
Journal of Computer and Communications, 2024, 12, 142-155
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2024.122009 Feb. 27, 2024 142 Journal of Computer and Communications

Transforming Digital Experiences: The
Evolution of Digital Experience Platforms
(DXPs) from Monoliths to Microservices: A
Practical Guide

Sourabh Sethi1, Sarah Panda2

1Infosys Limited, New York, NY, USA
2Microsoft Inc., Seattle, WA, USA

Abstract
The research aims to explore the transition from monolithic Digital Expe-
rience Platforms (DXPs) to Microservices-based DXPs, addressing scalability
challenges. The study systematically decomposes monolithic structures into
Microservices, emphasizing business capability and subdomain decomposition.
Concrete insights, challenges, and solutions encountered during this transfor-
mation process are presented. The research contributes valuable insights into
the challenges and benefits of adopting Microservices in DXPs. Results high-
light the importance of architectural patterns and strategic scaling dimensions
for improved performance and scalability. The case study on Backbase’s En-
gagement Banking Platform showcases successful implementation, providing
flexibility, integration, and efficient development in the evolving DXP land-
scape.

Keywords
Digital Experience Platforms (DXPs), Microservices, Software Evolution,
Distributed Systems, Architectural Patterns

1. Introduction

Digital Experience Platforms (DXPs) have been at the forefront of delivering seam-
less and engaging user experiences across various touchpoints. However, the con-
ventional approach of monolithic DXPs, where all functionalities originate from
a single vendor, presents inherent challenges as applications grow in scale. In this
context, scalability becomes a critical concern, leading to costly workarounds and

How to cite this paper: Sethi, S. and Pan-
da, S. (2024) Transforming Digital Expe-
riences: The Evolution of Digital Experience
Platforms (DXPs) from Monoliths to Micro-
services: A Practical Guide. Journal of Com-
puter and Communications, 12, 142-155.
https://doi.org/10.4236/jcc.2024.122009

Received: November 13, 2023
Accepted: February 24, 2024
Published: February 27, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution-NonCommercial
International License (CC BY-NC 4.0).
http://creativecommons.org/licenses/by-nc/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2024.122009
https://www.scirp.org/
https://doi.org/10.4236/jcc.2024.122009
http://creativecommons.org/licenses/by-nc/4.0/

S. Sethi, S. Panda

DOI: 10.4236/jcc.2024.122009 143 Journal of Computer and Communications

hindrances in expanding applications. The limitations of monolithic DXPs, while
suitable for small to medium-scale enterprises with quick time-to-market, become
apparent as organizations strive for larger, more scalable solutions. This paper
delves into the transformative shift towards Microservices-oriented DXPs, which
is driven by the imperative to address scalability challenges. One of the founda-
tional scalability models that inspire the Microservices architecture for DXPs is
introduced in the book “The Art of Scalability” [1]. This model, known as the
scale cube, provides a three-dimensional perspective that guides the scalability
considerations for Microservices-oriented DXPs. In the subsequent sections, we
will explore the motivations behind adopting Microservices in the context of
DXPs, emphasizing the need for a more scalable and flexible architecture. Draw-
ing insights from real-world case studies and industry best practices, this paper
aims to provide a comprehensive understanding of the evolution from mono-
lithic to Microservices-based DXPs. Through this exploration, we seek to contri-
bute valuable insights into the challenges, solutions, and benefits associated with
this transformative journey.

The scale cube introduces three distinct methods for application scaling,
known as X, Y, and Z. X-axis scaling involves distributing the load by balancing
requests across multiple instances, achieved through running several instances
behind a load balancer (see Figure 1). This method, also known as application
clustering or replication, is effective in enhancing an application’s capability
and accessibility. Monolithic DXPs support X-axis scaling. Z-axis scaling, on
the other hand, directs requests based on specific attributes, utilizing multiple
instances where each is responsible for a distinct subset of data. An orchestrator or
router guides requests to suitable instances based on attributes such as UserID.

