
Journal of Computer and Communications, 2024, 12, 67-79
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2024.122005 Feb. 21, 2024 67 Journal of Computer and Communications

Rapid Prototype Development Approach for
Genetic Programming

Pei He1, Lei Zhang2

1School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, China
2School of Cyberspace Security, Guangzhou University, Guangzhou, China

Abstract
Genetic Programming (GP) is an important approach to deal with complex
problem analysis and modeling, and has been applied in a wide range of areas.
The development of GP involves various aspects, including design of genetic
operators, evolutionary controls and implementations of heuristic strategy,
evaluations and other mechanisms. When designing genetic operators, it is ne-
cessary to consider the possible limitations of encoding methods of individuals.
And when selecting evolutionary control strategies, it is also necessary to bal-
ance search efficiency and diversity based on representation characteristics as
well as the problem itself. More importantly, all of these matters, among others,
have to be implemented through tedious coding work. Therefore, GP develop-
ment is both complex and time-consuming. To overcome some of these diffi-
culties that hinder the enhancement of GP development efficiency, we explore
the feasibility of mutual assistance among GP variants, and then propose a
rapid GP prototyping development method based on πGrammatical Evolu-
tion (πGE). It is demonstrated through regression analysis experiments that
not only is this method beneficial for the GP developers to get rid of some te-
dious implementations, but also enables them to concentrate on the essence
of the referred problem, such as individual representation, decoding means
and evaluation. Additionally, it provides new insights into the roles of individ-
ual delineations in phenotypes and semantic research of individuals.

Keywords
Genetic Programming, Grammatical Evolution, Gene Expression
Programming, Regression Analysis, Mathematical Modeling, Rapid
Prototype Development

1. Introduction

Genetic Programming (GP) [1] is an automatic programming approach applied

How to cite this paper: He, P. and Zhang, L.
(2024) Rapid Prototype Development Ap-
proach for Genetic Programming. Journal of
Computer and Communications, 12, 67-79.
https://doi.org/10.4236/jcc.2024.122005

Received: January 7, 2024
Accepted: February 18, 2024
Published: February 21, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2024.122005
https://www.scirp.org/
https://doi.org/10.4236/jcc.2024.122005
http://creativecommons.org/licenses/by/4.0/

P. He, L. Zhang

DOI: 10.4236/jcc.2024.122005 68 Journal of Computer and Communications

in a wide range of application areas, such as circuit design, mathematical mod-
eling, data mining, image analysis, regression analysis, natural disaster predic-
tion, etc. [2] [3] [4] [5] [6]. Its fundamental design idea comes from a genetic
algorithm [7] [8], which is derived from such a rule as “survival of the fittest”, that
is, evolving constantly populations of individuals, followed by the evaluations,
and finally obtaining the desired solution with the best fitness value to some given
problem. With the rapid development of computing technology, this search-based
method has become one of the most important tools to deal with many optimi-
zation problems.

GP algorithm consists of 5 steps: a) constructing an initial population of indi-
viduals associated with approximate solutions to some given problem; b) eva-
luating individuals in the population for their fitness values and algorithmic
termination condition. If the condition holds, go to step e); otherwise, execute
the next step; c) generating a new generation of individuals on the basis of ge-
netic operators and strategies; d) go to step b); e) regarding the individual with
the best fitness value as the desired result. This is the common structure of vari-
ous GP systems.

Up to now, there appear a great many GP variants, which include Grammati-
cal Evolution (GE) [9] [10] [11], Gene Expression Programming (GEP) [12] [13]
[14], Multi-Expression Programming (MEP) [3] [14], Cartesian Genetic Pro-
gramming (CGP) [3] [15] [16], etc. Generally speaking, both their designs and
implementations will be concerned with individual representations, genetic oper-
ators, evolutionary controls, evaluations, and the like. Consequently, novel GPs
designed for some specific problems have the characteristics of structural con-
sistency, but it will be very time-consuming and laborious to design and develop
them from scratch.

