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Abstract 
Mediterranean anemia is a genetic disease that currently relies heavily on ex-
pert clinical experience to determine whether patients are affected. This me-
thod is overly reliant on expert experience and is not precise enough. This 
paper proposes two modeling methods to predict whether patients have Me-
diterranean anemia. The first method involves using Principal Component 
Analysis (PCA) to reduce the dimensionality of the data, followed by logistic 
regression modeling (PCA-LR) on the reduced dataset. The second method 
involves building a Partial Least Squares Regression (PLS) model. Experimen-
tal results show that the prediction accuracy of the PCA-LR model is 87.5% 
(degree = 2, 40λ = ), and the prediction accuracy of the PLS model is 92.5% 
(ncomp = 4), indicating good predictive performance of the models. 
 

Keywords 
Multicollinearity, Statistical Analysis Models, Data Mining, PCA-LR, PLS 

 

1. Introduction 

Thalassemia, a hereditary chronic hemolytic disease, is caused by the deficiency 
or mutation of globin genes that impede the synthesis of hemoglobin [1]. It was 
first discovered and named by Thomas Cooley and Pear Lee, Italian researchers, 
along the coast of the Mediterranean Sea in 1925. According to the statistical 
data of the World Health Organization (WHO) in 2008, about 300,000 to 400,000 
thalassemia patients are born worldwide each year, accounting for 17% of the 
global population as carriers of thalassemia genes [2]. Approximately 18.7% of 
beta-thalassemia major neonates require regular blood transfusions to sustain 
life, and about 10% of affected children die in the neonatal period. The mortality 
rate of children under five years old is as high as 3.4%, posing a significant threat 
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to people’s health [3]. 
As a monogenic hereditary disease, thalassemia is widely distributed in parts 

of Africa, the Middle East, and Asia. However, there are significant variations in 
the screening programs for thalassemia due to differences in the level of medical 
development in different countries and regions [4]. Common screening methods 
include single-factor analysis and combined screening. Additionally, even with 
the same screening protocol, each country may set different thresholds for blood 
parameters based on regional influences [5]. For example, the common hemato-
logical parameter, Mean Corpuscular Volume (MCV), has a threshold of 80 FL 
in the Yunnan region of China, while it is set at 82 FL in other regions, resulting 
in regional variations in screening outcomes [6]. 

Research on screening for thalassemia patients can be divided into three stag-
es. In the first stage, due to the underdevelopment of the medical field, screening 
methods mainly relied on medical tests or post-onset blood parameter screening, 
lacking systematic mathematical data collection and analysis methods [7]. The 
second stage introduced the application of statistical methods, where screening 
methods for thalassemia were primarily based on the statistical results of certain 
indicators [8], such as MCV, MCH, and HbA2. However, this stage still re-
mained at the stage of manual screening and statistical analysis, thus increasing 
the possibility of misdiagnosis and risk index to some extent. In the third stage, 
screening methods based on machine learning models gradually emerged. For 
example, Yi-Kai used Support Vector Machine (SVM) to differentiate between 
beta-thalassemia and non-beta-thalassemia microcytic anemia [6]. However, the 
data studied by Yi-Kai did not start from the perspective of gene detection, but 
from the perspective of blood, resulting in a lower algorithm accuracy rate. 

Thalassemia is a prevalent and debilitating genetic disorder in the local popu-
lation, with the severity of symptoms increasing with the accumulation of gene 
deletions [9]. Individuals with severe thalassemia have a short lifespan, and if 
identified and addressed during early pregnancy, measures can be taken to con-
trol the birth of children with severe thalassemia, reducing unnecessary suffering 
and loss. Therefore, considering the characteristics of existing machine learning 
algorithms and techniques, this study proposes the construction of a warning 
model for thalassemia screening based on machine learning algorithms, as well 
as further research on risk factors. This has significant academic and practical 
implications. 

2. Materials and Methods 

The data used in this study were sourced from real clinical records at a hospital 
in the Guangxi Zhuang Autonomous Region, China. The dataset consists of a 
total of 60 individuals’ genetic samples, with each sample containing 110 differ-
ent genes, resulting in a total of 110 observed indicators or variables. Prior to 
conducting data analysis, strict privacy protection measures were taken. All per-
sonally identifiable information that could identify patient identities was removed, 
and the data underwent de-identification procedures. 
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Due to the relatively small sample size and high dimensionality of the data 
used in this study, issues such as data sparsity and distance calculation pose sig-
nificant challenges for all machine learning methods [10]. This is commonly re-
ferred to as the “curse of dimensionality” [11]. 