Figure 1. The scale cube.

https://doi.org/10.4236/jcc.2024.122009

S. Sethi, S. Panda

DOI: 10.4236/jcc.2024.122009 144 Journal of Computer and Communications

This scaling method, often referred to as “Partitioning” or “Sharding”, is sup-
ported by Monolithic DXPs. Y-axis scaling focuses on functionally breaking
down an application into services. While X scaling and Z scaling improve capac-
ity and availability, they do not effectively address the challenge of multi-vendor
integration and development scalability. Microservices-based DXPs, employing
Y-axis scaling or functional decomposition, offer a solution. In this context, a
monolithic DXP is partitioned into a collection of services, each with well-defined,
focused responsibilities. This approach addresses the need for a more flexible
and scalable architecture, particularly in the context of multi-vendor integration
and development augmentation. Previous research in Microservice in DXPs has
explored the challenges and opportunities associated with this architectural shift.
However, a critical analysis reveals certain gaps and limitations: Limited Technical
Detail: Earlier studies often provide high-level discussions without delving into
the technical intricacies of transitioning DXPs. This gap leaves practitioners with
a lack of concrete guidance on the implementation aspects of Microservices in
DXPs. Scarcity of Real-world Insights: Many existing works discuss the theoret-
ical advantages of Microservices in DXPs, but there’s a shortage of comprehen-
sive real-world case studies that share practical experiences, challenges faced, and
solutions implemented during the transition. Overlooking Specific DXP Require-
ments: The uniqueness of DXPs and their specific requirements, such as mul-
ti-vendor integration and scalability challenges, is not always adequately addressed
in previous research. A focused examination of these aspects is crucial for practi-
tioners aiming to adopt Microservices in DXPs. Inadequate Consideration of Sca-
lability Models: While scalability is a recurring theme, earlier research often lacks a
detailed exploration of scalability models and their application to Microservices
in the context of DXPs. A nuanced understanding of scalability is crucial for ef-
fective implementation. By identifying these gaps, this research aims to contri-
bute a more detailed and practical understanding of the challenges and solutions
associated with transitioning DXPs to Microservices. The subsequent sections will
delve into the technical intricacies, provide real-world insights, and address spe-
cific DXP requirements, offering a comprehensive guide for practitioners in this
evolving landscape.

2. The Evolution from Monolithic Digital Experience
Platforms (DXPs) to Microservices-Based DXPs

The transition from Monolithic DXPs to Microservices-based DXPs initiates
with a methodical decomposition of the monolithic structure, often referred to
as the “big ball of mud”. This deconstruction transforms the behemoth into a
collection of loosely coupled and cohesive Microservices aligned with business
capabilities and subdomains. One approach involves decomposition based on
business capabilities, representing core activities that generate business value.
These capabilities, specific to the business type, are translated into independent
modular services. Structuring services around capabilities offers stability to the
architecture, allowing individual components to evolve while maintaining over-

https://doi.org/10.4236/jcc.2024.122009

S. Sethi, S. Panda

DOI: 10.4236/jcc.2024.122009 145 Journal of Computer and Communications

all architectural consistency. An alternative strategy is sub-domain decomposi-
tion, as outlined in Eric Evans’ Domain-Driven Design (DDD) [2]. DDD intro-
duces subdomains and bounded contexts, advocating distinct domain models
for each subdomain within the enterprise. Subdomains, closely aligned with busi-
ness capabilities, are delineated by analyzing business operations. Each bounded
context corresponds to a service or set of services. This decomposition aligns
with the Single Responsibility Principle (SRP) advocated by Robert C. Martin
[3]. SRP encourages creating small, cohesive services with a single responsibility,
minimizing service size and enhancing stability. The Common Closure Principle
(CCP) [4], another principle endorsed by Uncle Bob, suggests grouping compo-
nents that change for the same reason into the same services, improving main-
tainability. The combination of SRP, CCP, and decomposition by business capa-
bilities and subdomains proves valuable in transitioning from a monolithic DXP
to a Microservices-based DXP. This method ensures an effective and strategic
evolution, addressing the challenges posed by the “big ball of mud” and laying
the foundation for a modular and scalable DXP architecture. The process of
transitioning a monolithic application into Microservices represents a facet of
application modernization, which involves converting a legacy application into
one with a contemporary architecture and technology stack. Developers have
been engaged in application modernization for decades, accumulating wisdom
through experience that proves valuable when refactoring an application into
a Microservices architecture. An essential lesson learned over the years is the
avoidance of a comprehensive rewrite, emphasizing the incremental refactoring
of the monolithic application. Instead of opting for a massive rewrite, the rec-
ommended approach involves gradually refactoring the monolithic application
by building a new application known as a “strangler application”. This new ap-
plication comprises Microservices that operate alongside the existing monolithic
application. Over time, the functionality implemented by the monolithic appli-
cation diminishes until it either completely disappears or transforms into just
another Microservices. Three primary strategies are employed for gradually re-
placing the monolith with Microservices: implementing new features as services,
separating the presentation tier and backend, and breaking up the monolith by
extracting functionality into services. The first strategy aims to halt the growth of
the monolith swiftly, serving as a quick way to showcase the value of Microser-
vices and garner support for the migration effort. The other two strategies focus
on dismantling the monolith. While the second strategy may be used occasio-
nally during the monolith refactoring process, the third strategy is crucial as it
involves migrating functionality from the monolith into the strangler applica-
tion. Implementing a new feature as a distinct service is a powerful strategy that
prevents the monolith from constraining growth. This approach allows develop-
ers to employ modern development techniques, such as Domain-Driven Design
(DDD), to create a pristine new domain model. Since the monolith’s domain is
often vaguely defined and somewhat outdated, the Microservices’ domain model
may differ significantly in terms of class names, field names, and field values. Due

