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Abstract 
The task of indoor visual localization, utilizing camera visual information for 
user pose calculation, was a core component of Augmented Reality (AR) and 
Simultaneous Localization and Mapping (SLAM). Existing indoor localization 
technologies generally used scene-specific 3D representations or were trained 
on specific datasets, making it challenging to balance accuracy and cost when 
applied to new scenes. Addressing this issue, this paper proposed a universal 
indoor visual localization method based on efficient image retrieval. Initially, 
a Multi-Layer Perceptron (MLP) was employed to aggregate features from in-
termediate layers of a convolutional neural network, obtaining a global re-
presentation of the image. This approach ensured accurate and rapid retrieval 
of reference images. Subsequently, a new mechanism using Random Sample 
Consensus (RANSAC) was designed to resolve relative pose ambiguity caused 
by the essential matrix decomposition based on the five-point method. Finally, 
the absolute pose of the queried user image was computed, thereby achieving 
indoor user pose estimation. The proposed indoor localization method was 
characterized by its simplicity, flexibility, and excellent cross-scene generaliza-
tion. Experimental results demonstrated a positioning error of 0.09 m and 2.14˚ 
on the 7Scenes dataset, and 0.15 m and 6.37˚ on the 12Scenes dataset. These 
results convincingly illustrated the outstanding performance of the proposed 
indoor localization method. 
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1. Introduction 

With the advancement of Location-Based Service (LBS) technology, the employ-
ment of Global Positioning System (GPS) for positioning can no longer ade-
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quately meet the populace’s requisites for indoor location information. Conse-
quently, an escalating array of indoor positioning methodologies has been suc-
cessively introduced, encompassing Wi-Fi positioning [1], ultrasound position-
ing [2], Ultra-Wideband (UWB) positioning [3], and geomagnetic positioning 
[4], among others. Nevertheless, within intricate indoor environments, these so-
lutions may necessitate substantial manual configuration and supplementary in-
frastructure, potentially resulting in exorbitant costs and inadequate interference 
resilience. Conversely, vision-based indoor positioning approaches solely exploit 
image information to perceive the user’s camera surroundings and compute their 
position and orientation. This approach exhibits advantages such as effortless 
deployment and economical costs, and has garnered extensive and profound re-
search attention. 

The existing main research methods for indoor visual localization are classi-
fied into structure-based and regression-based localization. After establishing 
the correlation between the features in the query image and the 3D structural 
features in the scene model, structure-based localization refers to the application 
of Perspective-n-Point (PnP) to solve the camera pose by reducing outliers in 
RANSAC. Match-based localization and scene coordinate regression-based loca-
lization are two further categories of structure-based localization techniques. 
The majority of matching-based localization techniques are transformed into 
feature descriptor matching jobs, which can then be further separated into di-
rect matching and hierarchical matching based on how far apart the descrip-
tors are represented. The 2D query image feature set and the 3D scene feature 
points are directly matched using the direct matching approach [5]. By searching 
the collection of picture features to compare with the scene database image fea-
tures, hierarchical matching algorithms inadvertently create 2D-3D correspon-
dences. In contrast, scene coordinate regression methods, which have received 
much attention in recent years, use compact random numbers to directly regress 
dense scene coordinate maps to directly predict the absolute 3D coordinates of 
image pixels, which are explicitly improved by using scene structures. The scene 
structure is generally represented using a 3D point cloud model, which is con-
structed based on Structure-from-Motion (SFM) or SLAM. However, the scene 
model is difficult to construct and the geometric alignment between the query 
image and the 3D model is difficult to solve. 

In regression-based methods, end-to-end direct regression for localization 
predicts the reference image pose by means of a Convolutional Neural Network 
(CNN), continuously optimizes the network weights, and outputs the position 
and orientation information of the image directly to the regressor. Different file 
types, including single photos, image sequences, and movies, can be used as net-
work inputs. End-to-end direct regression localization needs to be trained for a 
specific dataset in a multi-scene manner, and needs to be retrained when genera-
lized to a new scene, which is less adaptive and prone to overfitting problems. 
Relative positional regression methods are based on image retrieval, predicting 
the relative pose between the query image and the most similar image in the data-
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base, and finally obtaining the absolute pose of the query image. 
In the past few years, although the field has reached a fairly mature level, it is 

still difficult to balance the computational cost, localization accuracy, and ro-
bustness. In order to better solve this problem, this paper designs an indoor loca-
lization method based on efficient image retrieval and relative position estima-
tion. The proposed localization system consists of two phases, offline and online, 
the offline phase efficiently extracts and stores all the global features of the offline 
database images; in the online phase, for the target query, after efficiently return-
ing the query results, the implicit matching between image pairs is utilized to re-
turn to the essential matrix to compute the position information. In this paper, 
we try the current more advanced feature extraction matching model and pro-
pose a robust position calculation method based on relative position regression. 
The scheme is able to achieve high-precision localization on multiple indoor da-
tasets without targeting specific datasets, and the adaptability is much better than 
other localization systems. The indoor localization system based on efficient image 
retrieval uses only RGB images and position information, does not rely on 3D 
models, and uses a server-hosted image database for computational operations. 
The main contributions are as follows: 

1) Proposing an indoor localization approach based on efficient image retrieval. 
Rapidly matching query images with database images to obtain a set of similar 
image pairs for localization calculations.  