In this context, dimension reduction is considered an important approach [12]. 
It involves a mathematical transformation that converts the original high-dimen- 
sional attribute space into a lower-dimensional “subspace” to identify more suita-
ble observed variables for modeling. Dimension reduction effectively reduces the 
data’s dimensionality, improves model training efficiency, and better addresses 
the curse of dimensionality. Next, we will provide a detailed introduction to 
the dimension reduction method and machine learning model used in this ar-
ticle. 

2.1. Principal Component Analysis 

Principal Component Analysis (abbreviated as PCA) is a widely used data dimen-
sionality reduction algorithm [13]. Its main idea is to map the original n-dimen- 
sional features onto a new k-dimensional space, which is composed of entirely 
new orthogonal features, also known as principal components. 

The process of PCA involves sequentially searching for a set of mutually or-
thogonal axes, where the selection of these new axes is closely related to the data 
itself [14]. The first new axis chosen is the direction of maximum variance in the 
original data. The second new axis is then selected as the direction of maximum 
variance in the plane orthogonal to the first axis. The third axis is selected as the 
direction of maximum variance in the plane orthogonal to the first two axes, and 
so on, until we obtain n such axes. 

By following this approach, most of the variance is captured by the first k axes, 
while the remaining axes contain almost no variance. Therefore, we can ignore 
the remaining axes and only retain the first k axes that contain the majority of 
the variance [14] [15]. In practice, this means keeping the feature dimensions 
that capture the significant variance and disregarding the ones with negligible va-
riance, thus achieving dimensionality reduction of the data features. 

The algorithmic steps of PCA are shown in Algorithm 1. 
 

Algorithm 1. PCA. 

Input: The sample set { }1 2, , , mD x x x=  ;  
The dimension of the low-dimensional subspace is denoted as d ′ . 

Output: The projection matrix W. 

1: Centering all samples: 
1

1 m
i i ii

x x x
m =

← − ∑ . 

2: Calculate the covariance matrix TXX . 
3: Perform eigenvalue decomposition on the covariance matrix TXX . 
4: Take the eigenvectors corresponding to the d ′  largest eigenvalues  

1 2, , , dW w w w ′= 
. 
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2.2. Partial Least Squares Regression 

Partial Least Squares Regression (abbreviated as PLS) is a commonly used statis-
tical analysis method for finding the relationship between independent and de-
pendent variables [16]. It combines the characteristics of principal component 
analysis and canonical correlation analysis, as well as linear regression analysis. 
PLS Regression can effectively handle problems such as multicollinearity and small 
sample size among independent variables. 

In the process of PLS, a new space is created by projecting the independent 
and dependent variables onto it. This new space is characterized by principal 
components, which are new variables obtained through linear transformations 
of the original independent variables. The method is effective at handling issues 
such as multicollinearity and small sample size among independent variables. 
The parameters of PLS are estimated by minimizing the sum of squared residuals, 
resulting in the establishment of a linear regression model. 

In comparison to traditional multiple linear regression models, PLS exhibits 
the following distinctive features [17]: 

1) When there is severe multicollinearity among independent variables, tradi-
tional regression models may encounter issues. However, PLS can handle regres-
sion modeling in such cases and reduce the impact of collinearity among inde-
pendent variables on the results. 

2) In situations where the number of data points is fewer than the number of 
variables, traditional regression analysis methods may suffer from overfitting prob-
lems. On the other hand, PLS can perform regression modeling under such con-
ditions, improving the stability and reliability of the model. 

3) The regression coefficients in PLS are more interpretable for each inde-
pendent variable, facilitating a better understanding of the relationship between 
the independent and dependent variables.  

In summary, PLS performs well in addressing challenges such as multicolli-
nearity and small sample size, while also providing more interpretable regression 
coefficients [18]. 

2.3. Logistic Regression 

Logistic Regression (abbreviated as LR) is a classical statistical learning method 
commonly used to solve binary classification problems [19]. It predicts the proba-
bility of a sample belonging to a certain category by establishing a LR model 
[20]. For example, it can be used to predict the likelihood of a user purchasing a 
certain product, a patient having a particular disease, or a user clicking on a cer-
tain advertisement. 