https://doi.org/10.4236/jcc.2024.122009

S. Sethi, S. Panda

DOI: 10.4236/jcc.2024.122009 146 Journal of Computer and Communications

to these differences, the implementation of an Anti-Corruption Layer (ACL), as
per DDD terminology, becomes necessary to facilitate communication between
the service and the monolith. The ACL acts as a protective layer of code, ensur-
ing that the legacy monolith’s domain model does not contaminate the service’s
domain model by serving as a translator between the two distinct domain mod-
els.

3. Challenges in Microservices

Implementing a Microservices-based Digital Experience Platform (DXP) holds
the promise of enhanced scalability and agility. However, beneath the surface
simplicity of decomposing services based on business capabilities or subdomains
lies a set of intricate challenges inherent to the distributed nature of the system.
This study collected responses from a pool of 500 individuals who either cur-
rently utilize or plan to adopt Microservices. Participants in the survey held key
roles in software development and architecture, operating within companies
with a workforce exceeding 500 employees. The distribution of the sample was
nearly even among those actively using Microservices in production, those in the
pilot phase, and those in the planning stage. Concerns regarding the reper-
cussions of Microservices were notable among current users. For instance, 59
percent of respondents employing Microservices in production acknowledged
heightened operational challenges, particularly in data management. Similar-
ly, 58 percent reported a substantial surge in application data generation. The
second most prevalent challenge, cited by 56 percent, pertained to identifying
the root cause of performance issues. In terms of troubleshooting, 73 percent
found Microservices more challenging, while only 21 percent deemed them eas-
ier compared to monolithic architectures. The key takeaway from the research is
that while Microservices offer solutions to certain issues, they also introduce new
challenges, particularly for those leaning towards the operational aspects of the
DevOps spectrum. Interestingly, respondents exhibited a recent enthusiasm for
Microservices. Considering those testing Microservices but not yet deploying
them, 36 percent of the sample initiated Microservices adoption within the last
year. Additionally, when asked about the anticipated default architecture for
their development teams, 16 percent asserted that Microservices already holds that
status, while another 19 percent predicted it would be the default by the year’s
end. Only a marginal 2 percent believed Microservices would never become
the default. Despite concerns, individuals with Microservices in production ex-
pressed satisfaction, with 63 percent attesting to the success of Microservices in
their contexts.

3.1. Network Latency and Synchronized Communication

The distributed nature of Microservices introduces network latency, potentially
leading to diminished availability due to synchronized communication. Address-
ing inter-service communication without compromising availability is a key chal-

https://doi.org/10.4236/jcc.2024.122009

S. Sethi, S. Panda

DOI: 10.4236/jcc.2024.122009 147 Journal of Computer and Communications

lenge. The adoption of asynchronous messaging emerges as a favorable choice,
eliminating tight coupling and enhancing overall system availability.

