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Abstract 
Finger vein extraction and recognition hold significance in various applica-
tions due to the unique and reliable nature of finger vein patterns. While re-
cently finger vein recognition has gained popularity, there are still challenges 
associated with extracting and processing finger vein patterns related to im-
age quality, positioning and alignment, skin conditions, security concerns 
and processing techniques applied. In this paper, a method for robust seg-
mentation of line patterns in strongly blurred images is presented and eva-
luated in vessel network extraction from infrared images of human fingers. In 
a four-step process: local normalization of brightness, image enhancement, 
segmentation and cleaning were involved. A novel image enhancement me-
thod was used to re-establish the line patterns from the brightness sum of the 
independent close-form solutions of the adopted optimization criterion de-
rived in small windows. In the proposed method, the computational resources 
were reduced significantly compared to the solution derived when the whole 
image was processed. In the enhanced image, where the concave structures 
have been sufficiently emphasized, accurate detection of line patterns was ob-
tained by local entropy thresholding. Typical segmentation errors appearing 
in the binary image were removed using morphological dilation with a line 
structuring element and morphological filtering with a majority filter to elimi-
nate isolated blobs. The proposed method performs accurate detection of the 
vessel network in human finger infrared images, as the experimental results 
show, applied both in real and artificial images and can readily be applied in 
many image enhancement and segmentation applications. 
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1. Introduction 

The problem of finger vein extraction by processing infrared images arises mainly 
for biometrics purposes, but it is also very important for the biomedical research 
community. The problem of line pattern extraction in blurred images arises mainly 
when images of high-speed moving objects are acquired in low-light conditions, 
diffusion, fog, light scattering effects, low-quality optics or inexpensive pho-
to-electric transducers are used for image acquisition. 

The general structure of a biometric system based on finger veins has five main 
stages: 1) acquisition of the infrared images exploiting the absorption of light in 
near-infrared and infrared wavelengths by the different human tissues, 2) pre-
processing of the acquired images, which include ROI (region of interest) ex-
traction, image intensity normalization (in this type of images intensity is usual-
ly uneven due to the image acquisition system and may suffer from shading ar-
tifacts) and noise reduction, 3) segmentation or classification stage in which the 
preprocessed image is divided into two (or more) regions associated with veins 
and surrounding tissues, 4) post-processing of the binary images, which deliver 
the final segmentation result, free of outliers and misclassifications, and finally, 5) 
matching of the extracted veins in order to perform the desired person verifica-
tion procedure. Matching procedure can be applied either directly in the ex-
tracted finger vein patterns or in their skeletons, depending on the matching al-
gorithm that has to be used. This general structure described so far involves all 
the stages that may have such a system, but it is worth mentioning that these stag-
es are independent and some of them can be skipped in some applications de-
pending on their specific requirements. 

Several methods that adopt this general architecture have already been pro-
posed starting from the pioneering work of Park et al. [1]. In this important re-
search work, an application-specific processor for vein pattern extraction and its 
application to a biometric identification system is proposed. The conventional 
vein-pattern-recognition algorithm consists of a preprocessing part, applying se-
quentially an iterative Gaussian low-pass, a high-pass, and a modified median fil-
ter and a recognition part, which includes the extraction of the binary veins via 
local thresholding and finally, the matching between the individual patterns. Con-
sequently, the conventional algorithm [1] [2] [3] consists of low-pass spatial fil-
tering for noise removal, and high-pass spatial filtering for emphasizing vascular 
patterns, thresholding and matching. 

An improved vein pattern extraction algorithm is proposed in [4], which com-
pensates for the loss of vein patterns in the edge area, gives more enhanced and 
stabilized vein pattern information, and shows better performance than the ex-
isting algorithm.  
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The problem with conventional hand vascular technology mentioned above is 
that the vascular pattern is extracted without taking into account its direction. So, 
there is a loss of vascular connectivity, which leads to a degradation of the per-
formance of the verification procedure. An attempt to improve this problem can 
be found in [5], where a direction-based vascular pattern extraction algorithm 
based on the directional information of vascular patterns is presented for biome-
tric applications.  

Although, the above algorithm considers the directionality of veins, assumes 
that the veins are oriented in only two principal directions. In [6] [7], a method 
for personal identification based on finger-vein patterns is presented and eva-
luated using line tracking starting from various positions. This method allows 
vein patterns to have an arbitrary direction.  

Typically, the infrared images of finger veins are low-contrast images, due to 
the light scattering effect. An algorithm for finger vein pattern extraction in infra-
red images is proposed in [8]. This algorithm embeds all the above issues and 
proposes novel preprocessing and post-processing algorithms.  

In [9], new issues are considered and a certification system that compares vein 
images for low-cost, high speed and high-precision certification is proposed. 
Several noise reduction filters, sharpness filters and histogram manipulations 
were tested for best effort. As a result, a high certification ratio in this system 
was obtained. 

