0.95 0.93 0.94 40

Teh 1.00 0.96 0.98 56

Teh_Marbuta 1.00 1.00 1.00 44

Thal 0.90 0.93 0.92 30

Theh 0.96 0.98 0.97 55

Waw 1.00 0.98 0.99 43

Yeh 1.00 1.00 1.00 45

Zah 1.00 0.93 0.96 41

Zain 0.89 1.00 0.94 33

Accuracy 0.96 1410

Macro Avg 0.96 0.96 0.96 1410

Weighted Avg 0.96 0.96 0.96 1410

https://doi.org/10.4236/jcc.2024.123003

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 46 Journal of Computer and Communications

4.6. Performance Verification

In this phase, we will test our CNN model using a sample from another dataset,
the background of the images is removed, we apply the same preprocessing as
before and we feed the images to the CNN model. The model shows a perfect
performance across all images as seen in Figure 12.

4.7. Model Predictions Explanation
4.7.1. Using Lime
LIME (Local Interpretable Model-agnostic Explanations) [21] is a framework for
explaining the predictions for machine learning models by perturbing input
features and observing the changes in predictions. Lime is used in our case for

Figure 12. Performance verification.

https://doi.org/10.4236/jcc.2024.123003

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 47 Journal of Computer and Communications

the same images used in the performance verification phase where regions are
visualized using green and red colors, with yellow lines marking the boundaries
of the interesting parts. The goal is to make the model’s decision understandable
and interpretable.

The findings shown in Figure 13 indicate that the classification of hand ges-
tures heavily relies on specific and discernible regions, while other portions of the
hand are systematically disregarded. This observation is particularly noteworthy,
as certain hand segments are recurrent across multiple classes. Consequently, the
model tends to overlook these recurrent segments, deeming them inconsequential
in distinguishing between distinct classes. This phenomenon underscores the
model’s capacity to focus on the salient aspects of hand gestures crucial for accu-
rate classification, thereby enhancing its discriminatory capabilities.

Figure 13. Model predictions explanation with LIME.

https://doi.org/10.4236/jcc.2024.123003

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 48 Journal of Computer and Communications

4.7.2. Using LASSO
LASSO (Least Absolute Shrinkage and Selection Operator) [22] is a regulariza-
tion technique used in machine learning and statistics. In the context of linear
models, LASSO adds a penalty term to the objective function, encouraging the
model to prefer sparse solutions by shrinking some coefficients to exactly zero.
This promotes feature selection and can be used to identify the most important
features in a model. In our case, LASSO performed almost the same as Lime
which confirms the features learned by the model as seen in Figure 14. The red
dots represent the most important parts or features learned by the model.

Figure 14. LASSO for verification data.

https://doi.org/10.4236/jcc.2024.123003

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 49 Journal of Computer and Communications

Figure 15. Convolutional filter visualization.

4.7.3. Using Filters of Convolution Layers
We visualize in this section one of the filters of the third convolutional layer ap-
plied to the same data, this specific layer is chosen on purpose since it gives good
insights into what the model is learning, the more in-depth layers are more
complex and not easy to understand. Figure 15 shows the important features
detected by this filter in red color where the less important features or pixels are
represented in blue color.

5. Conclusions

In this paper, we proposed the first CNN model for Arabic Alphabet Sign Lan-

https://doi.org/10.4236/jcc.2024.123003

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 50 Journal of Computer and Communications

guage classification using the AASL dataset.
The architecture of this model has been described in detail. The results of the

test, validation, and verification steps are described in detail along with the
unique dropout strategy employed. The CNN model has shown perfect perfor-
mance in categorizing the 31 categories of the AASL dataset with an accuracy
score of 97.4% and an accuracy of 100% in the verification performance phase.

To the best of our knowledge, this is the first CNN model trained on the
AASL dataset. This contribution provided the first step in the development of
machine-learning models dedicated to Arabic Sign Language.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Tolentino, L.K.S., Juan, R.O.S., Thio-ac, A.C., Pamahoy, M.A.B., Forteza, J.R.R. and

Garcia, X.J.O. (2019). Static Sign Language Recognition Using Deep Learning. In-
ternational Journal of Machine Learning and Computing, 9, 821-827.
https://doi.org/10.18178/ijmlc.2019.9.6.879

[2] Rastgoo, R., Kiani, K. and Escalera, S. (2020) Hand Sign Language Recognition Us-
ing Multi-View Hand Skeleton. Expert Systems with Applications, 150, Article ID:
113336. https://doi.org/10.1016/j.eswa.2020.113336

[3] Hossen, M.A., Govindaiah, A., Sultana, S. and Bhuiyan, A. (2018) Bengali Sign
Language Recognition Using Deep Convolutional Neural Network. 2018 Joint 7th
International Conference on Informatics, Electronics & Vision (ICIEV) and 2018
2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR),
Kitakyushu, 25-29 June 2018, 369-373. https://doi.org/10.1109/ICIEV.2018.8640962

[4] Chong, T.W. and Lee, B.G. (2018) American Sign Language Recognition Using
Leap Motion Controller with Machine Learning Approach. Sensors, 18, Article
3554. https://doi.org/10.3390/s18103554

[5] Maier, A., Syben, C., Lasser, T. and Riess, C. (2019) A Gentle Introduction to Deep
Learning in Medical Image Processing. Zeitschrift für Medizinische Physik, 29,
86-101. https://doi.org/10.1016/j.zemedi.2018.12.003

[6] Bishop, C.M., et al. (2016) Deep Convolutional Networks for Continuous Sign
Language Recognition. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 38, 153-162.