In this paper, we intend to make a preliminary discussion on the rapid proto-
typing development of Genetic programming. To our knowledge, similar work
related to it is relatively rare. Since many GP variants share the same structure,
we manage to build a suitable bridge between them, so that the rapid prototyp-
ing development conception and target GP variants can be explored and tested
on certain public GP platforms.

2. Basic Principle

Representation plays an important role in GP system. As Rothlauf put it in ref-
erence [17] without representations, no use of genetic and evolutionary algorithms
is possible. Several other concepts related to genotype representations range
from decoding, solution space or phenotypic space to individual evaluation.
Search, control and other related operations are primarily applied in genotype
space. After individuals have been obtained from some constrained rules, they
are generally interpreted as an approximate solution in phenotype space by de-
coding method, and whether or not it is a good result depends on the fitness
evaluation.

https://doi.org/10.4236/jcc.2024.122005

P. He, L. Zhang

DOI: 10.4236/jcc.2024.122005 69 Journal of Computer and Communications

Consider GP1 and GP2 as two GP systems with the same solution space, re-
gressively analyzed sample dataset S, and evaluation criteria E: SolutionSpace ×
{S} → Real, I1 and I2 as their individual spaces, D1: I1 → SolutionSpace and D2: I2
→ SolutionSpace as their decoding methods respectively, then what is the rela-
tionship, mathematically speaking, between their search processes? Can they help
each other to some extent?

In principle, we can establish the relation Equation (1) for these two search-based
GP systems, where ε stands for the error term.

()()()

()()()
1 1

2 2

1 1 1
. .

2 2 2
. .

arg , ,

arg , ,

s t a I

s t a I

E D OPT E D a S S

E D OPT E D a S S ε

∈

∈

  
  

  
  

= +  
  

 (1)

If having h: I1 → I2, then there is Equation (2):

()()()

()()()()
1 1

1 1

1 1 1
. .

2 2 1
. .

arg , ,

arg , ,

s t a I

s t a I

E D OPT E D a S S

E D h OPT E D h a S S ε

∈

∈

  
  

  
    ′= +       

 (2)

()()()

()()()()

2

1 1
1

1 1

1 1 1
. .

2 2 1
. .

arg , ,

arg , ,

D h

s t a I
D

s t a I

E D OPT E D a S S

E D h OPT E D h a S S

∈

∈

  
  

  

   
=        

 (3)

Since the non-error term on the right side of Equation (2) can be formally ob-
tained from the left side of Equation (2) by replacing its two occurrences of D1
with D2h, we can formally get Equation (3). This means the calculation of the
right side of Equation (3) can be approximately computed in GP1 through subs-
titution of D2h for D1 in GP1. Since GP1 embraces services many other GPs need,
we call it the basic GP development platform.

It is worth noticing that D2 and h play a critical role in rapid prototype devel-
opment of GP system. In Section 3, we will solve the selection problem of h, a
mapping from individuals of the basic GP platform onto that of target GPs.

3. Proposed Approach

The first step of the proposed method is to choose πGrammatical Evolution
(πGE) [18] as the basic GP platform. GE is a GP variant with variable length ge-
notypes [10] [19] [20]. One of its advantages is that it can use a context-free
grammar to describe phenotypes of individuals, therefore theoretically generat-
ing programs in an arbitrary programming language. However, GE is usually
implemented in terms of leftmost derivations. For example, let δ = αAβ be a
sentential form of some grammar G = (VN, VT, S, P) [21] [22], where VN is a fi-
nite set of non-terminal symbols, VT on the contrary a finite set of terminals.

https://doi.org/10.4236/jcc.2024.122005

P. He, L. Zhang

DOI: 10.4236/jcc.2024.122005 70 Journal of Computer and Communications

Any derivation of sentential form in G will be derived from the start symbol S
based on some production rule in P. So, the leftmost derivation of αγβ from αAβ
with respect to A ::= γ in P is the substitution of γ for the leftmost non-terminal ,
say A, in δ. In order to realize this leftmost derivation, i.e. αAβ => αγβ, in GE
whose genotype consists of codons, the production A ::= γ selected is deter-
mined by Equation (4), where the number of alternative productions for A is
denoted as NumChoices(A).