In [10], the theoretical foundation and difficulties of hand vein recognition 
are introduced at first. Then, the optimum threshold of the segmentation process 
and the vein-lines thinning problem of infrared hand images are deeply studied, 
followed by the presentation of a novel estimator for the segmentation threshold 
and an improved conditional thinning method. The method of hand vein image 
feature extraction based on end points and crossing points is studied initially, and 
the matching method based on a distance measure is used to match vein images. 
The matching experiments indicated that this method is efficient in terms of bio-
metric verification. 

However, the finger vein technology, as mentioned above, has important ap-
plications in the biomedical field from which it originated from. An initial work 
for localizing surface veins via near-infrared (NIR) imaging and structured light 
ranging is presented in [11]. The eventual goal of the system is to serve as the 
guidance for a fully automatic (i.e. robotic) catheterization device. The proposed 
system is based upon near-infrared (NIR) imaging, which has previously been 
shown effective in enhancing the visibility of surface veins.  

Also, in [12] [13], a vein contrast enhancer (VCE) has been constructed to 
make vein access easier by capturing an infrared image of veins, enhancing the 
contrast using software, and projecting the vein image back onto the skin. 

Although these methods achieve to segment the infrared images, the finger 
vein pattern extraction task is still challenging mainly due to the fact that infra-
red images suffer from strong noise presence, uneven illumination and shading, 
factors that complicate the application of automatic image segmentation tech-
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niques. So, another way to segment this kind of image is to assume that veins are 
located in thin and concave regions (a reasonable assumption obtained by a 
careful inspection of the image intensity across the image) of infrared images 
and based on this concept to extract them by optimizing a mathematical model. 
This can be done by using the Mumford-Shah model, which has well-known ca-
pabilities in the image processing applications such as image segmentation, res-
toration and image inpainting [14] [15]. So, in this paper, we derive an analytical 
solution to a modified Mumford-Shah model minimization problem and we pro-
pose a local application of its results in order to perform fast and accurate finger 
vein extraction. 

In this paper, a novel method to segment finger vessel networks and extract 
the corresponding pattern is presented. The proposed algorithm is composed of 
several steps. A finger vein enhancement procedure (second step) is performed 
in order to facilitate the application of the third step which involves segmenta-
tion using an adaptive threshold derived from a local estimation of the bright-
ness entropy. The adaptive threshold method is adopted due to its simplicity 
and robustness to segment the image of the finger into two regions: vein and 
tissue. The two additional steps (first and fourth), a preprocessing step and a 
post-processing step, are applied only when required in order to ease the whole 
procedure and to give a more robust result. 

The paper is organized as follows. In Section 2, a detailed presentation of the 
line pattern extraction method is given. The experimental results and a discus-
sion are included in Section 3. Finally, the most significant conclusions and some 
directions for future work are presented in the last section of this paper.  

2. Materials and Method 
2.1. Image Preprocessing 

In Figure 1, a flowchart of the proposed line-patterns extraction method is giv-
en. 

ROI extraction. Depending on the application, one or several, manual or au-
tomatic ROIs are extracted in the original image. Among the automatic ROI ex-
traction techniques [16] [17] [18], the histogram-based statistical methods are 
very popular due to their computational efficiency. In applications where the 
background can be detected in the very low or very high brightness areas, simple 
histogram rules can be used for fast ROI extraction. A typical ROI in finger infra-
red images is shown in Figure 2(a). 

Brightness normalization based on local statistical measures. In general, even 
in cases where leds’ brightness is adjusted to satisfy several statistical properties 
in the acquired infrared image, in few areas unsatisfactory illumination or strong 
noise distortions are met. This effect appears due to the complicated structure of 
human tissue. Therefore, an image normalization procedure is applied to restore 
partially the desirable statistical properties. 

A simple, fast and efficient local normalization procedure is used to unify the  
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Figure 1. Flowchart of the proposed line patterns segmentation method. 

 

 
(a)                        (b) 

Figure 2. A region of interest (ROI), before (a) and after brightness normalization (b). 
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local mean and variance of the ROI, an especially useful technique for correcting 
non-uniform illumination or shading artifacts, using a linear brightness trans-
formation scheme applied on pixels’ brightness: 
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where ( )0 ,I x y  is the brightness of the original image at pixel (x, y), ( )
0

,Im x y  
is the brightness local mean and, ( )

0
,I x yσ  is the corresponding local standard 

deviation. The estimation of the local mean and standard deviation is performed 
using the brightness values of neighbor pixels. Figure 2(b) shows the ROI image 
after the application of the brightness normalization method. 

2.2. Enhancement of Concave Regions 

The finger veins are significantly thinner than the darker structures met in typi-
cal infrared images as shown in Figure 2(a). Multiple scattering of the propa-
gated photons significantly reduces the contrast, eliminates the tiny veins and 
increases the transition regions between the main veins and the surrounding 
tissue. The “fog” effect hides the vein structures in concave regions of the ROI. 
This assumption could be verified by observing the cross-section profile of the 
veins which is Gaussian like as claimed in [19]. The aim of the proposed vein 
enhancement method is to amplify concave regions using several connectivity 
properties.  