2) Vision-based indoor localization algorithms do not require a 3D model and 
recover the user’s camera position from only a few sets of 2D-2D matches, reduc-
ing database processing in the offline phase.  

3) Using a learnable feature detection and matching method to decompose the 
essence matrix, we propose a new RANSAC mechanism to solve the relative po-
sitional ambiguity problem and recover the user’s absolute poses. 

2. Related Work 
2.1. Image Retrieval 

Image Retrieval Techniques Image retrieval tasks aim at querying the content 
similar to the input image from an image database, as the basis of visual indoor 
localization, which can effectively improve the efficiency of visual matching. Early 
research on image retrieval is Text-Based Image Retrieval (TBIR), which mainly 
includes Page-Rank methods, probabilistic methods, classification or clustering 
methods, lexical annotation methods, etc. TBIR retrieval is fast and accurate, 
but it requires a lot of manpower and time, which is not able to satisfy the ev-
er-changing retrieval needs. Content-Based Image Retrieval (CBIR) task extracts 
image features by mathematically describing the visual content of an image. CBIR 
early relied on local feature aggregation methods, the most representative of 
which are visual word representations of images and their extensions, such as 
Fisher vectors [6] and Vector of Locally Aggregated Descriptors (VLADs) [7]. 
After 2012, the dominant role of SIFT [8] is gradually replaced by data-driven 
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Deep Neural Networks (DNNs). The representative NetVLAD [9] constructs a 
global image descriptor for instance-level image retrieval by applying a pool-
ing mechanism on the activation of the last convolutional feature map in a 
convolutional neural network. Another widely used method, such as MAC [10], 
focuses on the region of interest on the feature map and selects just the most 
active neurons using optimal pooling on each distinct feature map. The re-
trieval effect of convolutional neural network in deep learning algorithm is the 
most outstanding, it uses the combination of multiple convolutional layers and 
pooling layer to get the visual features of the image, and combines with the 
feedback and classification techniques to achieve better retrieval results. In Li-
terature [11], SFM information is used to fine-tune a pretrained classification 
network guided by database images and a pooling layer based on generalized 
means with learnable parameters is proposed to effectively improve the retrieval 
performance. 

2.2. Structure-Based Approach 

Structural feature-based visual localization uses sparse feature matching to ob-
tain 2D-3D correspondences and robust optimization to recover the camera pose. 
Matching-based localization establishes the connection between the query object 
and the scene image using feature descriptors, and each 3D point in 3D scene 
models typically receives one or more local descriptors. Direct matching me-
thods that require searching for query features at each 3D point are very ineffi-
cient and show fragile robustness to repeated local features. Coarse-to-fine hie-
rarchical localization is based on image retrieval, which achieves accurate locali-
zation of large-scale datasets by searching for the smallest subset of scene models 
and computing the correspondence between the target query and the smallest 
subset of scenes. The hierarchical localization process requires accurate extrac-
tion of local features of the query for similar scene image matching. Melekhov et 
al. [12] proposed a DGC-Net localization method, based on the framework of 
CNN, which exploits the advantages of the optical flow approach from coarse to 
fine, and achieves dense and subpixel-accurate localization computation in com-
plex environments by extending the optical flow to the case of large transforma-
tions, with a strong supervised training in terms of ground-truth labels per pixel. 
The inherent hierarchical nature of network features is exploited in ASLFeat [13], 
which proposes a new multiscale detection mechanism to improve the ability of 
local shape modeling, to obtain stronger geometric invariance, and to locate the 
keypoints more accurately. 

The scene coordinate regression approach directly predicts the correspondence 
between the query image and the 3D scene space, which works well on small da-
tasets but does not scale well to larger, more complex scenes. Literature [14] de-
signed a lightweight visual localization network that uses knowledge distillation 
to efficiently extract deep local features for accurate localization, however, this 
approach requires a large number of images and dense point cloud information 
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from Light Detection and Ranging (LiDAR) sensors. 