The LR model is based on the concept of linear regression [20], but with a spe-
cial function transformation known as the logistic or sigmoid function. This con-
version maps the output to probability values between 0 and 1. The function that 
LR aims to fit is as follows:  

 ( ) T
0 1 10

n
i i n nih x x x x xθ θ θ θ θ θ

=
= = = + + +∑                (1) 
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The cost function of LR is represented by the following equation: 

 ( ) ( )( ) ( ) ( )( )log 1 log 1J y h x y h xθ θθ = − − − −              (2) 

The dependent variable y can only take values of 0 or 1, while it is difficult for 
the independent variable x to truly reach positive or negative infinity. Therefore, 
the range of ( )h xθ  being (0, 1), without truly reaching the two endpoint values, 
suggests that the cost function can be considered as a conditional function: 

 ( )
( )( )

( )( )
log 1

log 1 0

h x y
J

h x y
θ

θ

θ
− == 
− − =

                   (3) 

To find the minimum points of the cost function, we need to equate the par-
tial derivatives to zero. Here, we take the partial derivative of ( )J θ : 

 ( ) ( )( ) ( )( ) ( )
1

1 i i i
ji

j

mJ
h x y x

m θ

θ
θ =

∂
= −

∂ ∑                  (4) 

In classification problems, overfitting can easily occur when the sample size is 
too small. To achieve reasonable fitting results, there are two methods: The first 
method is reducing the number of parameters or limiting the coefficient values 
within a certain range [21]. Regularization is an example of the second method. 
At this point, the cost function can be rewritten as: 

 
( ) ( )( ) ( )( )( )

( ) ( )( )( )
1

2
1 1

1 1 log 1

1 log
2

m i i
i

m ni i
ji j

J y h x
m

y h x
m m

θ

θ

θ

λ θ

=

= =

 = − − −  

− +

∑

∑ ∑
           (5) 

This can limit the size of θ. It should be noted that when λ is too large, θ can 
become too small, resulting in underfitting. When λ is too small or even zero, θ 
can become too large, resulting in overfitting. Therefore, it is important to adjust 
the appropriate value of λ. 

3. Modeling and Result 
3.1. Experimental Environment 

This study was conducted on the Windows 11 operating system using MATLAB 
version 2023a. The computer was equipped with an Intel® Core TM i7-12700H 
processor and 24GB of RAM. 

To prevent overfitting, this study randomly divided the data into training and 
testing sets in a 7:3 ratio. The training set was used to train the model using 
leave-one-out cross validation [22], and the performance of the model was eva-
luated on the testing set to validate its predictive effectiveness. Next, we will pro-
vide a detailed introduction to the modeling process. 

3.2. Modeling 
3.2.1. PCA-LR 

1) PCA Dimension 
Due to the high dimensionality (110 dimensions) and relatively small size of 
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the data used in this study, it is necessary to perform dimensionality reduction 
before modeling. By calculating the contribution rate of each principal compo-
nent, we can determine how many principal components to retain while mini-
mizing information loss.  

As shown in Figure 1, as the number of variables increases, the cumulative 
contribution rate of the first n principal components gradually increases. When 
the number of variables reaches 14, the cumulative contribution rate of the first 
14 principal components has already reached 81.25%. Generally, when the cu-
mulative contribution rate exceeds 80%, a sufficient amount of sample informa-
tion has been extracted. Therefore, we use the first 14 principal components for 
modeling analysis. 

Visualizing the distribution of different types of patients on the first two prin-
cipal components, as shown in Figure 2. By observing the distribution in the fig-
ure, it can be seen that the majority of patients with thalassemia are concentrated 
on the right side of the plot, while normal patients are mainly distributed on the 
left side. This indicates that there is a certain difference in spatial distribution 
between normal patients and thalassemia patients on the first two principal com-
ponents.  

2) PCA-LR Modeling 
The reduced-dimensional data from the previous section is used as the new 

independent variable, and the patient’s condition is input as the response varia-
ble into a logistic regression model for modeling.  

In the process of logistic regression modeling, two important hyper parame-
ters need to be considered: the highest degree of interaction term (degree) and  
 

 
Figure 1. PCA contribution rate curve. 
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Figure 2. Distribution map of different patients. 
 
the regularization coefficient λ. This section aims to optimize these two parame-
ters and evaluate the model’s accuracy on the test set.  