In typical images, concave regions are detected by examining the positiveness 
of the second order spatial derivative. Direct estimation of the derivatives in dig-
ital images is an ill posed problem due to noise presence and the non-uniform 
illumination. Instead of seeking regions which have positive second order de-
rivatives, in this paper the minimization of Equation (2), similar to the Mum-
ford-Shah objective function [20], is proposed. The objective is to estimate a 
smooth image I(., .) similar to the normalized image I0n(., .), i.e. decreasing the 
absolute value of the first derivative. The equivalent mathematical expression 
leads to the following minimization problem: 

( ) 22
0

1 d d
2 2c nJ I I x I I xλ

Ω Ω
= ⋅ ∇ + ⋅ −∫ ∫ ,               (2) 

where Ω is the image domain, λ is the smoothness weight, and I∇  is the Lap-
lacian gradient of the image I(., .). 

The minimization of this function is computationally intensive and can be 
performed by the method proposed by Chan et al. [14]. This method belongs to 
the category of segmentation methods which use partial differential equations 
(PDEs) and it is iterative. In this paper, a direct solution to the adopted optimi-
zation criterion is reached. The proof of the direct-form solution is given in Ap-
pendix. 

The smoothed image I(., .) at the minimum of Equation (2) is estimated using 
Algorithm 1. 
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Image-based solution. Algorithm 1. 
Assuming an image I0n of N rows and M columns, the function Jc(I) in the 

discrete space becomes: 

( ) 22
01 1 1 1

1
2 2

N M
c ni j i j

N MJ I I I Iλ
= = = =

= ⋅ ∇ + ⋅ −∑ ∑ ∑ ∑ .            (3) 

If the partial derivatives, involved in the computation of the Laplacian gra-
dient, are approximated using local differences and substituted back in Equation 
(3), the following objective function obtained: 
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The minimum of Equation (4) regarding to I(., .) can be derived in a close- 
form by differencing the second-order, positively defined function. The above 
minimization results in a system of N × M linear equations from which the un-
known image I(., .) can be readily derived:  

0nG λ⋅ = ⋅I I ,                            (5) 

where G is a sparse Hermitian matrix depends only on parameter λ, I is the vec-
tor form of the unknown image I(., .) and I0n is the vector form of the norma-
lized image I0n(., .). If matrix G is invertible, the brightness of the unknown im-
age is derived from the solution of the system of linear equations: 

( )1
0nG λ−= ⋅ ⋅I I .                          (6) 

The enhanced image Ie is created as the difference between the smoothed im-
age I(., .) and the normalized image I0n(., .):  

0e nI I I= − .                            (7) 

In practice, even in the case of small images the inversion of a sparse matrix G 
is highly computationally prohibitive. Fortunately, the off-line estimation of the 
inverse of the matrix G reduces significantly the computations, i.e. for an arbi-
trary image of N × M pixels, the estimation of pixel brightness of the enhanced 
image requires N × M multiplications and N × M additions.  

Sub-image solution. Algorithm 2. 
Instead of deriving the global minimum, in this paper a closed-form solution 

of Equation (2) is proposed by processing small rectangular areas. The proposed 
solution accelerates significantly the processing time required for each pixel and 
outperforms the classical approach [14]. As a result, fast and accurate extraction 
of the finger veins is obtained. 

An effective reduction of the matrix G dimensionality can be achieved using 
sub-images, i.e. multiple solutions of Equation (6) can be achieved using only a 
small number of neighbor pixels. In this case the number of linear equations de-
pends on the size of the chosen window. 

In order to obtain the image Ie = I − I0n the following process is applied. In-
itially a window of size Z × Z is selected and the corresponding matrix G (Z2 × 
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Z2) and its inverse X (Z2 × Z2) are computed. Then, the sliding window slides 
along each pixel of the normalized image and the difference between the pixel 
values of the image I(., .) obtained by Equation (6) and the pixel values of the 
normalized image I0n inside the window is computed. In the next step all these 
overlapped window differences are added and the image Ie = I − I0n is obtained 
by keeping only the central N × M part of the result (where N × M is the size of 
the original image). 

The result of this process is the non-smooth image Ie. In this image, the veins 
are located in concave regions and thus a local entropy thresholding technique 
is applied in order to segment the non-smooth image in concave (veins) and 
non-concave (other tissue parts) regions. 

2.3. Local Entropy Thresholding 

Among the various methods to define automatically the threshold for segmenta-
tion local entropy thresholding is selected, which has been successfully used in 
[21], because in typical images the brightness of pixel neighbors is related and 
therefore efficient entropy-based thresholding takes into account the spatial 
brightness distribution. Taking into account that the co-occurrence matrix of the 
image Ie is a measure of the brightness transition between adjacent pixels, a local 
entropy thresholding technique described in [22] is implemented, which can 
preserve the structure details of an image. Two images with identical histograms 
but different spatial distribution will result in different entropy and consequently 
different threshold values. 