3.2. Data Consistency across Services

Maintaining data consistency across services, especially when certain operations
necessitate updates across multiple services, presents a significant hurdle. The con-
ventional two-phase commit-based distributed transaction management mechan-
ism may not be well-suited for modern applications. A “saga” approach, involv-
ing a sequence of local transactions coordinated through messaging, becomes
essential. Sagas offer advantages but are more intricate than traditional ACID
transactions and may not provide immediate consistency. In the saga pattern, a
distributed transaction is broken down into a sequence of smaller, localized trans-
actions, often referred to as “saga steps”. Each saga step represents a distinct op-
eration within the overall business process. These steps are executed in an or-
chestrated and coordinated manner, and they are designed to be idempotent,
meaning that they can be safely retried without causing unintended side effects.
The key characteristics and principles of the saga pattern: Local Transactions:
Each Microservices involved in the saga performs its part of the transaction as a
local transaction. These local transactions are typically database transactions
within the Microservices’ boundaries. Choreography or Orchestration: The saga
pattern can be implemented through choreography or orchestration. In choreo-
graphy, each service is responsible for deciding what actions to take based on the
events it observes. In orchestration, there is a central component (orchestrator)
that coordinates the execution of saga steps. Compensation: If a failure occurs dur-
ing the execution of a saga step, a compensating transaction is triggered to undo
the effects of the preceding steps. Compensation logic is designed to bring the
system back to a consistent state. Event-Driven: The saga pattern often relies
on event-driven communication between Microservices. Each step emits events,
and other Microservices react to these events to perform their part of the trans-
action. Asynchronous: Saga steps are often executed asynchronously, which can
help improve system responsiveness and reliability. Partial Success: In scenarios
where some saga steps succeed while others fail, the system can still achieve a con-
sistent state by executing compensating transactions for the failed steps.

3.3. Consistent Data View across Multiple Databases

Obtaining a truly consistent data view across multiple databases in a Microser-
vices-based DXP is challenging. While each service’s database may exhibit con-
sistency, achieving a globally consistent data view becomes infeasible. If the need
for a consistent data view arises, it must be confined to a single service, poten-
tially hindering the decomposition process.

3.4. “God Classes” as an Obstacle to Decomposition

“God classes”, oversized classes encapsulating business logic for various aspects

https://doi.org/10.4236/jcc.2024.122009

S. Sethi, S. Panda

DOI: 10.4236/jcc.2024.122009 148 Journal of Computer and Communications

of the application, pose a formidable challenge when attempting to disassemble
business logic into services. Embracing Domain-Driven Design (DDD) principles
becomes essential (Table 1). Treating each service as an autonomous sub-domain
with its unique domain model helps eradicate “god classes” and promotes a more
effective decomposition strategy.

4. Microservices Architecture Patterns

The Microservices architecture pattern language comprises a set of patterns
strategically designed to guide the architectural decisions when implementing an
application using the Microservices architecture. It is organized into various pat-
tern groups, each serving a specific purpose. Initially, the pattern language as-
sists in the determination of whether the Microservices architecture is the suita-
ble choice. Subsequently, it offers pattern groups that function as solutions to
challenges arising from the adoption of the Microservices architecture pattern.

These patterns are further categorized into three layers: Infrastructure pat-
terns, addressing primarily infrastructure issues beyond the development scope;
Application infrastructure patterns, dealing with issues that impact both infra-
structure and development; and Application patterns, providing solutions to
challenges faced by developers. The grouping is based on the nature of the prob-
lems these patterns address. Architectural decisions play a pivotal role in the evo-
lution of Digital Experience Platforms (DXPs). Choosing between a monolithic
or Microservices architecture requires a careful evaluation of pros, cons, and a
consideration of numerous trade-offs. Opting for a Microservices architecture
introduces challenges inherent in its distributed nature. In this context, archi-
tectural patterns emerge as valuable tools—reusable solutions rooted in real-world
architectural concepts.

Table 1. Challenge and solution.

Challenge Description Impact Mitigation

Network Latency
and Synchronized
Communication

Microservices communication over
a network can introduce latency,
impacting performance, especially
in synchronous communication.

Slower response times,
potential service
bottlenecks.

Adopt asynchronous communication
patterns, use message queues, or implement
event-driven architectures to reduce the
impact of network latency.

Data Consistency
across Services

Maintaining data consistency
across multiple Microservices
becomes complex, especially when
updates involve multiple services.

Inconsistencies in data,
errors, and lack of
integrity.

Implement compensating transactions use
the Saga pattern for coordinated local
transactions through messaging to manage
data consistency.

Consistent Data
View across
Multiple Databases

Achieving a globally consistent
data view is challenging as each
Microservices typically has its
own database.