We will observe the performance of the model in terms of accuracy based on 
different values of the regularization coefficient λ and the highest degree of inte-
raction term (degree) ranging from 1 to 4. 

Figure 3 shows the test accuracy curve of the LR model with degree = 1 and λ 
ranging from 1 to 105. It can be seen from the figure that the model’s prediction 
accuracy remains unchanged at 80% as λ increases, and the accuracy is stable. 
Figure 4 shows the boundary curve (red line in the figure) of the model trained 
under the first two principal components when the degree value is 1 and the re-
gularization coefficient λ is 50. After verification, it was found that the model’s 
boundary remained unchanged regardless of the value of λ, which is also the 
reason why the accuracy remained unchanged. 

Figure 5 shows the test accuracy curve for different values of λ ranging from 1 
to 2000 when degree is set to 2. As λ increases, the accuracy first decreases and 
then stabilizes. When 40λ ≈ , the test accuracy reaches its highest point at 
87.5%. At λ around 400, the accuracy is 82.5%. When 1200λ ≥ , the accuracy is 
75%. 

Figures 6-8 respectively show the decision boundaries for λ values of 40, 400, 
and 1200 when degree is set to 2. As λ increases, the decision boundary becomes 
more and more “elliptical” as can be seen from the graphs, resulting in a batch of 
misclassified samples and decreasing classification accuracy towards the end. 

Figure 9 shows the test accuracy curve for λ values ranging from 1 to 3000  
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Figure 3. Accuracy curve (degree = 1). 

 

 
Figure 4. Boundary visualization plot (degree = 1, lambda = 50). 
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Figure 5. Accuracy curve (degree = 2). 

 

 
Figure 6. Boundary visualization plot (degree = 2, lambda = 40). 
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Figure 7. Boundary visualization plot (degree = 2, lambda = 400). 

 

 
Figure 8. Boundary visualization plot (degree = 2, lambda = 1200). 
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Figure 9. Accuracy curve (degree = 3). 
 
when degree is set to 3. From the graph, it can be observed that as λ increases, 
the accuracy initially increases and then decreases. The highest test sample ac-
curacy of 87.5% is achieved at around 50λ = . At approximately 1200λ = , the 
accuracy is 82.5%. For 1700λ ≥ , the accuracy is 80%. 

Figures 10-12 respectively illustrate the decision boundaries for λ values of 
50, 1200, and 1700 when degree is set to 3. From the graphs, it can be seen that 
as λ increases, the decision boundary becomes more and more insensitive to the 
points on the boundary. This leads to a batch of misclassified samples and de-
creasing classification accuracy towards the end. 

Figure 13 shows the test accuracy curve for λ values ranging from 1 to 10000 
when degree is set to 4. From the graph, it can be observed that as λ increases, 
the accuracy initially increases and then decreases. The highest test sample ac-
curacy of 87.5% is achieved at around 3000λ = . At approximately 100λ = , 
the accuracy is 85%. For 6000λ ≥ , the accuracy is 85%. 

Figures 14-16 respectively illustrate the decision boundaries for λ values of 
100, 3000, and 6000 when degree is set to 4. From the graphs, it can be seen that 
as λ increases, the decision boundary becomes more and more curved, resulting 
in a poorer classification of the points on the boundary and decreasing classifi-
cation accuracy. 

3.2.2. PLS Modeling 
The plsregress function in MATLAB can be used to implement PLS, with the 
following syntax: 

[Xloadings, Yloadings, betaPLS, PCTVAR] = plsregress(X, y, dims) 
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Figure 10. Boundary visualization plot (degree = 3, lambda = 50). 

 

 
Figure 11. Boundary visualization plot (degree = 3, lambda = 1200). 
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Figure 12. Boundary visualization plot (degree = 3, lambda = 1700). 

 

 
Figure 13. Accuracy curve (degree = 4). 
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Figure 14. Boundary visualization plot (degree = 4, lambda = 100). 

 

 
Figure 15. Boundary visualization plot (degree = 4, lambda = 3000). 
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Figure 16. Boundary visualization plot (degree = 4, lambda = 6000). 
 

In this syntax, dims represent the number of components selected for analysis. 
PCTVAR can be used to calculate the proportion of dependent variable y explained 
by the first i components.  

Figure 17 illustrates the proportions of the dependent variable explained by 
the first 30 components. From the graph, it can be seen that using 10 or more 
principal components explains over 90% of the variation in the dependent variable. 