The production rule selected
= (value of the current codon) mod NumChoices(A) (4)

To enhance the flexibility of derivations, a novel encoding method which make
codons to encode both expanded non-terminal and production information to
be used, i.e. codon = (v1, v2), achieves the desired efficacy. This improvement
leads to the πGE. The algorithm structure is similar to that of GP, and the detail
can be found in [18]. The major difference between πGE and canonical GE lies
in the fact that both the expanded non-terminal, say X, and candidate produc-
tion rule of X, selected for the derivations are determined by Equations (5) and
(6). cNumNonterminals used below is the number of all non-terminals occur-
ring in current sentential form. Table 1 demonstrates an example grammar and
a derivation of a Boolean expression in the case of the grammar.

The nonterminal X expanded = v1 mod cNumNonterminals + 1 (5)

The candidate production of X = v2 mod NumChoices(X) (6)

What we should deal with in the second step of the proposed approach is to
effectively delineate individuals of objective GP using a context-free grammar,
and treat them as sentences of the corresponding language. Once πGE has been
selected as the basic GP platform, as is done in this paper, there come a lot of

Table 1. Example derivation of a Boolean expression.

Value of
Codon

Context-free Grammar
B ::= V (0) O ::= and (0) V ::= t (0)
B ::= (BOB) (1) O ::= or (1) V ::= f (1)
B ::= ~B (2)
Sentential

Form
Number of

Nonterminals
Nonterminal

Expanded
Rule

Selected
Number of

Choices

10 31 B 1 B B ::= (BOB) 3

5 11 (BOB) 3 2nd B B ::= ~B 3

31 3 (BO ~B) 3 O O ::= or 2

14 9 (B or ~B) 2 1st B B ::= V 3

22 3 (V or ~B) 2 V V ::= f 2

45 6 (f or ~B) 1 B B ::= V 3

88 8 (f or ~V) 1 V V ::= t 2

73 56 (f or ~t) 0

Notes: Nonterminal and production rule are determined by Equations (5) and (6).

https://doi.org/10.4236/jcc.2024.122005

P. He, L. Zhang

DOI: 10.4236/jcc.2024.122005 71 Journal of Computer and Communications

mappings from πGE onto individual space of the target GP system. In the present
paper, Formulas (5) and (6) are also used to define the mapping relation h dis-
cussed in Section 2.

Finally, as far as the third step is concerned, we will focus on the program-
ming of individual decoder and evaluation component which play an essential
part in all GP designs. After completing the previous work, the rapid GP proto-
typing development system without extra coding requirements will be success-
fully achieved. In addition, the decoding process may also encounter such prob-
lem as incomplete mapping of individuals, that is, the derived sentential form
still contains some non-terminal symbols, therefore, it is not a valid expression.
The measure taken here is to design and implement default mapping rules (see
complete mapping used in [19] [20]) compatible with description grammar of
individuals for dealing with it. The following provides an overview of the rapid
prototype development procedure:

a) Implementing a basic GP prototyping development platform like πGE;
b) Specifying target GP individuals using a context-free grammar;
c) Designing targeted individual decoders, evaluation components and default

mapping rules in terms of sample dataset and results of steps a and b;
d) Running programs and analyzing the obtained results.

4. Experiment and Analysis

This section intends to conduct regression analysis on problems from the litera-
ture [10] [23] in the context of the above method. The observation dataset is
sampled in the same way as that of [10] at 20 observation points of variable y like
{−1, −0.9, −0.8, −0.76, −0.72, −0.68, −0.64, −0.4, −0.2, 0, 0.2, 0.4, 0.63, 0.72, 0.81,
0.90, 0.93, 0.96, 0.99, 1} in the range of [−1, 1].

