
Journal of Computer and Communications, 2024, 12, 1-10
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2024.122001 Feb. 6, 2024 1 Journal of Computer and Communications

Parallel Image Processing: Taking Grayscale
Conversion Using OpenMP as an Example

Bayan AlHumaidan*, Shahad Alghofaily, Maitha Al Qhahtani, Sara Oudah, Naya Nagy

Department of Computer Science, College of Computer Science & Information Technology, Imam Abdulrahman Bin Faisal
University, Dammam, Saudi Arabia

Abstract
In recent years, the widespread adoption of parallel computing, especially in
multi-core processors and high-performance computing environments, ushered
in a new era of efficiency and speed. This trend was particularly noteworthy
in the field of image processing, which witnessed significant advancements.
This parallel computing project explored the field of parallel image processing,
with a focus on the grayscale conversion of colorful images. Our approach
involved integrating OpenMP into our framework for parallelization to ex-
ecute a critical image processing task: grayscale conversion. By using OpenMP,
we strategically enhanced the overall performance of the conversion process
by distributing the workload across multiple threads. The primary objectives
of our project revolved around optimizing computation time and improving
overall efficiency, particularly in the task of grayscale conversion of color-
ful images. Utilizing OpenMP for concurrent processing across multiple
cores significantly reduced execution times through the effective distribution
of tasks among these cores. The speedup values for various image sizes hig-
hlighted the efficacy of parallel processing, especially for large images. How-
ever, a detailed examination revealed a potential decline in parallelization ef-
ficiency with an increasing number of cores. This underscored the impor-
tance of a carefully optimized parallelization strategy, considering factors like
load balancing and minimizing communication overhead. Despite challenges,
the overall scalability and efficiency achieved with parallel image processing
underscored OpenMP’s effectiveness in accelerating image manipulation
tasks.

Keywords
Parallel Computing, Image Processing, OpenMP, Parallel Programming,
High Performance Computing, GPU (Graphic Processing Unit)

How to cite this paper: AlHumaidan, B.,
Alghofaily, S., Al Qhahtani, M., Oudah, S.
and Nagy, N. (2024) Parallel Image Process-
ing: Taking Grayscale Conversion Using
OpenMP as an Example. Journal of Comput-
er and Communications, 12, 1-10.
https://doi.org/10.4236/jcc.2024.122001

Received: December 8, 2023
Accepted: February 3, 2024
Published: February 6, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2024.122001
https://www.scirp.org/
https://doi.org/10.4236/jcc.2024.122001
http://creativecommons.org/licenses/by/4.0/

B. AlHumaidan et al.

DOI: 10.4236/jcc.2024.122001 2 Journal of Computer and Communications

1. Introduction

In recent years, parallel computing has become increasingly spreading, particu-
larly in the context of multi-core processors and high-performance computing
environments, like multi-core workstations. The concept of parallelism involves
the simultaneous execution of multiple tasks, allowing for the acceleration of
computation and the efficient use of available resources. In simpler terms, this
approach involves breaking down the given task into smaller sub-parts that can
be independently processed, and the results are then combined upon completion.
This rise in parallel computing is particularly significant in the field of image
processing, which has experienced remarkable advancements in recent years. Im-
age processing, at its core, involves the application of algorithms and techniques
to manipulate and analyze visual data and encompasses a diversity of tasks. Among
these tasks, the conversion of colorful images to grayscale stands out as a classic
operation that plays a central role in various domains, such as medical imaging
and computer vision. The growing demand for real-time image processing has
led to the rise of parallel computing as a crucial facilitator, which offers the poten-
tial to significantly improve the speed and efficiency of image processing with large
datasets and complex algorithms [1].