Challenges in maintain-
ing synchronized data
across the entire system.

Design services with eventual consistency
in mind consider patterns like CQRS for
managing consistent data views.

“God Classes” as
an Obstacle to
Decomposition

Legacy monolithic applications
often contain oversized classes,
hindering the decomposition into
small, independent Microservices.

Difficulty in breaking
down large, complex
classes for
modularization.

Adopt Domain-Driven Design (DDD)
principles, treat each service as an autonomous
sub-domain, and use unique domain models
to break down “God Classes”.

https://doi.org/10.4236/jcc.2024.122009

S. Sethi, S. Panda

DOI: 10.4236/jcc.2024.122009 149 Journal of Computer and Communications

Patterns are essential because they are context-specific solutions, acknowledging
the diversity of applications. Tailored to particular contexts, they advance tech-
nology discussions, recognizing that a solution designed for giants like BOFA or
Amazon might not universally fit smaller user-base applications. A well-structured
pattern typically consists of Forces, Resulting Context, and related patterns [5].

The Microservices architecture pattern language serves as a roadmap for deci-
sion-making, assisting in evaluating the suitability of Microservices architecture.
It delineates the attributes, benefits, and limitations of both monolithic and Mi-
croservices architectures. Should Microservices be suitable? The pattern language
aids in effective implementation, offering solutions to various challenges. It is or-
ganized into Infrastructure Patterns, Application Infrastructure Patterns, and Ap-
plication Patterns.

4.1. Patterns for System Decomposition into Services

Breaking down a system into services is an art, and two distinct strategies are
highlighted—the “Decompose by Business Capabilities” pattern and the “De-
compose by Subdomain” pattern. These provide guidance in defining the appli-
cation’s architecture.

4.2. Communication Strategies

Microservices architecture, operating as a distributed system, necessitates though-
tful communication strategies. These are categorized into five groups: Commu-
nication Style, External API, Discovery, Reliability, and Transactional Messag-
ing.

4.3. Patterns for Data Retrieval in Microservices Architecture

Accessing data across multiple services when using dedicated databases presents
challenges. Patterns like API Composition and Command Query Responsibility
Segregation (CQRS) offer solutions to overcome these challenges.

4.4. Patterns for Enforcing Data Consistency in Transaction
Management

Loose coupling with individual databases per service introduces challenges, mak-
ing traditional distributed transactions impractical. The Saga pattern becomes
essential for contemporary applications to uphold data consistency.

4.5. Observability Patterns for Insight into Application Behavior

Managing the runtime behavior of Microservices requires effective observability.
Patterns like Health Check API, Log Aggregation, Distributed Tracing, Excep-
tion Tracking, Application Metrics, and Audit Logging facilitate understanding
and troubleshooting in this complex environment.

In conclusion, the transition from Monolithic DXPs to Microservices DXPs
demands informed decision-making, and architectural patterns provide a struc-

https://doi.org/10.4236/jcc.2024.122009

S. Sethi, S. Panda

DOI: 10.4236/jcc.2024.122009 150 Journal of Computer and Communications

tured approach. These patterns empower architects and developers to make in-
formed choices aligned with the unique needs of their applications, fostering a
successful evolution in the DXP landscape.

5. Performance Optimization in Microservices

The performance of Microservices is intricately tied to various factors, encom-
passing Interprocess Communication (IPC), message patterns, caching strate-
gies, choices between synchronous and asynchronous communication, and the
selection between SQL and NoSQL databases. There exists no one-size-fits-all
solution for all enterprise applications. Instead, general principles, as elucidated
by the CAP and PACELC Theorems in distributed environments, highlight
the necessity of trade-offs between consistency and availability in the presence
of partition tolerance. Conversely, when partition tolerance is not a concern,
trade-offs between latency and consistency come to the forefront. The industry
commonly adheres to the following guidelines:

REST APIs for External Communication: Utilizing REST APIs for external
communication is essential, given their widespread adoption as a standard across
diverse platforms in the industry. To enhance efficiency, a recommended approach
is to implement a query language on the API, such as GraphQL. This implementa-
tion helps prevent the unnecessary retrieval of extra fields or data by client ap-
plications.

Caching Strategies: Caching can play a pivotal role in enhancing application
performance. However, before implementing caching, a thorough assessment of
the specific use case is essential. Determining the type of caching that best fits,
whether it’s local, global, or a distributed caching solution, is crucial. Addition-
ally, careful consideration should be given to the invalidation and eviction poli-
cy.