() 4 3 2f y y y y y= + + + (7)

() ()0.3 sin 2g y y yπ= (8)

() 2 31 3 3h y y y y= + + + (9)

To demonstrate that developing GP on rapid prototyping development system
is of easiness and efficiency, we have designed and implemented two GP sys-
tems, which can be functionally categorized into the standard tree-based GP and
the improved GEP (ImpGEP) [24] according to their decoding means. Having
implemented πGE as the basic development platform, experiments with them on
Formula (7) through Formula (9) can be carried out. The individual descrip-
tions, default mapping rules and decoding algorithms used by these GPs are
shown in Figures 1-4, respectively. Except that their decoding methods are dif-
ferent from each other and representations should be specified by some gram-
mars, other components such as evolutionary controls, genetic operators im-
plemented in πGE, the basic GP development platform, are shared among vari-
ous objective GPs. Major parameters employed here are given in Table 2.

Experiment with GP on the regression problems

https://doi.org/10.4236/jcc.2024.122005

P. He, L. Zhang

DOI: 10.4236/jcc.2024.122005 72 Journal of Computer and Communications

Table 2. Parameters used in these experiments.

 Runs GenSize PopSize MxLength MnLength FixLength ProCro ProMut

GP
ImpGEP

100
100

100
100

50
50

50
50

20
20

no
yes

0.9
0.9

0.15
0.15

Notes: MxLength = Max Length of individual; FixLength = Fixed Length individual; Pro-
Cro = Probability of Crossover.

Figure 1. Grammar and default mapping for individuals of tree-based GP.

Figure 2. Decoder of the improved GEP with its decoded expressions.

1) Brief comment on GP
Classical GP [1] is proposed by Koza for automatically programming com-

puter programs to solve given problems. The major idea embedded in GP is to
decode the evolved tree-based individuals into expressions on the basis of its
five-step algorithm framework (see Section 1). On the one hand, individuals can

https://doi.org/10.4236/jcc.2024.122005

P. He, L. Zhang

DOI: 10.4236/jcc.2024.122005 73 Journal of Computer and Communications

Figure 3. Grammar and default mapping for individuals of the improved GEP.

Figure 4. Decoder for individuals of the improved GEP.

be constantly generated from the algorithm, decoding mechanism within it is
responsible for the transformation of them into expressions on the other. Since a
context-free grammar can represent tree-based embedded relations between
sub-expressions, we introduce it to specify both genotypes and phenotypes. In
this case, the phenotypic space is the same as the language obtained. Naturally,
the identity mapping is suitable for the decoder.

2) Experimental process
Having implemented the required πGE, our major work towards solving the

above problems by GP includes 2 steps:
a) Designing a grammar as well as its corresponding default mapping rule as

shown in Figure 1, so as to specify the individuals of concern;
b) Programming both the decoder and evaluation component so that pheno-

types and fitness values can be decoded from individuals and well evaluated, re-
spectively.

In this experiment, the decoder and evaluation mechanism are the identity map-
ping and the least square error principle, respectively.

https://doi.org/10.4236/jcc.2024.122005

P. He, L. Zhang

DOI: 10.4236/jcc.2024.122005 74 Journal of Computer and Communications

Experiment with the Improved GEP on the regression problems
1) Brief comment on GEP
GEP [12] is a linearly represented GP variant with fixed-length individuals of

terminal symbols and functions. Its decoding method as partly given in Figure 2
is impressive. It transforms individuals into expression trees (ET trees) at first,
and followed by traversal operations on them to get the expected expressions [12].
However, for the sake of simplicity, the decoder M1 used here is designed ac-
cording to the depth-first decoding mode.