One of the popular approaches to parallelism is OpenMP (Open Multi-Pro-
cessing) which is one of the most widely and powerful Application Programming
Interfaces (APIs) for parallelization. It enables cross-platform parallel shared mem-
ory programming in languages such as C, Fortran [1], and C++, through the use
of environment variables, library routines, and compiler directives, all of which
control the runtime behavior of the parallelized processes. OpenMP allows de-
velopers to harness the power of multi-core processors by dividing a task into
parallel threads that can be executed concurrently. OpenMP has the benefits of
being powerful and well-suited for modern processor architectures and C/C++
and Fortran compilers as well as various operating systems, such as, Linux, Mi-
crosoft Windows, and Apple Macintosh OS X, and most importantly being in-
credibly easy to understand and use. Click or tap here to enter text.

This parallel project embarks on the exploration of parallel image processing,
specifically focusing on the conversion of colorful images to grayscale, a task foun-
dational to various computer vision applications. By incorporating OpenMP into
our framework, and employing parallelism in our project, we seek to optimize the
performance of image processing algorithms, reducing computation time and en-
hancing efficiency as our goals.

This paper is organized as follows. Section 2 reviews related works on paralle-
lization in general and in image processing, as well as knowledge gap. Existing
Section 3 shows the implementation of image processing specifically focusing on
the conversion of colorful images to grayscale with and without the race condi-
tion, and how a number of cores could affect the performance. Specifically fo-
cusing on the conversion of colorful images to grayscale, Section 4 presents the
experiment results and then discusses inferences. Finally, the conclusion is out-

https://doi.org/10.4236/jcc.2024.122001

B. AlHumaidan et al.

DOI: 10.4236/jcc.2024.122001 3 Journal of Computer and Communications

lined in Section 5.

2. Literature Review

The field of parallel image processing has evolved rapidly, due to the increasing
demand for efficient and high-speed image analysis in various applications. This
section reviews key studies in this field.

The paper by Saxena et al. [2] reviews parallel image processing techniques
and tools, outlining their benefits and limitations. It discusses the application of
various tools like Java, Hadoop, OpenCV, GPUs, and CUDA in image processing.
The paper highlights GPU’s role in a heterogeneous co-processing model with
CPUs, noting its power efficiency but also its high power usage and heat produc-
tion. CUDA, designed for parallel computing and similar to C language, is li-
mited to NVIDIA GPUs and doesn’t fully support the C standard. Java’s mul-
tithreading improves performance and concurrency but is complex to write.
Hadoop scales well but struggles with merging multiple datasets. OpenCL, an
open-source API, accelerates parallel programming but is challenging to learn.
OpenCV, an Intel-developed image processing library, is open-source but diffi-
cult to master. The paper provides an overview of these tools, but it lacks de-
tailed explanations of their limitations and doesn’t specify the best application
areas for each tool.

Highlighting a different tool, a paper by Slabaugh et al. [3] presented image
processing applications in parallel using OpenMP (Open Multi-Processing).
OpenMP is an Application Programming Interface (API) that enables writing mul-
tiprocessing programming. The paper provides an overview introduces OpenMP
and demonstrates simple image processing tasks to showcase how easy it is to
implement and how effective OpenMP can be. The paper covers various as-
pects of using OpenMP, such as loop-level parallelism, variable scope, and sche-
duling. It also explains that static scheduling, which divides work evenly among
threads, is the default approach, but dynamic scheduling can be used for unba-
lanced loops where iterations have varying costs. It mentions two examples, im-
age warping and mathematical binary morphology, which showcase how OpenMP
can drastically reduce processing time in image processing applications. All ex-
amples used “parallel for” directive to iterate over the pixels of the image to per-
form specific operation. One limitation of the paper is that it only presents sim-
ple image processing operations and does not provide examples of more com-
plex applications that could be built on similar principles. Additionally, the pa-
per does not discuss the potential synchronization issues that can arise when us-
ing OpenMP for parallel image processing. Overall, the paper gives a useful in-
troduction about using OpenMP in image processing.