[7] Zhang, Z., et al. (2018) Multi-Modal Deep Learning for Sign Language Recognition.
IEEE Transactions on Multimedia, 20, 1636-1647.

[8] Li, R., et al. (2018) Transfer Learning for Sign Language Recognition Using Convo-
lutional Neural Networks. IEEE Transactions on Neural Networks and Learning
Systems, 29, 5339-5350.

[9] Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural
Computation, 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735

[10] Al-Barham, M., et al. (2023) RGB Arabic Alphabets Sign Language Dataset. arXiv:
2301.11932.

[11] Chollet, F., et al. (2015) Keras. GitHub Repository.

https://doi.org/10.4236/jcc.2024.123003
https://doi.org/10.18178/ijmlc.2019.9.6.879
https://doi.org/10.1016/j.eswa.2020.113336
https://doi.org/10.1109/ICIEV.2018.8640962
https://doi.org/10.3390/s18103554
https://doi.org/10.1016/j.zemedi.2018.12.003
https://doi.org/10.1162/neco.1997.9.8.1735

R. El Kharoua, X. M. Jiang

DOI: 10.4236/jcc.2024.123003 51 Journal of Computer and Communications

https://github.com/keras-team/keras

[12] LeCun, Y., et al. (1998) Gradient-Based Learning Applied to Document Recogni-
tion. Proceedings of the IEEE, 86, 2278-2324. https://doi.org/10.1109/5.726791

[13] Glorot, X., et al. (2010) Rectified Linear Units Improve Restricted Boltzmann Ma-
chines. Proceedings of the 27th International Conference on International Confe-
rence on Machine Learning, Haifa Israel, 21-24 June 2010, 807-814.

[14] Scherer, D., et al. (2010) Evaluation of Pooling Operations in Convolutional Archi-
tectures for Object Recognition. In: Diamantaras, K., Duch, W. and Iliadis, L.S.,
Eds., Artificial Neural Networks—ICANN 2010, Springer, Berlin, 92-101.
https://doi.org/10.1007/978-3-642-15825-4_10

[15] Srivastava, N., et al. (2014) Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Research, 15, 1929-1958.

[16] Ioffe, S. and Szegedy, C. (2015) Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. arXiv: 1502.03167.

[17] Abadi, M., et al. (2016) TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. arXiv: 1603.04467.

[18] Sokolova, M. and Lapalme, G. (2009) A Systematic Analysis of Performance mEas-
ures for Classification Tasks. Information Processing & Management, 45, 427-437.
https://doi.org/10.1016/j.ipm.2009.03.002

[19] He, H. and Garcia, E.A. (2009) Learning from Imbalanced Data. IEEE Transactions
on Knowledge and Data Engineering, 21, 1263-1284.
https://doi.org/10.1109/TKDE.2008.239

[20] Düntsch, I. and Gediga, G. (2019) Confusion Matrices and Rough Set Data Analysis.
Journal of Physics: Conference Series, 1229, Article ID: 012055.
https://doi.org/10.1088/1742-6596/1229/1/012055

[21] Ribeiro, M.T., Singh, S. and Guestrin, C. (2016) Why should I Trust You?: Explain-
ing the Predictions of Any Classifier. Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (KDD), San
Francisco, 13-17 August 2016, 1135-1144. https://doi.org/10.1145/2939672.2939778

[22] Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso. Journal of
the Royal Statistical Society: Series B (Methodological), 58, 267-288.
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

https://doi.org/10.4236/jcc.2024.123003
https://github.com/keras-team/keras
https://doi.org/10.1109/5.726791
https://doi.org/10.1007/978-3-642-15825-4_10
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1088/1742-6596/1229/1/012055
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

	Deep Learning Recognition for Arabic Alphabet Sign Language RGB Dataset
	Abstract
	Keywords
	1. Introduction
	2. Method
	3. Data Preparation and Processing for CNN
	3.1. Data Cleaning
	3.2. Data Resizing
	3.3. AASL Background Removal
	3.4. Final Cleaned Dataset
	3.5. Data Split
	3.6. Data Augmentation
	3.7. Convolutional Neural Network
	3.8. Model Architecture

	4. Model Training and Results
	4.1. Experimental Setup
	4.2. Dropout Strategy
	4.3. Training and Validation Accuracy
	4.4. Precision, Recall and F1-Score
	4.5. Results Overview
	4.6. Performance Verification
	4.7. Model Predictions Explanation
	4.7.1. Using Lime
	4.7.2. Using LASSO
	4.7.3. Using Filters of Convolution Layers

	5. Conclusions
	Conflicts of Interest
	References