Another feature is its structural constraint of individuals, that is to say, each
individual is composed of a head and a tail that satisfy such length restriction as
t = h * (n − 1) + 1, where t, h represent length of tail and head, and n is the
maximum arity of functions involved. Considering that the decoder of canonical
GEP can only find one possible solution in each run, we have made an im-
provement for figuring out many expressions from genotype reusing technique
[24] on it so that the wining chance can be enhanced. For instance, the improved
GEP tends to reuse genotype information through continuously applying origi-
nal GEP decoding approach (say M1 in Figure 2) to every element (or word) of
an individual as shown in Figure 2, thus obtaining many alternative solutions.
The improved decoder M2 is also declared in Figure 4.

2) Experimental process
Having finished the implementation of πGE as basic development platform,

we have the following problem solving process:
a) Designing both the grammar and the corresponding default mapping as

given in Figure 3 for specifying the individuals of concern;
b) Coding both the decoder and evaluation component so as to decode and

evaluate individuals and their fitness values, respectively.
In this experiment, evaluation criterion is the least square error. Given the fol-

lowing three functions, the decoder of the improved GEP, denoted M2 in Figure
2, can be realized by applying the function DecodeOfDepthFirstGEP firstly to
different elements of an individual to get many candidate expressions, then eva-
luating and choosing the fittest expression as the desired solution. The implemen-
tation of M2 is shown in Figure 4.

DecodeOfDepthFirstGEP(Individual, cPos): A function to construct an expres-
sion from the element indexed by cPos in the individual.

GetFuncOrOpnd(Individual, pos): A function to get a element/word indexed
by pos in the individual.

LeastSquareError(p, q, 'y', Points): A function to compute the least square er-
ror between functions p and q. 'y' stands for the variable of them. The variable
Points is a list of the observation points of y.

Finally, running the decoders and evaluation components obtained above in
the context of πGE, sample dataset and grammars given above will result in Fig-
ure 5 and Figure 6. The evaluation procedure used here is realized on the least
square error principle. It follows from these results that the solutions obtained
from each rapid developed method can gradually approach to the optimization

https://doi.org/10.4236/jcc.2024.122005

P. He, L. Zhang

DOI: 10.4236/jcc.2024.122005 75 Journal of Computer and Communications

(a)

(b)

(c)

Figure 5. Solving f, g, h by GP and the improved GEP. (a) Solving f, g, h by GP; (b) Solv-
ing f, g, h by GEP; (c) Solving f by GP and GEP.

https://doi.org/10.4236/jcc.2024.122005

P. He, L. Zhang

DOI: 10.4236/jcc.2024.122005 76 Journal of Computer and Communications

(a)

(b)

Figure 6. Solving g, h by GP and the improved GEP. (a) Solving g by GP and GEP; (b)
Solving h by GP and GEP.

goals when applying that method to solve the regression problems of concern.
Additionally, it can also be seen from Figure 6 that in the given environment of
these experiments, the tested GP outperforms the GEP variant on g and h with
respect to the fitness values, and from Figure 5(a) and Figure 5(b) that the re-
gression analysis on g seems easier than on f and h. With the help of the pro-
posed method, we can quickly establish a GP prototyping system and simulate it
on πGE, the basic GP development platform. Besides, this approach also provides
with a common environment for comparisons among many GPs.

Although the number of examples given here is small, we can get some im-

https://doi.org/10.4236/jcc.2024.122005

P. He, L. Zhang

DOI: 10.4236/jcc.2024.122005 77 Journal of Computer and Communications

portant cognition and enlightenment from them. So far, there are many GP va-
riants. The essential intention implied in the abovementioned method and effect
is to construct and search the target semantic objects in the phenotypic space by
changing both the search space and corresponding decoders. As such, this me-
thod not only helps designers to improve the efficiency of GP research and de-
velopment, but also helps to use genotype space, an unpredictable kaleidoscope,
to examine and understand semantic objects and domain knowledge.