Due to the large number of variables and severe multicollinearity among them 
in the data used in this study, not all variables are suitable for modeling. There-
fore, we need to select the most important variables for modeling and prediction. 
Some studies have suggested that Variable Importance in Projection (abbre-
viated as VIP) can be used to select predictive variables [23], where variables 
with a VIP score greater than 1 are considered important for predicting the PLS 
regression model. 

The VIP value distributions of different variables are shown in Figure 18, 
where the red crosses correspond to variables with VIP values greater than 1 and 
the blue dots correspond to variables with VIP values less than 1. The 30 variables 
selected by VIP value screening are listed in Table 1. 

Using these 30 variables as independent variables and whether a patient has 
Mediterranean disease as the dependent variable, they are inputted into the PLS 
model. By gradually increasing the dimensionality (“dims” parameter), the per-
formance of the PLS model can be observed to change, as shown in Figure 19. It 
can be seen that the model performs best when 4 components are selected, with 
a corresponding cross-validation accuracy of 92.5%. 
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Figure 17. PLS component interpretation. 

 

 
Figure 18. Independent variable VIP values. 

3.3. Results Comparison 

The accuracy of PCA-LR under different degree conditions and the accuracy of 
the PLS model are presented in Table 2. It can be observed that the Partial Least 
Squares Regression (PLS) model demonstrates the highest accuracy among the  
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Figure 19. Performance curve of the PLS model.  
 
Table 1. Variable VIP value table. 

Variable name VIP value Variable name VIP value Variable name VIP value 

Gene 3 3.0072 Gene 41 1.7901 Gene 84 2.2934 

Gene 4 1.6282 Gene 46 1.4531 Gene 85 1.8321 

Gene 8 1.2569 Gene 47 1.3125 Gene 86 1.5362 

Gene 14 1.0576 Gene 54 1.4850 Gene 87 1.3751 

Gene 15 1.9677 Gene 56 1.8709 Gene 88 1.3577 

Gene 31 1.8291 Gene 57 1.0054 Gene 92 1.1042 

Gene 37 1.6068 Gene 59 1.6047 Gene 94 1.4029 

Gene 38 1.6068 Gene 62 1.9706 Gene 96 2.1503 

Gene 39 1.6068 Gene 76 1.1938 Gene 99 1.2770 

Gene 40 1.6068 Gene 77 1.3094 Gene 102 1.9950 

 
Table 2. Accuracy comparison of different models. 

Model Best accuracy 

PCA-LR (degree = 1) 80% 

PCA-LR (degree = 2) 87.5% 

PCA-LR (degree = 3) 87.5% 

PCA-LR (degree = 4) 87.5% 

PLS 92.5% 

 
compared models, reaching 92.5%. This indicates that for the dataset under dis-
cussion, the PLS model is more effective in capturing the underlying patterns 
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and relationships. 
The PCA-LR model shows an interesting trend with changes in the polynomi-

al degree used. When moving from a first-degree polynomial to a second-degree 
polynomial, there is a significant increase in accuracy. This suggests that intro-
ducing non-linear transformations (by increasing the polynomial degree) can 
significantly enhance the model’s ability to better fit the data. However, when 
the polynomial degree increases from 2 to 3 and 4, there is no further improve-
ment in accuracy (remaining at 87.5%). This plateau effect indicates that beyond 
a certain level of complexity (in this case, degree = 2), increasing model com-
plexity does not necessarily equate to better performance. This may be because the 
model has already captured most of the variance in the data with a second-degree 
polynomial, and additional degrees only add complexity without improving the 
model’s predictive capability. 

4. Conclusions 

PLS is an excellent modeling algorithm that is suitable for small samples and 
high-dimensional data, and it can also handle multicollinearity issues. In this 
study, we utilized the PLS model for the discrimination and diagnosis of Medi-
terranean anemia in the Guangxi region. To ensure the reliability of the model, 
we employed leave-one-out cross-validation and split validation set methods for 
modeling analysis. The results show that the model established has a high accu-
racy rate, demonstrating the effectiveness of this method. 

Due to the limitations of the sample data, this paper did not explore its appli-
cation in the diagnosis of different subtypes and clinical stages of Mediterranean 
anemia, which is a direction for future research. Additionally, research on how 
to integrate this algorithm into existing medical systems or mobile health appli-
cations to enhance its practicality and convenience can also be considered. 
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