2.3. Regression-Based Approach 

The methodology of direct regression-based visual localization involves learn-
ing the complete localization pipeline for 2D-3D matching. The PoseNet [15] 
approach is the first to directly regress camera pose prediction from a single 
image using a Convolutional Neural Network (CNN). It employs the Struc-
ture-from-Motion (SFM) technique to automatically generate training labels, 
thereby alleviating the burden of manual annotation. ANNet [16] uses discri-
minator networks and adversarial learning to implicitly learn the joint distri-
bution of images and their corresponding camera poses to further refine the 
image-based position estimation and further improve the localization accuracy. 
In Literature [17], camera pose autoencoder is introduced to improve camera 
position estimation by using multi-layer perceptron. FeatLoc [18] uses sparse 
feature descriptors directly to train network models through data augmentation, 
mitigating the effects of light changes or environmental gradients. 

To boost scalability, relative pose regression is trained on typically numerous 
unseen scenes. After determining the relative pose of the reference image, abso-
lute bit-position information in the world coordinate system is obtained by spatial 
coordinate translation. The relative pose regression method utilizes a multi-stage 
strategy that generalizes well to new scenes. NN-Net [19] pioneered the use of 
Siamese CNN to predict the relative pose between two input images. Literature 
[20] proposes a localization method that decouples the scene by regressing the es-
sential matrix without adjusting the parameters. Literature [21] proposes a graphi-
cal neural network with image representation nodes and peer-to-peer representa-
tion of edge images for relative positional regression. 

In this paper, we periodically combine image retrieval and position calculation 
to design a visual localization scheme based on efficient image retrieval and ge-
neralized camera position solving. For a user query image, a pre-trained retrieval 
model is first utilized to efficiently return relevant database images, and then the 
absolute position is solved based on the feature correspondences. The scheme 
does not use 3D structural model information about the scene and can be easily 
applied to new indoor scenes. 

3. System Models and Methods 

This section presents the overall process framework of indoor localization based 
on efficient image retrieval. 

3.1. System Models 

In this paper, a generalized indoor localization model based on a single RGB 
image is proposed to greatly reduce the image retrieval time with guaranteed re-
trieval accuracy while obtaining more accurate localization results. The proposed 
indoor visual localization method consists of two phases: the offline phase of in-
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door image data acquisition processing and database construction, and the on-
line phase of the user’s image after retrieval of the bit position calculation, as shown 
in Figure 1.  
● During the offline phase, all images from indoor scenes are processed using a 

pre-trained image retrieval model to extract global descriptors, which are then 
used to construct an offline feature database. 

● During the online phase, the same global feature extraction process is applied 
to query images. The similarity between the query image’s global feature vector 
and each feature vector in the offline database is computed. The top five ref-
erence images are iteratively selected based on their decreasing similarity scores. 
For each query-nearest neighbor image pair, the essential matrix E is computed 
using the five-point algorithm. By solving for the essential matrix E and re-
moving the ambiguity in relative pose, the relative pose between the two im-
ages is obtained. Finally, using the retrieved database images with known ab-
solute poses and the relative poses, the absolute pose of the query image, i.e. 
the indoor user’s pose, is estimated. 

3.2. Offline Data Preparation 

The offline phase is performed by a camera or other mobile platform for RGB 
image capture as well as positional recording. Specifically, each RGB image in 
the database created in the offline phase has its corresponding real pose label: 3D 
spatial coordinates representing the absolute position (x, y, z) indicating the po-
sition and quaternions (w, p, q, r) indicating the absolute orientation. In this 
paper, quaternions are used to represent the user’s camera orientation, this is 
because quaternions use only four-dimensional vectors, which perfectly solves  
 

 
Figure 1. Visual indoor localization pipeline. 
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the singularity problem and requires less storage space compared to the com-
monly used 3 × 3 rotation matrices to represent the object orientation. The da-
taset S all contains n different indoor scenes: { }1 2, , , nS S S S=  . For each scene 
Si, a global representation of that scene is created: the image name, the positional 
information, and the extracted global descriptors, as in Table 1. 

3.3. Image Retrieval Model 

Regarding the image retrieval module, a novel image feature aggregation method 
based on MLP is adopted [22]. Through a succession of feature mixers, each in-
dividual feature map derived from the chopped Resnet backbone is combined 
with spatial relationships using this method’s pre-trained neural network. A com-
pact representation space is then used to obtain the projected output, resulting 
in global image descriptors used for image retrieval. The specific structure of this 
network model is shown in Figure 2. 