The co-occurrence matrix of the image Ie = I − I0n is a PxQ dimensional ma-
trix ij P Q

T t
×

 =    giving quantitative measures of the spatial structural informa-
tion of an image. Depending upon the ways in which the gray level i follows 
gray level j different definitions of co-occurrence matrix are possible. Here, the 
co-occurrence matrix is asymmetric by considering the horizontally right and 
vertically lower transitions. Thus, ijt  is defined as follows: 

( )( ) ( )( )(
( )( ) ( )( ) )

1 1 , , 1

, 1, 1 .

ij e e
Q
k

e

P
l

e

t u I l k i I l k j

I l k i I l k j

δ δ

δ δ

= =
= − + −

+ − + − −

∑ ∑
           (8) 

The probability of co-occurrence ijp , of gray levels i and j can be written as: 

ij
ij

iji j

t
p

t
=
∑ ∑

.                          (9) 

If s, 0 1s L≤ ≤ − , is a threshold, then s can partition the co-occurrence matrix 
into 4 quadrants, namely A, B, C and D (Figure 3). 

Let us define the following quantities: 

0 0
s s

A iji jP p
= =

= ∑ ∑ ,                      (10)  

1 1
1 1

L L
C iji s j sP p− −

= + = +
= ∑ ∑ .                     (11) 

From the occurrence-matrix, the corresponding sum of probabilities within  
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Figure 3. Quadrants of co-occurrence matrix. 

 
each individual quadrant is equal to one. Thus, the following cell probabilities 
for different quadrants are obtained:    

0 0

, for 0 , 0s s
ij ijA

ij
A iji j

p t
P i s j s

P t
= =

= = ≤ ≤ ≤ ≤
∑ ∑

,           (12) 

1 1
1 1

, for 1 1, 1 1ij ijC
ij L L

C iji s j s

p t
P s i L s j L
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= + = +

= = + ≤ ≤ − + ≤ ≤ −
∑ ∑

.   (13) 

The second-order entropy of the object can be defined as: 

( ) ( )2
20 0

1 log
2

A A
A ij ijj

s
i

sH s P P
= =

= − ⋅ ⋅∑ ∑ .                (14) 

Similarly, the second-order entropy of the background can be written as: 

( ) ( ) 1 12
21 1

1 log
2

L L C C
C ij iji s j sH s P P− −

= + = +
= − ⋅ ⋅∑ ∑ .              (15) 

Hence, the total second-order local entropy of the object and the background 
can be written as: 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
T A CH s H s H s= + .                    (16) 

The brightness gray level corresponding to the maximum of ( ) ( )2
TH s  gives 

the optimal threshold for object-background classification. 
In a correction note, Chanwimaluang and Fanpropose two modifications to 

improve the results of blood vessel extraction that is essential to the performance 
of image registration. These modifications were adopted also in our study be-
cause they experimentally proved superior to [21]. 

In the first modification a different definition of the co-occurrence matrix is 
adopted, increasing the local entropy values in vein structures. As mentioned, 
the co-occurrence matrix of an image shows the intensity transitions between 
adjacent pixels. The original co-occurrence matrix is asymmetric by considering 
the horizontally right and vertically lower transitions. They added some jittering 
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effect to the co-occurrence matrix that tends to keep the similar spatial structure 
but with much less variations, i.e. ij P Q

T t
×

  =  is computed as follows: 
For every pixel (l, k) in an image Ie:  

( )
( )
( )

, ,

, 1 ,

1, 1 ,

e

e

e

i I l k

j I l k

d I l k

=

= +

= + +

                      (17) 

1.ij idt t= +  

One may wonder whether the modified co-occurrence matrix still describes 
the original spatial structure. Actually, considering a smooth area in an image 
where j and d should be very close or identical, Equation (17) implicitly in-
troduces a certain smoothing effect and adds some structured noise to the 
co-occurrence matrix. The two matrices still share a similar structure that is im-
portant for the valid thresholding result. Also, the latter one has larger entropy 
with a much smaller standard deviation, which is more desirable for local en-
tropy thresholding. 

Moreover, the sparse foreground in selecting the optimal threshold is studied. 
The original threshold selection criterion aims to maximize the local entropy of 
foreground and background in a gray-scale image without considering the small 
proportion of foreground. Therefore, they proposed to select the optimal thre-
shold that maximizes the local entropy of the binarized image that indicates the 
foreground/background ratio. The larger the local entropy, the more balanced 
the ratio between foreground and background in the binary image. 

2.4. Post-Processing 

The resulting binary image tends to suffer from some misclassifications, i.e. out-
liers. 

Morphological dilation. The outliers can be drastically reduced using mor-
phological dilation [23] with a line structuring element oriented along the x-axis 
and elongated Y pixels. The output of this step is an image with fewer outliers 
but several misclassifications remain.  

Morphological filtering. In this substep, the binary image is processed by ap-
plying iteratively a morphological filter called majority [23]. This filter sets a 
pixel to 1 if five or more pixels in its 3-by-3 neighborhood have the value 1, oth-
erwise, it sets the pixel to 0. Majority filter is applied iteratively until the output 
image remains unchanged. This application clears the image from small misclas-
sified regions which appear in image due the presence of noise and smoothes the 
contours. 