Expanding on the theme of OpenMP, a comprehensive comparison study
done by Kendurkar [1] compares between OpenMP and Pymp. Pymp is a Py-
thon module that provides support for parallel programming, it is similar to
OpenMP but is designed specifically for Python. The authors explain the parallel

https://doi.org/10.4236/jcc.2024.122001

B. AlHumaidan et al.

DOI: 10.4236/jcc.2024.122001 4 Journal of Computer and Communications

programming models used in the experiments, including shared memory paral-
lelism and task-based parallelism. Also, they discussed the performance metrics,
which include speedup, efficiency, and performance. The results show that Pymp
outperforms OpenMP in terms of speedup and efficiency. The paper also provides
graphical interpretations of the results and discusses the implications of the find-
ings. Finally, it was concluding with a summary of the study and its contribu-
tions. The paper suggests that Pymp is a promising parallel programming model
for image convolution and that future research could explore extending the study
to other parallel programming frameworks using GPU. The authors also suggest
expanding the study with images of higher resolution.

Shifting the focus to another aspect, the study titled “Performance Analysis of
Image Segmentation Using Parallel Processing” [4] focuses on Fuzzy C Means
(FCM) based segmentation, a clustering method using fuzzy logic for handling
ambiguity in image groups. The research developed both sequential and parallel
simulation models to assess the FCM algorithm, considering factors like time
consumption, efficiency, and the Minimum Mean Square Error (MMSE). The
findings demonstrate that MATLAB’s parallel computing capabilities can signif-
icantly accelerate image processing on multi-core platforms without compromis-
ing image quality. The paper compares sequential and parallel execution times,
MMSE values, and efficiency percentages. It concludes by underscoring the ad-
vantages of parallel methods in image segmentation, particularly in improving
efficiency and processing time for real-time applications.

Introducing a novel perspective, a study by Iqbal et al. [5] addresses the challenge
of improving the efficiency of image processing computations. It proposes a
method that integrates Digital Signal Processor (DSP) resources, an overlap seg-
ment technique, and parallel processing to boost the efficiency of image processing
computations. DSPs are specialized microprocessors for efficiently processing dig-
ital signals in real-time. The study’s approach divides image frames into sections
to solve filtering issues and employs parallel processing for simultaneous com-
putations. It aims to enhance accuracy and speed in image processing, particu-
larly for real-time or high-performance tasks. The research explores strategies like
parallel computing and increasing processor clock frequency using VLSI technol-
ogy, addressing power and thermal issues. The study assesses filter types, seg-
ment sizes, overlap factors, and Mean Squared Error (MSE), along with Peak
Signal-to-Noise Ratio (PSNR) for evaluating image quality. It concludes that
computation time can be significantly reduced with these techniques, highlighting
the benefits of parallel processing and overlap segment methods in digital image
processing.

In conclusion, this literature review encapsulates the significant advancements
in parallel image processing, highlighting diverse methodologies and tools from
Saxena et al.’s broad overview of parallel processing technologies to the detailed
analyses of OpenMP and Pymp’s applications in image processing by Slabaugh
et al. and Kendurkar. The exploration of Fuzzy C Means for image segmentation
and Iqbal et al.’s innovative use of DSP resources and overlap segment techniques

https://doi.org/10.4236/jcc.2024.122001

B. AlHumaidan et al.

DOI: 10.4236/jcc.2024.122001 5 Journal of Computer and Communications

further emphasize the field’s dynamic nature. Collectively, these studies under-
line the growing efficiency and sophistication in image processing techniques,
pointing to a future where parallel processing plays a pivotal role in tackling more
complex and real-time image analysis challenges.

3. Grayscale Conversion

One of the useful uses of image processing in many disciplines is the conversion
of color images to grayscale images. When publishing a picture in publication
organizations, color is more expensive than grayscale. For low-cost edition
books, color photos have therefore been transformed to grayscale images in
order to lower the cost of printing. Similar to how normal individuals see color
pictures, color-deficient viewers need high-quality grayscale images in order to
understand the content. Similarly, different applications for image processing
need to converse to reduce computational requirements, focus on specific features
like texture and shape, and prepare images for a variety of advanced processing
tasks.