An RGB image is input and the middle layer feature map c h wF R × ×∈  is first 
extracted using the pre-trained ResNet model on ImageNet, which differs from 
the existing technology NetVLAD by treating the tensor F as c 2D features Xi of 
size h × w. Then, the feature mapping is built to give each 2D feature a 1D repre-
sentation: c nF R ×∈ , which is input to a feature blender consisting of L-cascaded 
MLPs of the same structure, defined as follows: 

( )( )2 1
i i iX W W X Xσ+ → .                     (1) 

where W1 and W2 are the two fully connected layer weights in the feature blend-
er, and σ refers to the ReLU activation operation. After one Feature-Mixer out-
put c nZ R ×∈ , it continues to be delivered to the second Feature-Mixer block, 
and finally, two fully connected layers are added for depth projection and line- 
by-line projection, weighted pooling operations to control the size of the obtained  
 
Table 1. Offline database. 

Scene labels S1 ... S1 

RGB images 11 12 1 1, , , kI I I  ... 1 2, , ,n n nknI I I  

Position information 11 12 1 1, , , kP P P  ... 1 2, , ,n n nknP P P  

Global descriptors 11 12 1 1, , , kD D D  ... 1 2, , ,n n nknD D D  

 

 
Figure 2. Image retrieval model. 
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global descriptors. In brief, we obtain 512-dimensional global descriptors for the 
feature maps obtained from pre-trained ResNet backbone clipping using several 
MLP Feature-Mixer blocks in a large visual recognition dataset GSV-Cities [23], 
retrained using multiple similarity loss.  

Iterative Selection: The commonly observed phenomenon of the top k retrieved 
images exhibiting highly similar poses can result in suboptimal performance 
when estimating the camera position for subsequent triangulation. Therefore, we 
adopt an iterative approach where we iteratively select and sample five retrieved 
images based on their decreasing similarity scores. 

The dataset images undergo local feature extraction and are globally aggre-
gated into several fixed-length global descriptors. The same method is applied to 
extract features from the query image, resulting in a feature vector of the same 
length. The similarity between the query image vector Vq and the image feature 
vector Vi is calculated, and the results are sorted in descending order based on the 
similarity. A certain number of database images are then output, where [ ]1,i n∈  
and n represents the number of images in the database. The specific state is de-
fined as follows: 

0 1 1024, , ,i i i iV V V V =   .                         (2) 

0 1 1024, , ,q q q qV V V V =   .                         (3) 

 T
i i qscore V V= ∗ .                             (4) 

3.4. Feature Detection and Matching 

After image retrieval, relative pose estimation is performed after obtaining a set 
of iteratively selected query image geotagged image pairs, which consists of four 
main steps: extraction of keypoints and descriptors, feature-point matching, and 
false-match rejection; recovery of relative poses between image pairs from the 
essentiality matrix; and recovery of the absolute camera poses of the query im-
ages. Firstly, SuperPoint [24] + LightGlue feature point detection and matching 
is applied to each query-database image pair. LightGlue is a simple and effective 
improvement to SuperGlue [25], which is adaptive and can be flexibly adjusted 
according to the difficulty of the image pairs, and it is also more efficient and 
accurate in terms of memory and computation. Note that the user query image 
and the image in the database may be captured by different cameras, and the per-
formance of the localization could be impacted by the variations in the intrinsic 
properties of the cameras. Therefore, to get more precise localization findings, the 
camera needs to be precalibrated. 

3.5. Position Estimation 

By employing image retrieval, the database image with the highest similarity score 
to the query image is returned. Based on the epipolar constraint, the rotational 
and translational relationship between the three-dimensional camera coordinate 
systems of two images can be computed through feature point matching between 
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the two images. The epipolar constraint reflects the pose relationship between 
the query camera and the database camera, as shown in Figure 3. In this context, 
R represents the relative rotation matrix between the two cameras, and t represents 
the relative translation vector. OQXQYQZQ denotes the camera coordinate system 
of the query image, while ODXDYDZD represents the camera coordinate system of 
the database image. 

3.5.1. Relative Pose Estimation 
For a calibrated camera, the geometric relationship between two images, Iq and 
Ii, can be estimated using feature point matching based on the epipolar con-
straint. E can be used to describe this relationship and the expression for E is as 
follows: 

[ ]xE t R= .                             (5) 

The matrices t and R represent the relative translation and relative rotation 
between the two images, [ ]x is an antisym metric matrix, and its calculation 
formula is as follows: 

1 3 2

2 3 1

3 2 1

0
0

0

x x x
x x x
x x x

−   
   = −   
   −  

.                       (6) 

A pair of matched point pairs x1 and x2 under the normalized plane, based on 
the pair of polar geometric constraints is formulated as follows: 

[ ]1 2 1 2 1 1 2 1 2 1 2 2, , , , , , , ,1 0u u u v u v u v v v u v E = .               (7) 

Similarly representing other point pairs, the relative poses R, t between the 
target-database images can be found using Singular Value Decomposition (SVD), 
and in general, E can be solved for four poses: (R, t), (R, −t), (R', t), (R', −t). This 
paper proposes a novel RANSAC method to address pose ambiguity, instead of 
the traditional feature matching-based approaches that find the correct relative 
pose among four candidates. Specifically, considering the positions of points 
triangulated from multiple directions as 1 2, , , nt t t  the sign of any angle ti can  
 

 
Figure 3. Epipolar constraint relationship.  
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be inverted without changing, hence only the rotation needs to be determined. 
As a result, the absolute pose of the target image can be determined by n ≥ 2 image 
pairs. 