3. Experimental Results 
3.1. Detection of Line-Patterns Vein Network 

In a typical infrared image of a human finger (Figure 4), several physical phe-
nomena appear during light propagation through human tissue, i.e. absorption,  
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Figure 4. Original image [6] [7]. 

 
diffusion, and scattering [24]. Moreover, the great number of substances con-
tained in the human body, the blood dynamics and the mass transfer phenome-
na complicate significantly the light transformation effects. Therefore, the solu-
tion of the inverse light propagation problem, i.e. the derivation of the tissue 
structure arterial from the image data becomes unrealistic. A totally different 
and popular approach, adopted also in the proposed vein-network detection 
method, use several image enhancements, feature extraction and path recon-
struction methods to derive the vein network, based on the fact that hemoglobin 
cells have strong absorption coefficient in the infrared light, and therefore the 
veins appear in the image darker than the other human tissues (Figure 4). 

A typical hardware used to acquire infrared images consist of a finger probe, 
an array of infrared leds with adjustable illumination, and a video camera focus 
on frame, as shown in Figure 5. The finger ROI is placed inside the probe, be-
tween the open frame and the array of infrared leds light source, which consists 
of a number of leds with adjustable illumination. The finger probe eliminates the 
influence of the external light sources.  

The original image was acquired under infrared light using an inexpensive 
CCD camera. The finger was placed between the camera and the light source 
which consists of a row of infrared leds (five elements) with adjustable illumina-
tion. The intensity of the leds adjusted as far as the illumination of the image was 
good enough. In the designed hardware each infrared led has adjustable intensi-
ty, giving very fine image quality, minimizing also the variance of the automatic 
exposure times of the image acquisition system. 

An excellent image illumination is not a strict requirement because the good 
performance of our algorithm remains also under adverse illumination condi-
tions. Due to the fact that hemoglobin has strong absorption in the infrared light 
the veins are shown in the image darker than the other human tissues. So, the 
goal of our study is to extract these dark regions, corresponding to veins, from 
the background, corresponding to the other human parts (tissue). The original 
image which was acquired as described here is shown in Figure 4. 

In this section, the results of the execution of our algorithm in the ROI image 
shown in Figure 2 are presented. For this image a window neighborhood of size 
9 × 9 is used which results in an 81 × 81 matrix M which can be inverted very 
quickly. The selection of the parameter λ does not affect the performance of our  
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Figure 5. A typical low-cost device for digital image acquisition of finger infrared images. 
 
algorithm, so is arbitrary select λ = 1. For the threshold computation the mod-
ified local entropy thresholding technique described in the correction note is 
used. In post-processing, a line structuring element with Y = 3 pixels length and 
oriented in the x-axis is selected.  

In Figure 6, the results of the execution of our algorithm in the ROI image of 
Figure 2. Figure 6(a) shows the non-smooth image obtained after the applica-
tion of the minimization results of the local Mumford-Shah model. Figure 6(b) 
shows the detection, with the help of the modified local entropy thresholding, of 
the concave regions of image, in which the veins tend to locate. In this binary 
image concave regions (candidate pixels to be detected as veins) shown in black 
while other tissue parts shown in white. Figure 6(c) shows the binary image af-
ter the application of the morphological dilation substep and the final image in 
Figure 6(d) shows the extracted finger vein pattern obtained after the final mor-
phological filtering substep.  

Finally, the results of the execution of our algorithm in another ROI image are 
presented. The same parameters as in the previous case are used. Figure 7 shows 
the results. 

3.2. Creation of Artificial Infrared Images 

A quantitative evaluation of the proposed algorithm in real infrared images is 
difficult to obtain due to the absence of manual segmentation data. The ex-
tremely low-contrast images increase the disagreement of human annotation.  
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(a)                      (b) 

 
(c)                      (d) 

Figure 6. (a) Non-smooth image, (b) Concave (black) and non-concave regions (white), 
(c) Morphological dilation, and (d) Majority filtering, extracted finger vein pattern. 
 

 
(a)                                  (b) 

 
(c)                                  (d) 

 
(e) 

Figure 7. (a) ROI image, (b) Non-smooth image, (c) Concave (black) and non-concave 
regions (white), (d) Morphological dilation, and (e) Morphological (majority) filtering, 
extracted finger vein pattern. 
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Therefore, the proposed method is evaluated using a small set of images each 
one created according to the following procedure. This construction involves the 
multiplication of two different layers. The first layer is a vein-like pattern. This 
pattern consists of connected lines of different widths with junctions and bifur-
cations which are drawn by hand. The second layer is the non-uniform image 
background which is created by applying an iterative spatial low-pass Gaussian 
filter with large window size to the original infrared image. The multiplication of 
the two layers gives the artificial infrared image used in the experiments. 