5. Conclusion

We have made a preliminary investigation into rapid GP prototype development
and applications in the present paper, and more systematical and in-depth issues
like how to integrate formal structures and semantics into it will become our fu-
ture work. The major advantage of using this approach to design and implement
GP is that designers and implementers can ignore many implementation details
and concentrate their energy on the essence of the problem, such as represen-
tation, decoding method and population evaluation. For representation, what we
need to do is to define individuals by designing a context-free grammar. And
decoder and evaluation procedure are the components to be programmed only
provided mapping relation between the basic development platform and target
GPs is determined. These GE-based task segmentation methods are of great theo-
retical and practical significance to solving complex practical problems and stud-
ying high-performance computing of genetic programming.

Acknowledgements

This work was supported partly by the National Natural Science Foundation of
China under Grant No. 61977018.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Koza, J.R. (1992) Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge, MA.

[2] Zhong, J.H., Feng, L. and Ong, Y.-S. (2017) Gene Expression Programming: A Survey.
IEEE Computational Intelligence Magazine, 12, 54-72.
https://doi.org/10.1109/MCI.2017.2708618

[3] Oltean, M., Groşan, C., Dioşan, L. and Mihăilă, C. (2009) Genetic Programming with
Linear Representation: A Survey. International Journal on Artificial Intelligence Tools,
18, 197-238. https://doi.org/10.1142/S0218213009000111

[4] Angelis, D., Sofos, F. and Karakasidis, T.E. (2023) Artificial Intelligence in Physical
Sciences: Symbolic Regression Trends and Perspectives. Archives of Computational
Methods in Engineering, 30, 3845-3865.
https://doi.org/10.1007/s11831-023-09922-z

https://doi.org/10.4236/jcc.2024.122005
https://doi.org/10.1109/MCI.2017.2708618
https://doi.org/10.1142/S0218213009000111
https://doi.org/10.1007/s11831-023-09922-z

P. He, L. Zhang

DOI: 10.4236/jcc.2024.122005 78 Journal of Computer and Communications

[5] Bi, Y., Xue, B., Mesejo, P., Cagnoni, S. and Zhang, M. (2023) A Survey on Evolutio-
nary Computation for Computer Vision and Image Analysis: Past, Present, and Fu-
ture Trends. IEEE Transactions on Evolutionary Computation, 27, 5-25.
https://doi.org/10.1109/TEVC.2022.3220747

[6] Hosseini, M. and Lim, S. (2022) Gene Expression Programming and Data Mining
Methods for Bushfire Susceptibility Mapping in New South Wales, Australia. Natu-
ral Hazards, 113, 1349-1365. https://doi.org/10.1007/s11069-022-05350-7

[7] Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. The University
of Michigan Press, Ann Arbor, MI.

[8] Mitchell, M. (1996) An Introduction to Genetic Algorithm. MIT Press, Cambridge.

[9] Brabazon, A., O’Neill, M. and McGarraghy, S. (2015) Grammatical Evolution. In:
Natural Computing Algorithms, Springer, Berlin, Heidelberg, 357-373.
https://doi.org/10.1007/978-3-662-43631-8_19

[10] O’Neill, M. and Ryan, C. (2001,) Grammatical Evolution. IEEE Transactions on Evo-
lutionary Computation, 5, 349-358. https://doi.org/10.1109/4235.942529

[11] Bartoli, A., Castelli, M. and Medvet, E. (2020) Weighted Hierarchical Grammatical
Evolution. IEEE Transactions on Cybernetics, 50, 476-488.
https://doi.org/10.1109/TCYB.2018.2876563

[12] Ferreira, C. (2001) Gene Expression Programming: A New Adaptive Algorithm for
Solving Problems. Complex Systems, 13, 87-129.