The transformation matrix ground truth T12 between the two images is de-
fined as follows: 

( )T T
1 2 1 1 2

12 0 1
R R R t t

T
 −

=  
 

.                      (8) 

where the absolute poses of image I1 are and the absolute poses of image I2 are, it 
should be noted that the relative transformation T

1 2R R , ( )T
1 1 2R t t−  of I1 from 

to I2 is the transformation in the I2 camera coordinate system.  

3.5.2. Absolute Pose Estimation of Query Images 
According to triangulation, there are four possible relative rotations between the 
query image Iq and its two nearest neighbor database images Ii and Ij: Ri, Ri', Rj, 
Rj', corresponding to the four absolute poses of Iq: RiRIi, R'iRIi, RjRIj, R'jRIj. RIi, RIj 
are the ground truth of database images Ii, Ij. In theory, among the four absolute 
poses, two of them are identical, while the rest differ significantly. This means that 
a hypothesis for an absolute pose is determined based on two nearest neighbor-
ing images. In actuality, the relative rotation from each pair that corresponds to 
the two absolute postures with the smallest angular difference is taken into ac-
count as the real one. 

Using the two picture pairings (Iq, Ii), (Iq, Ij), calculate the query image’s abso-
lute rotation and the bitmap of the query image is calculated from the intersec-
tion of the two rays by triangulation. The rays l1, l2 are denoted as: 

T
1 i iI i I i il c R R tλ= + .                          (9) 

T
2 j jI j I j jl c R R tλ= + .                        (10) 

where ,i j Rλ λ ∈  define the positions of points along the rays. Only when the 
centers of the three cameras are noncollinear are the results of triangulation spe-
cified. T

I I Ic R t= −  is the global coordinate of the camera center. In our experi-
ments, we use the five queried nearest neighbor database images to calculate the 
final pose.  

In other words, given a pair of images (Iq, Ii), (Iq, Ij), a pose hypothesis (
qIR , 

qIt ) is obtained. For any pair of query database images (Iq, Im), four potential 
solutions need to be found to determine the rotation matrix Rm that best ap-
proximates 

mm IR R  is closest to 
qIR , and the relative translation from Iq to Im is 

defined as: 

( )m q mpre I I It R c c= − .                      (11) 

 
T

1

2 2

cos m pre

m pre

t t

t t
α −

 
 =
 
 

.                    (12)  

Equation (12) represents the definition of threshold α, whereby it is consi-
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dered an inlier when the angle between the reference image and the predicted 
translation direction is less than α, as depicted in Figure 4. By counting all the 
inliers corresponding to the pose hypotheses in all image pairs, the hypothesis 
with the highest number of inliers is selected as the output. 

3.5.3. Evaluation Metrics 
In vision-based indoor localization tasks, evaluating the performance of the 
proposed user camera pose estimation method involves comparing the poses 
computed by the estimation method with the ground truth poses, and measuring 
the proximity of the estimation results to the ground truth. Specifically, the pose 
accuracy is measured by the deviation between the estimated pose and the ground 
truth pose, i.e. the absolute pose error of the query image.  

Absolute attitude error is measured by a combination of absolute position er-
ror and orientation error, where the position error is expressed as the Euclidean 
distance in m between the estimated position of the query image and the rec-
orded true value, as denoted below:  

_ _ _ 2abs err abs gt abs pret t t= −                       (13) 

The absolute directional error is expressed in degrees and represents the mini-
mum angle of rotation required to align the directional true value and the calcu-
lated direction, as expressed below: 

_ _ _
1802arccosabs err abs gt abs prerot q q=
π



               (14) 

where the quaternion qabs_gt is the truth value of the recorded query image 
orientation and the quaternion qabs_pre is the computed orientation of the query 
image: rotabs_pre is the error between the predicted absolute orientation and the 
truth value, and arccosis the inverse cosine computed in the inverse trigonome-
tric function. 

4. Experiments 

This section presents an evaluation of an indoor visual localization method based  
 

 
Figure 4. Estimation of query image translation. 
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on efficient image retrieval and matrix factorization using the essential matrix. 
The effectiveness and versatility of the RANSAC-based indoor localization ap-
proach are demonstrated through measurements of absolute position error in 
meters and absolute azimuthal error in degrees on two publicly available indoor 
datasets.  