Evaluation rates. In the finger vessel segmentation process, each pixel is classi-
fied as tissue of the vessel. Consequently, there are four events, true positive 
(TP) and true negative (TN) when a pixel is correctly segmented as a vessel or 
non-vessel, and two misclassifications, a false negative (FN) appears when a pix-
el in a vessel is segmented in the non-vessel area, and a false positive (FP) when a 
non-vessel pixel is segmented as a vessel-pixel. 

Two widely known statistical measures are used for algorithm evaluation: sen-
sitivity and specificity, which are used to evaluate the performance of the binary 
segmentation outcome. The sensitivity is a normalized measure of true positives, 
while specificity measures the proportion of true negatives: 

sensitivity TP
TP FN

=
+

,                       (18) 

specificity TN
TN FP

=
+

.                       (19)  

The tradeoff between the two measures is graphically represented with the re-
ceiver operating characteristic curve (ROC), which is a plot of the sensitivity 
versus 1-specificity. Equivalently, the ROC curve can be represented by plotting 
the true positive rate (TPR) versus the false positive rate (FPR). These rates are 
the fractions of TPs and FPs:  

sensitivityTPTPR
TP FN

= =
+

,                   (20) 

1 1 specificityFP TNFPR
FP TN TN FP

= = − = −
+ +

.            (21) 

The accuracy of the binary classification is defined by:  

accuracy TP TN
P N
+

=
+

,                       (22) 

where P and N represent the total number of positives (vessel) and negatives 
(non-vessel) pixels in the segmentation process and is the degree of conformity 
of the estimated binary classification to the ground truth according to a manual 
segmentation. Thus, the accuracy is strongly related to the segmentation quality 
and for this reason is used to evaluate and compare different methods. 

Table 1 shows the evaluation rates in terms of sensitivity, specificity and ac-
curacy for ten artificial images of the image database while Figure 8 shows these 
images and the corresponding finger vein patterns extracted using the proposed 
algorithm. 
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Table 1. Evaluation rates (sensitivity, specificity, accuracy) for ten artificial images. 

Image name Sensitivity Specificity Accuracy 

Fv01.bmp 
Fv02.bmp 
Fv03.bmp 
Fv04.bmp 
Fv05.bmp 
Fv06.bmp 
Fv07.bmp 
Fv08.bmp 
Fv09.bmp 
Fv10.bmp 
Average 

Standard deviation 

0.877 
0.872 
0.897 
0.947 
0.910 
0.690 
0.927 
0.950 
0.922 
0.944 
0.894 
0.077 

0.927 
0.913 
0.918 
0.913 
0.921 
0.867 
0.931 
0.915 
0.889 
0.908 
0.910 
0.019 

0.914 
0.904 
0.913 
0.921 
0.919 
0.830 
0.930 
0.922 
0.896 
0.916 
0.907 
0.029 
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Figure 8. Ten artificial images (left) and the corresponding finger vein patterns (right) extracted using the proposed 
algorithm. 

 
Figure 9 shows one artificially created infrared image, the non-smooth im-

age estimated using Algorithm 2 (sub-image solution), the binary image ob-
tained after local entropy thresholding and the binary image after morpholog-
ical post-processing, which is the extracted finger vein pattern. Figure 10 shows 
the ROC curve obtained after varying the threshold, estimating the evaluation 
rates and plotting the results. 

In Table 2, the evaluation rates in terms of sensitivity, specificity and accuracy 
for artificial images with different degrees of blurriness are shown in order to 
indicate the robustness of the proposed algorithm under different smoothness 
while Figure 11 shows the artificial images and the extracted finger vein pat-
terns. 
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(a)                                             (b) 

 
(c)                                             (d) 

Figure 9. (a) Artificial image, (b) Non-smooth image, (c) Binary image obtained after local entropy thresholding, 
and (d) Binary image after morphological post-processing (finger vein pattern). 

 

 

Figure 10. ROC curve. 
 

Table 2. Evaluation rates (accuracy, sensitivity, specificity) for the artificial images. 

Image name Sensitivity Specificity Accuracy 

ArtificialVein.bmp 
ArtificialVein2.bmp 
ArtificialVein3.bmp 

P1.bmp 
P2.bmp 
P3.bmp 
P4.bmp 

0.878 
0.523 
0.614 
0.885 
0.810 
0.775 
0.735 

0.927 
0.946 
0.972 
0.843 
0.830 
0.814 
0.809 

0.915 
0.844 
0.886 
0.853 
0.825 
0.805 
0.791 
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(a)                                             (b) 

 
(c)                                             (d) 

 
(e)                                            (f) 

 
(g)                                            (h) 

 
(i)                                             (k) 

 
(l)                                             (m) 
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(n)                                             (o) 

 
(p) 

Figure 11. (a, c, e, g, i, l, n) Artificial image with different degree of distortion, (b, d, f, h, k, m, o) Corresponding 
finger vein patterns, and (p) Ground truth. 

 
From the images shown in Figure 11 and from the results presented in Table 

2, it is evident that the proposed algorithm is robust against different degrees of 
blurriness.  