[13] Ferreira, C. (2006) Automatically Defined Functions in Gene Expression Program-
ming. In Nedjah, N., Mourelle, L.d.M. and Abraham, A., Eds., Genetic Systems Pro-
gramming, Vol. 13, Springer, Berlin, Heidelberg, 21-56.
https://doi.org/10.1007/3-540-32498-4_2

[14] Oltean, M. and Grosan, C. (2003) A Comparison of Several Linear Genetic Program-
ming Techniques. Complex Systems, 14, 285-313.
https://wpmedia.wolfram.com/uploads/sites/13/2018/02/14-4-1.pdf

[15] Miller, J.F. (2020) Cartesian Genetic Programming: Its Status and Future. Genetic
Programming and Evolvable Machines, 21, 129-168.
https://doi.org/10.1007/s10710-019-09360-6

[16] Miller, J.F. (2011) Cartesian Genetic Programming. In: Miller, J., Ed., Cartesian Ge-
netic Programming, Springer, Berlin, Heidelberg, 17-34.
https://doi.org/10.1007/978-3-642-17310-3_2

[17] Rothlauf, F. (2006) Representations for Genetic and Evolutionary Algorithms. In: Re-
presentations for Genetic and Evolutionary Algorithms, Springer, Berlin, Heidelberg.
https://link.springer.com/content/pdf/10.1007/3-540-32444-5_2.pdf

[18] Fagan, D., Nicolau, M., O’Neill, M., Galván-López, E., Brabazon, A. and McGarraghy,
S. (2010) Investigating Mapping Order in πGE. IEEE Congress on Evolutionary Com-
putation, Barcelona, 18-23 July 2010, 1-7.

[19] He, P., Johnson, C.G. and Wang, H.F. (2011) Modeling Grammatical Evolution by
Automaton. Science China Information Sciences, 54, 2544-2553.
https://doi.org/10.1007/s11432-011-4411-8

[20] He, P., Deng, Z.L., Gao, C.Z., Wang, X.N. and Li, J. (2017) Model Approach to
Grammatical Evolution: Deep-Structured Analyzing of Model and Representation.
Soft Computing, 21, 5413-5423. https://doi.org/10.1007/s00500-016-2130-1

[21] Hopcroft, J.E., Motwani, R. and Ullman, J.D. (2008) Introduction to Automata Theory,
Languages, and Computation. 3rd Edition, Pearson Education, Inc., San Antonio,
TX.

https://doi.org/10.4236/jcc.2024.122005
https://doi.org/10.1109/TEVC.2022.3220747
https://doi.org/10.1007/s11069-022-05350-7
https://doi.org/10.1007/978-3-662-43631-8_19
https://doi.org/10.1109/4235.942529
https://doi.org/10.1109/TCYB.2018.2876563
https://doi.org/10.1007/3-540-32498-4_2
https://wpmedia.wolfram.com/uploads/sites/13/2018/02/14-4-1.pdf
https://doi.org/10.1007/s10710-019-09360-6
https://doi.org/10.1007/978-3-642-17310-3_2
https://link.springer.com/content/pdf/10.1007/3-540-32444-5_2.pdf
https://doi.org/10.1007/s11432-011-4411-8
https://doi.org/10.1007/s00500-016-2130-1

P. He, L. Zhang

DOI: 10.4236/jcc.2024.122005 79 Journal of Computer and Communications

[22] Aho, A.V., Lam, M.S., Sethi, R. and Ullman, J.D. (2007) Compilers: Principles, Tech-
niques, and Tools. 2nd Edition, Pearson Education, Inc., San Antonio, TX.

[23] Gupt, K.K., Raja, M.A., Murphy, A., Youssef, A. and Ryan, C. (2022) GELAB—The
Cutting Edge of Grammatical Evolution. IEEE Access, 10, 38694-38708.
https://doi.org/10.1109/ACCESS.2022.3166115

[24] Deng, W., He, P. and Qian, J.Y. (2013) Multi-Gene Expression Programming with
Depth-First Decoding Principle. Pattern Recognition and Artificial Intelligence, 26,
819-828. (In Chinese)

https://doi.org/10.4236/jcc.2024.122005
https://doi.org/10.1109/ACCESS.2022.3166115

	Rapid Prototype Development Approach for Genetic Programming
	Abstract
	Keywords
	1. Introduction
	2. Basic Principle
	3. Proposed Approach
	4. Experiment and Analysis
	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