4.1. Datasets 

7Scenes [26] was recorded by a handheld Kinect RGB-D camera and contains 7 
scenes with a total of 43,000 images. All scenes were shot in an office building, 
and each scene usually consists of a room with a spatial extent of less than 4 me-
ters, which contains many blurred and untextured features that are very chal-
lenging.  

12Scenes [27] is a dataset of four large scenes (12 rooms) captured using the 
Structure.io depth sensor and iPad color camera, pushing the boundaries of 
RGB-D and RGB camera repositioning, and recording a significantly larger en-
vironment than the 7Scenes dataset. A total of 22,628 images were recorded after 
removing the 233 with anomalous bit-pose labels.  

The images of the two datasets are shown in Figure 5 and Figure 6. 
 

 
Figure 5. Images in the 7Scenes dataset. 
 

 
Figure 6. Images in the 12Scenes dataset. 
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4.2. Image Retrieval Performance 

Unlike the classical image global aggregation methods, in this paper, a feature 
map of size 256 × 20 × 20 obtained by clipping the ResNet intermediate layer 
(the second ResNet residual block) pre-trained in ImageNet is re-trained on a 
large visual recognition dataset using the global spatial feature relations using 
four MLP feature mixing blocks with multi-similarity loss.  

The network, with an initial learning rate of 0.05, momentum of 0.9, and 
weight decay of 0.001, was optimized using stochastic Stochastic Gradient Des-
cent (SGD) and was trained for a total of 80 periods. The image retrieval model 
extracts the feature mapping from the middle layer, reducing the number of pa-
rameters by at least half (the last layer contains the majority of the pre-training 
backbone’s parameters).  

The image retrieval model trained in this paper can be better adapted to large 
scene datasets with significant variations for use as a large-scale visual scene rec-
ognition task, as tested using the Pitts250k-test database [28] and the MSLS da-
tabase [29] with a wide range of illumination viewpoint variations. Table 2 re-
ports the performance of the proposed MLP-based image retrieval method for 
recall@k, and it can be seen that the proposed method is used in Pitts250k-test 
recall@1 up to 93.2% is significantly improved compared to both the widely used 
Generalized Mean (GeM) [11] method. The paper [30] converts the training into 
a classification problem, avoiding the expensive mining required by the commonly 
used comparison learning and achieving better results. 

It is worth noting that in the proposed visual localization based image retriev-
al process, since the feature extraction and matching cycles can seriously affect 
the results of pose estimation, the image pairs should share as many feature 
points as possible, which makes it essential for the query image and the retrieved 
image to share some common regions, i.e. the purpose of retrieval is to spend 
a shorter time to find, with guaranteed retrieval results, the global level that is 
most similar, rather than local information. At the same time, for the query, it is 
not the most similar 5 database images that are returned, but only the 5 database 
images with enough visual overlap need to be satisfied. The MLP-based image 
retrieval model largely shortens the offline database construction time as well 
as the online retrieval time to satisfy the query requirements of the localization 
process. Therefore, the number of matching features between images is calculated  
 
Table 2. Comparison of several methodologies in well-known benchmarks trained with 
ResNet-50 on the same dataset. The proposed MLP based image retrieval method gets the 
best performance. 

Methods 
Pitts250k-test MSLS 

R@1 R@5 R@10 R@1 R@5 R@10 

GeM [11] 82.9 92.1 94.3 76.5 85.7 88.2 

CosePlace [30] 91.5 96.9 97.9 84.5 90.1 91.8 

Ours 93.2 97.9 98.6 84.1 91.8 94.3 
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to evaluate the results of image retrieval. The number of satisfactory matches 
with a confidence level greater than 0.2 is returned by SuperPoint feature extrac-
tion and LightGlue matching, as shown in Table 3. 

Figure 7 shows the visualization of Superpoint feature ex traction with 
LightGlue matching on 7Scenes and 12Scenes. Then the appropriate threshold 
value is chosen by grid search selection: distinguish between inner and outer 
points, remove the outer points, update the set of inner points and then compute 
the essence matrix of the image pairs using the 5-point method in RANSAC for 
the obtained well-matched point pairs, and then remove the positional ambigui-
ty and obtain the relative position to recover the absolute position according to 
the proposed RANSAC mechanism. 

The computation of the MLP feature mixer based image retrieval method is 
mainly a matrix multiplication of the fully connected layers, which accelerates 
the computation and reduces the memory usage as compared to the complex 
self-attention, and it takes only 7 milliseconds to generate a global description of 
an image. 