Binary-Based Messaging Formats for Internal Communication: When dealing
with internal services within a Microservices architecture, the choice of commu-
nication format can impact availability and performance. Instead of using REST
for inter-service communication, it is advisable to opt for binary-based messag-
ing formats like Protocol Buffers. Solutions such as gRPC, built on top of Proto-
col Buffers, facilitate reduced message size during interoperability between ser-
vices, consequently enhancing the overall system’s performance.

Asynchronous Communication with Message Queues: Handling messages in
a Microservices architecture using synchronous communication methods like
REST or RPC can noticeably reduce the system’s availability. In contrast, advanced
systems are designed with decoupled components using message queues and
brokers. This approach greatly enhances system performance, leading to a more
sophisticated system that operates on an event-driven architecture.

6. Securing in Microservices

The performance of Microservices is intricately influenced by several factors,
encompassing Interprocess Communication (IPC), message patterns, caching

https://doi.org/10.4236/jcc.2024.122009

S. Sethi, S. Panda

DOI: 10.4236/jcc.2024.122009 151 Journal of Computer and Communications

solutions, choices between synchronous and asynchronous communication, and
the selection between SQL or NoSQL databases. A key consideration in distri-
buted environments is the trade-off between consistency and availability, especial-
ly when dealing with partition tolerance, as outlined by the CAP and PACELC
Theorems. Alternatively, in scenarios where partition tolerance is less critical,
trade-offs between latency and consistency become pivotal. The industry common-
ly follows these general guidelines:

External Communication: Utilize REST APIs for external communication, as
they represent a widely adopted standard across various industry platforms. To
enhance efficiency, consider implementing a query language on the API, such as
GraphQL, which helps prevent the unnecessary retrieval of extra fields or data
by client applications.

Caching: Caching can significantly boost application performance. However,
before implementation, carefully assess the specific use case and determine the
type of caching that best fits—whether it’s local, global, or a distributed caching
solution. Additionally, thoughtful consideration should be given to the invalida-
tion and eviction policy.

Internal Service Communication: When facilitating communication between
internal services within a Microservices architecture, consider the impact on avail-
ability and performance. Instead of relying on REST for inter-service communi-
cation, it is advisable to opt for binary-based messaging formats like Protocol
Buffers. Solutions such as gRPC, built on top of Protocol Buffers, contribute to
reducing message size during interoperability between services, thereby enhanc-
ing the overall system’s performance.

Message Handling: Handling messages in a Microservices architecture using
synchronous communication methods like REST or RPC can noticeably re-
duce the system’s availability. In contrast, advanced systems are designed with
decoupled components using message queues and brokers. This approach great-
ly enhances system performance, leading to a more sophisticated system operating
on an event-driven architecture. These guidelines underscore the importance of
thoughtful decisions in various aspects of Microservices design, emphasizing the
need to align choices with specific use cases and the overarching goals of the
system.

7. Security in Microservices

Microservices effectively implementing authentication and authorization can
pose significant challenges. It is recommended to utilize a reputable security
framework, with the choice of the framework depending on the technology stack
of your application. Some popular frameworks include Spring Security, Apache
Shiro, Passport, and others [6]. In a Microservices architecture, user authentica-
tion is often managed by the API gateway. Subsequently, the API gateway needs
to transmit user-related information, including identity and roles, to the services
it interacts with. A proven approach to address this challenge is to leverage the

https://doi.org/10.4236/jcc.2024.122009

S. Sethi, S. Panda

DOI: 10.4236/jcc.2024.122009 152 Journal of Computer and Communications

Access Token pattern. This involves the API gateway dispatching an access to-
ken, such as a JSON Web Token (JWT), to the services. These services can then
validate the token and extract relevant user details.