4. Conclusions 

In this paper, an efficient finger vein pattern extraction algorithm is presented. 
The algorithm is based on the minimization of the objective function of the 
Mumford-Shah model and the local application of its results. This application 
produces a non-smooth image where veins are located in concave regions. De-
tection of these regions is achieved via a modified local entropy thresholding tech-
nique. The preliminary segmentation result was unsatisfactory due to the pres-
ence of some outliers (misclassifications). 

So, a final morphological post-processing result followed in order to clean the 
image from the misclassifications and produce a robust finger vein pattern. Fu-
ture work includes the improvement of our imaging device in order to acquire im-
ages with less shading and noise artifacts, something that will guarantee the suc-
cessful application of our algorithm in the majority of cases. In the case of images 
with high quality, the preprocessing and/or post-processing step can be skipped. 
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Appendix 

Assuming an image I0n of N rows and M columns, the function Jc(I) in the dis-
crete space becomes: 

( ) 22
01 1 1 1

1
2 2

N M
c ni j i j

N MJ I I I Iλ
= = = =

= ⋅ ∇ + ⋅ −∑ ∑ ∑ ∑ ,          (A1) 

where, 
22

2 I II
x y

 ∂ ∂ ∇ = +   ∂ ∂   
.                     (A2) 

If the partial derivatives are approximated using local differences: 

( ) ( )1, ,I I x y I x y
x
∂

= + −
∂

 and ( ) ( ), 1 , ,I I x y I x y
y
∂

= + −
∂

          (A3) 

and Equations (A3) are substituted in Equation (A2) and in the sequel Equation 
(A2) back to Equation (A1), the following objective function obtained: 

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )

1 1 2 2

1 1

2
0

1
1 1

1

1 1, , , 1 ,
2

, ,
2

c x y

nx y

N M

N M

J I I x y I x y I x y I x y

I x y I x yλ

− −

= =

−

= =

−

 
  

  

= ⋅ + − + + −

+ ⋅ −

∑ ∑

∑ ∑
 (A4) 

The minimum of Equation (A4) regarding to I(., .) can be derived in a close-form 
by differencing the second-order, positively defined function:  

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )

2 21 1
1 1

2
01 1

1 1

1 1, , , 1 ,
2

, , 0,
2

c
x y

nx y

N M

N M

J I
I x y I x y I x y I x y

I I

I x y I x y
I

λ

= =

− −

−

= =

−

∂ ∂
= ⋅ + − + + −

∂ ∂
∂

+

 
  

 ⋅ − =
∂ 

∑ ∑

∑ ∑
 

( ) ( ) ( ) ( ) ( ) ( )
( ) [ ] [ ]0

4 , 1, , 1 , 1 1,

, , 1, 1 , 1, 1 .n

I x y I x y I x y I x y I x y

I x y x N y M

λ

λ

⇒ + ⋅ − + − + − − − −

= ⋅ ∀ ∈ − ∈ −
  (A5) 

The image I at the minimum of Equation (A1) is a linear system of N × M 
equations: 

0nG λ⋅ = ⋅I I .                         (A6)  

Matrix G is a sparse Hermitian matrix dependent only on parameter λ, I is the 
vector form of the unknown image I(., .) and I0n is the vector form of the norma-
lized image I0n(., .). If matrix G is invertible, the brightness of the unknown im-
age is derived from the solution of the system of linear equations: 

( )1
0nG λ−= ⋅ ⋅I I .                       (A7) 

The block tridiagonal matrix G is invertible if the determinant is non-zero. 
From the optimization criterion, the new image I(., .) is a smooth image similar 
to the normalized I0n(., .). 

Inverse of a block tridiagonal matrix 
Tridiagonal matrices often arise in many problems in applied mathematics, 

physics and engineering and inversion methods are an important topic as re-
ferred in [25]. Although a lot of work has been done in the past [26] [27] [28] 
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[29], the investigation on the inverses of the block tridiagonal matrices is poor. 
Recently, an inversion method of symmetric block tridiagonal matrices was pre-
sented in [28], based mainly on sub-matrix multiplications. With the contem-
porary development of high-powered computing, the fast inversion algorithm is 
more appropriate than the basic algorithms met in linear algebra [30]. The in-
version of the matrix G is obtained using an iterative algorithm presented in 
[25].  

In the following, the twisted block decompositions of the block tridiagonal 
matrices are presented, which leads to a computing sequence of the sub-matrix 
elements of the inverse tridiagonal matrix. These direct-form equations are de-
rived according to the special structure of the matrix G.  

The block tridiagonal matrices studied in [25] follows the form: 

1 1

2 2 2

1 1 1

• • •

k k k

k k

B C O O O
A B C O O

G O O
O O A B C
O O O A B

− − −

− 
 − − 
 =
 

− − 
 − 

,               (A8) 

where Ai, Bi and Ci are all matrix sequences of order m.  
The LU decomposition of the tridiagonal matrices has been presented in [31]. 

In [25], the twisted block decompositions of matrix G are presented. According 
to the special structure of the twisted block decompositions, an iterative formula 
of computing the column block elements of the inverse matrix can be obtained. 
The twisted block LU decomposition of G can be obtained by Equation (A9) as 
stated and proved in the following lemma. 