During the online period, after the query-database image pairs are obtained by 
image retrieval, a suitable threshold value is selected by grid search selection: 
inner and outer points are distinguished, outer points are removed, and the set 
of inner points is updated to the obtained good matching point pairs to compute 
the essence matrix of the image pairs by using the 5-point method in RANSAC, 
and then the relative pose is obtained to recover the absolute pose by removing 
the pose ambiguity according to the proposed RANSAC mechanism. 

 
Table 3. Average number of good matches in two indoor datasets. 

NN-search 1 2 3 4 5 Average 

7Scenes 508.6 450.7 424.2 387.1 332.6 420.6 

12Scenes 488.3 412.6 387.1 340.5 297.3 371.4 

 

 
Figure 7. Feature extraction and matching effect. 
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4.3. Localization Accuracy 

We compared the proposed model with many recent camera repositioning me-
thods. These methods are classified into two major categories: 1) Absolute Pose 
Regression (APR) localization methods, and 2) Relative Pose Regression (RPR) 
localization methods. The proposed methods belong to the 2nd category. Table 
4 showcases the localization performance of the proposed methodology on the 
7Scenes test dataset.  

Experimental results show that our method reduces both positional and an-
gular errors. The localization method proposed in this paper method basically 
minimizes the position and orientation errors in each indoor scene of the 
7Scenes dataset, with an average position error of 0.09 m and an average orien-
tation error of 2.14˚ on this dataset. However, due to the large difference in the 
environment of each indoor scene, the difference in localization error also shows 
a large difference, with the best performance in Heads, with a position error of 
only 3 cm and an orientation error of 2.16˚, while for the Stairs scene the locali-
zation performs poorly, with an error as high as 0.21 m and 3.47˚, which we be-
lieve is most likely due to the excessive repetitive structures in the staircase im-
ages, and the distinguishability of the extracted feature points poorly. We will 
investigate this in future work.  

12Scenes is another indoor scene dataset, and the recorded indoor environ-
ments are significantly larger than 7Scenes. Since there are fewer studies related 
to the 12Scenes dataset, this paper spends a lot of time reproducing the classical 
relative bit-pose regression networks, NN-Net [19] as well as NC-EssNet [20], in 
strict accordance with the criteria of the paper, as shown in Table 5.  

As shown in Figure 7, the indoor images recorded by the 12Scenes dataset 
have poor lighting conditions and more blurred images, which pose a challenge 
to the localization task. The experimental results of the 12Scenes dataset in Ta-
ble 5 are obviously worse than the localization performance of 7Scenes, but the 
results show that the proposed indoor localization method still obtains a signifi-
cant improvement compared to other methods, with an average position error of  
 
Table 4. Median position and rotation errors for different relocation methods on the 
7Scenes dataset. 

Scene NN-Net [19] NC-Esset [20] GRNet [21] FeatLoc [18] Ours 

Chess 0.13 m, 6.5˚ 0.12 m, 5.6˚ 0.08 m, 12.4˚ 0.07 m, 3.66˚ 0.05 m, 1.51˚ 

Fire 0.26,12.7˚ 0.26,12.7˚ 0.21 m, 7.5˚ 0.17 m, 5.95˚ 0.07 m, 1.96˚ 

Heads 0.14 m, 12.3˚ 0.14 m, 10.7˚ 0.13 m, 8.7˚ 0.10 m, 7.57˚ 0.03 m, 2.16˚ 

Office 0.21 m, 7.4˚ 0.20 m, 6.7˚ 0.15 m, 4.1˚ 0.16 m, 5.20˚ 0.07 m, 1.64˚ 

Pumpkin 0.24 m, 6.4˚ 0.22 m, 5.7˚ 0.15 m, 3.5˚ 0.11 m, 3.86˚ 0.10 m, 2.06˚ 

RedKitchen 0.24 m, 8.0˚ 0.22 m, 6.3˚ 0.19 m, 3.7˚ 0.20 m, 6.43˚ 0.08 m, 2.16˚ 

Stairs 0.27 m, 11.8˚ 0.31 m, 7.9˚ 0.22 m, 6.5˚ 0.16 m, 8.57˚ 0.21 m, 3.47˚ 

Average 0.21 m, 9.3˚ 0.21 m, 7.5˚ 0.16 m, 5.2˚ 0.14 m, 5.89˚ 0.09 m, 2.14˚ 

https://doi.org/10.4236/jcc.2024.122004


M. Y. Lyu et al. 
 

 

DOI: 10.4236/jcc.2024.122004 62 Journal of Computer and Communications 
 

Table 5. Median position and rotation errors for different relocation methods on the 
12Scenes dataset. 