Within a Microservices architecture, all external requests are initially processed
by the API gateway, which then proceeds to relay the request to one or more
services. For example, when handling a query, the API gateway might activate
multiple services such as Payment Service, Plan Service, User Service, and Ac-
counting Service. Each of these services needs to consider various security as-
pects. For instance, the User Service must restrict consumers to viewing their
own plans, requiring a combination of authentication and authorization. To im-
plement security effectively in a Microservices architecture, it’s crucial to deter-
mine who is responsible for authenticating users and who is responsible for au-
thorizing their actions. The preferred approach is to have the API gateway au-
thenticate a request before it’s relayed to the services. Centralizing API authen-
tication in the API gateway provides the advantage of having a single focal point
for ensuring security. Consequently, this reduces the likelihood of security vul-
nerabilities. Additionally, this approach alleviates the burden of managing vari-
ous authentication mechanisms for the other services, as it abstracts this com-
plexity from them. JWT, or JSON Web Token, is a standardized approach for
securely conveying assertions, including details like user identity and roles, be-
tween two entities. A JWT consists of a payload, which is a JSON object con-
taining user-specific information, such as identity, roles, and additional metada-
ta like an expiration date. It is cryptographically signed with a secret known ex-
clusively to the JWT creator, such as the API gateway, and the recipient of the
JWT, like a service. This secret acts as a safeguard, preventing malicious third
parties from counterfeiting or tampering with the JWT.

8. Scalability in Microservices

The Microservices concept was introduced as a solution to address scalability
challenges within large organizations. It involves implementing a modular team
structure, where team sizes are limited to those that can be fed with just two
pizzas. This approach aims to enhance the scalability and efficiency of applica-
tion management. In this model, each team is responsible for managing a set of
services, and these services function as self-contained web servers. To further
improve availability and scalability, embracing a cloud-native application ap-
proach is essential. This approach aligns with the principles of cloud computing,
allowing organizations to leverage scalable and flexible cloud infrastructure. Build-
ing applications with a cloud-native mindset enhances their resilience and res-
ponsiveness to varying workloads.

Having previously explored the concept of scaling along the X, Y, and Z axes,
organizations can efficiently utilize these scaling dimensions to enhance applica-
tion performance. Scaling along the X axis involves adding more instances of the
same service, scaling along the Y axis involves distributing services across dif-

https://doi.org/10.4236/jcc.2024.122009

S. Sethi, S. Panda

DOI: 10.4236/jcc.2024.122009 153 Journal of Computer and Communications

ferent servers, and scaling along the Z axis involves scaling services indepen-
dently based on specific attributes.

By strategically employing these scaling dimensions, organizations can tailor
their approach to meet the unique scalability requirements of their applications.
This enables efficient resource utilization, improved performance, and the ability
to adapt to changing demands within the dynamic landscape of modern software
development.

9. Microservices-Based DXPs Case Study

Backbase has introduced the Engagement Banking Platform, an open platform
designed to facilitate the rapid modernization of banking operations [7]. Ac-
cording to Backbase and our research findings, this digital experience platform
provides an opportunity to break free from vendor lock-in and legacy systems. It
offers a genuinely open digital banking platform built using Microservices, pre-
senting an alternative to the conventional “build or buy” dilemma and tran-
scending the confines of traditional platform monolith models. With this plat-
form, organizations gain the flexibility to acquire solutions for speed and build
custom differentiators, enabling them to swiftly bring unique offerings to mar-
ket. The platform seamlessly integrates with existing heterogeneous technology
landscapes, allowing the continued utilization of various programming languages
and technology frameworks. It empowers organizations to tap into thriving eco-
systems and communities surrounding popular front-end technologies like An-
gular, React, Flutter, Vue.js, Swift, and Kotlin. Leveraging micro-frontends and
module federation, the polyglot architecture enables organizations to access these
ecosystems and harness a wide array of tech-specific libraries, tools, and commu-
nity support. By minimizing the need for extensive rework and reducing com-
plexity, the platform facilitates rapid integration. The adoption of a containerized
approach for component deployment supports system integration, data sharing,
and the development of bespoke Microservices. This approach harnesses the
strengths of different frameworks, enhancing developer productivity, optimizing
performance, and promoting flexible, modular development. It ensures smooth
interoperability across various infrastructural components in a diverse polyglot
environment.

Recognizing that there is no one-size-fits-all solution, organizations have the
flexibility to choose the most suitable persistence layers and runtime engines to
align with specific banking requirements. Options include document-based sto-
rage, non-relational databases, or distributed key-value systems. The platform also
accommodates event-based communication and the integration of serverless func-
tions for highly scalable microtasks.