Lemma 1. Let G be a block tridiagonal matrix in the form of Equation (A8), 
then for each j ( 1,2, ,j k=  ), a twisted block LU decomposition of G can be 
formulated also as: 

1

2 2

1

1

1

1

1

• •

• •

•
•

,
•
•

j j j j j

k k

k

j

j

k

H O O O O O O
L H O O O O O
O O O O O

G L U O O L H L O O
O O O O O
O O O O O H L
O O O O O O H

I U O O O O O
O O O O O O
O I U O O O
O O O I O O O
O O O U I O
O O O O O O
O O O O O U I

+

−

−

−

 
 − 
 
 

= = − − 
 
 

− 
 
 

− 
 
 
 −
 
⋅  
 
 
 
 − 

 

        (A9)  

where Li, Hi, and Ui are matrix sequences estimated by the iterative Algorithm 1. 
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Thus, Equation (A6) can be rewritten in a matrix form as: 
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, (A10) 

and matrix G can be minimized using Algorithm 1.  
In the case of the inversion of matrix G, the corresponding block matrices are 

simplified to 1 2

4 1 0
1 4 1

0 1 4
kB B B B

λ
λ

λ

+ − 
 = = = = = − + − 
 − + 

 ,  

1 2

1 0 0
0 1 0
0 0 1

kA A A A I
 
 = = = = = =  
  

  and  

1 2

1 0 0
0 1 0
0 0 1

kC C C C I
 
 = = = = = =  
  

 .  

In this case, the iterative LU decomposition algorithm for k = 3 (the value of k 
is selected only for presentation simplicity) becomes: 

j = 1 (i = 1, 2, 3): 

1 2 3L L L I= = =  

( ) 11
1U B B

−−= − , 1
2U B−=  

( ) 11
1H B B B

−−= − − , 1
2H B B−= − , 3H B=  

1
11 1X H −= , 21 1 11X U X= ∗ , 31 2 21X U X= ∗  

j = 2 (i = 1, 2, 3): 

1 2 3L L L I= = =  

1
1U B−= , 1

2U B−=  

1H B= , 1
2 2H B B−= − ∗ , 3H B=  

12 1 22X U X= ∗ , 1
22 2X H −= , 32 2 22X U X= ∗  

j = 3 (i = 1, 2, 3): 

1 2 3L L L I= = =  
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1
1U B−= , ( ) 11

2U B B
−−= −  

1H B= , 1
2H B B−= − , ( ) 11

3H B B B
−−= − −  

13 1 23X U X= ∗ , 23 2 33X U X= ∗ , 1
33 3X H −=  

and the inverse of matrix G is: 

( ) ( )
( ) ( )
( ) ( )

11 12 12
1

21 22 23

31 32 33

1 11 1
1 2 1 1

1 1
1 1 2 1 1

1 11 1
1 1 2 1

X X X
X G X X X

X X X

B K B K B K B K

K B K K K B K

B K B K B K B K

−

− −− −

− −

− −− −

 
 = =  
  

 − −
 
 =

⋅ ⋅ ⋅

⋅ ⋅− −
 

− − ⋅ ⋅ ⋅ 

,    (A11) 

where ( ) 11
1K B B

−−= −  and ( ) 11
2 2K B B

−−= − ⋅ . 
Algorithm 1. LU decomposition of tridiagonal matrices. 

H1 = B1 
Hk = Bk 

for j = 1,k 
    for i = 1,k 
        if (i<j) 
            Li = Ai 
            if (i>1) 
                Hi = Bi-Li*Ui-1 
            end 
            Ui = Hi

-1*Ai (*) 
        end 
        if (i>j) 
            Li = Ci-1 
            if (i> = k-1) and (i< = j+1) 
                Ui = Hi+1

-1*Ai+1 
                Hi = Bi-Li+1*Ui 
            end 
        end 
        if (i = j) 
            Li = Ai 
            Ui = Hi+1

-1*Ai+1 
            Hi = Bi-Li*Ui-1-Li+1*Ui 
        end 
    end 
end 

The proof is given in [25]. In the same paper, the expression (*) has been in-
correctly printed as 1

i i iU H B−= ∗ . After the twisted LU decomposition, the 
block tridiagonal matrices of the inverse of matrix G can be derived using an 
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iterative algorithm as stated in the following theorem.  
Theorem 1. Let G be a block tridiagonal matrix in the form of Equation A(10) 

and let ( )1
ijG X X− = = , where ( ), 1,2, ,ijX i j k=   are all square matrices of 

order m, then the jth ( 1,2, ,j k=  ) column block elements of X can be derived 
by the following matrix iterative formulas: 

for j = 1,k 
    Xjj = Hj

-1 
    for i = 1,k 
        if (i<j) 
            Xij = Ui*Xi+1j 
        end 
        if (i>j) 
            Xij = Ui-1*Xi-1j 
        end 
    end 
end 

The proof is also given in [25]. 
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