Scene Volume NN-Net [19] NC-EssNet [20] FeatLoc [18] Ours 

apt1_kitchen 33 m3 0.22 m, 6.76˚ 0.15 m, 11.53˚ 0.32 m, 5.19˚ 0.14 m, 7.58˚ 

apt1_living 30 m3 0.25 m, 5.45˚ 0.19 m, 6.57˚ 0.26 m, 0.14˚ 0.18 m, 5.89˚ 

apt2_bed 14 m3 0.46 m, 6.13˚ 0.21 m, 6.70˚ 0.37 m, 5.39˚ 0.08 m, 4.32˚ 

apt2_kitchen 21 m3 0.83 m, 36.03˚ 0.18 m, 9.39˚ 0.73 m, 6.37˚ 0.09 m, 8.61˚ 

apt2_living 42 m3 0.23 m, 5.24˚ 0.17 m, 8.18˚ 0.40 m, 5.71˚ 0.13 m, 5.73˚ 

apt2_luke 53 m3 0.54 m, 6.26˚ 0.23 m, 8.03˚ 0.33 m, 4.85˚ 0.17 m, 7.83˚ 

office1_gates362 29 m3 0.27 m, 5.27˚ 0.16 m, 5.47˚ 0.52 m, 5.22˚ 0.14 m, 4.73˚ 

office1_gates381 44 m3 0.44 m, 7.27˚ 0.28 m, 12.00˚ 0.42 m, 6.23˚ 0.24 m, 7.93˚ 

office1_lounge 38 m3 0.53 m, 5.72˚ 0.31 m, 7.01˚ 0.39 m, 4.50˚ 0.26 m, 6.26˚ 

office1_manolis 50 m3 0.27 m, 5.66˚ 0.19 m, 6.81˚ 0.30 m, 4.67˚ 0.15 m, 6.82˚ 

office2_5a 38 m3 0.29 m, 5.50˚ 0.20 m, 5.09˚ 0.31 m, 4.32˚ 0.11 m, 5.03˚ 

office2_5b 79 m3 0.29 m, 5.07˚ 0.21 m, 5.78˚ 0.23 m, 4.14˚ 0.15 m, 5.74˚ 

Average 39 m3 0.35 m, 8.28˚ 0.21 m, 8.04˚ 0.38 m, 5.04˚ 0.15 m, 6.37˚ 

 

 
Figure 8. Position error cumulative distribution function. 
 
0.15 m and an average orientation error of 6.37˚. Compared with the other visu-
al localization methods mentioned above, the best results are achieved in terms 
of position error, but the performance is slightly worse in solving the camera 
orientation. 

Figure 8 and Figure 9 show the performance of the proposed indoor localization  
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Figure 9. Directional error cumulative distribution function.  
 
method more visually. Among them, 82.47% of the query images in the 7Scenes 
dataset have a localization error of less than 0.5 meters and 80% of the query 
images have an orientation error of less than 4 degrees, while more than 90% of 
the query images in the 12Scenes dataset have a localization accuracy of less than 
meters and a maximum orientation error of less than 12 degrees. Compared with 
the 7Scenes localization results, the 12Secens database has poorer localization 
results due to the fact that the indoor environment recorded in 12Scenes is sig-
nificantly larger than that in the 7Scenes dataset, and also the images in the da-
taset have poorer lighting conditions and more blurred images, which poses a 
challenge to the localization task. 

5. Conclusions 

In this paper, an indoor visual localization method based on efficient image re-
trieval and relative position calculation is proposed. A novel image retrieval me-
thod based on CNN cropping and MLP aggregation is used to generate compact 
global descriptions by learning global spatial relations iteratively for the feature 
mapping of the pre-trained network, while the computational process of the re-
trieval method based on MLP aggregation is highly efficient due to the fact that, 
unlike the self-attention mechanism where the complexity scales into a quadratic 
scale, the fully-connected layer is mainly a matrix multiplication operation. The 
offline phase takes only 7 ms to generate a global description of an image.  

The online localization phase performs efficient image retrieval by pre-training 
the retrieval model to obtain matching images with pose labels to construct 
query-database image pairs. A set of CNN features with original images and 
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poses can represent the whole region. Then, a feature-point correspondence strat-
egy is applied to solve the relative pose ambiguity problem by a novel RANSAC 
mechanism to estimate the exact location and orientation of the query image. Ex-
perimental results conducted on two publicly available indoor localization data-
sets show that our monocular vision-based indoor pose estimation method pro-
duces highly accurate localization results. The proposed indoor method is suita-
ble for scenes lacking depth information and has excellent cross-scene generali-
zation capabilities without the need for complex preprocessing in the offline phase 
and without relying on the 3D scene structural model. In this paper, we argue 
that image data with poor lighting conditions and blurred images can have a 
large negative impact on the localization results, which serves as a reminder for 
our future work. 
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