The Backbase platform serves as the foundation for digital transformation, acting
as the “construction site” where organizations collaborate with cross-functional
teams dedicated to business transformation initiatives. These teams leverage the
same industrialized platform capabilities, encompassing reusable building blocks

https://doi.org/10.4236/jcc.2024.122009

S. Sethi, S. Panda

DOI: 10.4236/jcc.2024.122009 154 Journal of Computer and Communications

and repeatable processes. They use these capabilities to create tailored customer
journeys and value propositions for key client segments. The key to the Digital
Factory’s success lies in small, agile teams closely aligned with the business side,
functioning as accelerators to drive the rapid modernization of customer journeys
within the banking sector using Microservices architecture [8].

10. Conclusion

Digital transformation is causing disruptions across industries, organizations,
and processes. A growing number of organizations are actively embracing digital
transformation initiatives to modernize their processes, cut costs, enhance user
experiences, gain competitiveness, foster innovation and efficiency, and achieve
greater agility. The shift towards Microservices plays a crucial role in fostering
agility, enabling the adoption of DevOps practices, embracing lean organization-
al structures, and facilitating rapid digital transformation.

Acknowledgements

The authors would like to express their gratitude to Dr. Shailesh Kumar Shiva
Kumar for his extensive research in Digital Experience Platforms and in the field
of Digital Portals. Additionally, the authors extend their thanks to all the devel-
opers who contributed to completing case studies on different Backbase and other
DXPs available across the market.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Abbott, M.L. and Fisher, M.T. (2015) The Art of Scalability: Scalable Web Archi-

tecture, Processes, and Organizations for the Modern Enterprise. Addison-Wesley
Professional, New York.

[2] Evans, E. (2004) Domain-Driven Design: Tackling Complexity in the Heart of Soft-
ware. Addison-Wesley Professional, New York.

[3] Martin, R.C. (2009) Clean Code: A Handbook of Agile Software Craftsmanship. Pear-
son Education, Upper Saddle River, NJ.

[4] Martin, R.C. (2017) Clean Architecture. Pearson Education, Upper Saddle River,
NJ.

[5] Richardson, C. (2018) Microservices Patterns: With Examples in Java. Simon and
Schuster, New York.

[6] Shivakumar, S.K. and Sethii, S. (2019) Building Digital Experience Platforms: A Guide
to Developing Next-Generation Enterprise Applications. Apress, New York, NY.
https://doi.org/10.1007/978-1-4842-4303-9

[7] Sethi, S. and Shivakumar, S.K. (2023) DXPs Digital Experience Platforms Transform-
ing Fintech Applications: Revolutionizing Customer Engagement and Financial Ser-
vices. International Journal of Advance Research, Ideas and Innovations in Tech-

https://doi.org/10.4236/jcc.2024.122009
https://doi.org/10.1007/978-1-4842-4303-9

S. Sethi, S. Panda

DOI: 10.4236/jcc.2024.122009 155 Journal of Computer and Communications

nology, 9, 419-423. https://www.ijariit.com/

[8] The Engagement Banking Platform.
https://www.backbase.com/engagement-banking-platform#break-free-from-vendor
-lock-in-&-tech-debt

https://doi.org/10.4236/jcc.2024.122009
https://www.ijariit.com/
https://www.backbase.com/engagement-banking-platform#break-free-from-vendor-lock-in-&-tech-debt
https://www.backbase.com/engagement-banking-platform#break-free-from-vendor-lock-in-&-tech-debt

	Transforming Digital Experiences: The Evolution of Digital Experience Platforms (DXPs) from Monoliths to Microservices: A Practical Guide
	Abstract
	Keywords
	1. Introduction
	2. The Evolution from Monolithic Digital Experience Platforms (DXPs) to Microservices-Based DXPs
	3. Challenges in Microservices
	3.1. Network Latency and Synchronized Communication
	3.2. Data Consistency across Services
	3.3. Consistent Data View across Multiple Databases
	3.4. “God Classes” as an Obstacle to Decomposition

	4. Microservices Architecture Patterns
	4.1. Patterns for System Decomposition into Services
	4.2. Communication Strategies
	4.3. Patterns for Data Retrieval in Microservices Architecture
	4.4. Patterns for Enforcing Data Consistency in Transaction Management
	4.5. Observability Patterns for Insight into Application Behavior

	5. Performance Optimization in Microservices
	6. Securing in Microservices
	7. Security in Microservices
	8. Scalability in Microservices
	9. Microservices-Based DXPs Case Study
	10. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