Further understanding of the color image is necessary in order to convert it to
a grayscale image. The mix of Red, Green, and Blue (RGB) colors makes up each
pixel color in a picture. The RGB color values are represented in three dimen-
sions XYZ, given by the hue, chroma, and brightness characteristics. A color
image’s quality is determined by how many bits the digital device can handle to
represent a given color.

The basic color image is represented by 8 bits, the high color image is re-
presented using 16 bits, the true color image is represented by 24 bits, and the
deep color image is represented by 32 bits. The number of bits decides the maxi-
mum number of different colors supported by the digital device. If each Red,
Green, and Blue occupies 8 bits then the combination of RGB occupies 24 bits
and supports 16,777,216 different colors. The 24-bit represents the color of a
pixel in the color image. The grayscale image is represented by luminance using
an 8-bit value. The luminance of a pixel value of a grayscale image ranges from 0
to 255. The conversion of a color image into a grayscale image is converting the
RGB values (24-bit) into grayscale values (8-bit) [6].

Implementing the Grayscale Conversion

Our code performs an image processing task known as a grayscale conversion
and uses OpenMP to parallelize the conversion process, distributing the work
among multiple threads to enhance performance.

The code is inspired by and modified in order to implement OpenMP paralle-
lization.

First is the image reading, the code opens an image file and reads its header to
obtain essential information about the image, such as its width, height, and color
depth.

Then, the memory is allocated to hold pixel data for the image, specifically for

https://doi.org/10.4236/jcc.2024.122001

B. AlHumaidan et al.

DOI: 10.4236/jcc.2024.122001 6 Journal of Computer and Communications

a buffer based on the image’s stride. The stride represents the number of bytes in
a row of pixels in the image, accounting for alignment and padding.

The parallel grayscale conversion section as illustrated in Figure 1.
- For each row of pixels in the image, it reads a row of pixel data into the buf-

fer.
- For each pixel in the row, it extracts the red, green, and blue color compo-

nents of the pixel.
Then, calculating the grayscale value of the pixel using a weighted sum for-

mula which is:
gray = 0.11 * blue + 0.59 * green + 0.3 * red [6].
Subsequently, assigning this calculated grayscale value to the red, green, and

blue components of the pixel effectively converts it to grayscale. And we accu-
mulate the grayscale value for computing the average later.

After processing each row of pixels, it will write the modified pixel data
(grayscale) back to the output file. Once all rows have been processed, the allo-
cated memory is freed, and the input and output files are closed. Finally, the code
computes the average grayscale value by dividing the total accumulated grayscale
values by the total number of pixels in the image.

Figure 1. Flowchart of parallel grayscale conversion process.

https://doi.org/10.4236/jcc.2024.122001

B. AlHumaidan et al.

DOI: 10.4236/jcc.2024.122001 7 Journal of Computer and Communications

This algorithm iterates through each pixel of the image, converts it to grays-
cale using specific weighted values for each color component, and writes the
modified data to a new file, resulting in a grayscale representation of the original
image.

4. Results and Discussions
Experimental Results

In this section, we will discuss the experimental results based on the implemen-
tation of algorithm execution time in C. They cover four scales of different im-
age sizes ranging from 100 × 100 to 1000 × 1000. And experimental results based
on number of cores from 1 to 8.

Table 1 shows the execution time of OpenMP parallel and sequential based on
the size of image and with the same number of core, so we realize that when we
use OpenMP, we had speedup the execution time. However, after calculating the
speedup in Table 2, we notice the speedup was increasing when the size of image
increased. When the size of image was 100 × 100 the speedup was 1.1623 and when
we reached to 1000 × 1000 size of image it gave us the highest speedup with
3.1810. Therefore, the size of the image increase (Figure 2), more parallelization
is obtained. Since the data in each thread is greater, then we save more time than
parallelizing a smaller one.

In Table 3, we examined the performance of the provided code, and we calcu-
lated the speedup and the efficiency in a variety of thread numbers, from one to
eight threads. The time is calculated before the parallel region and stopped after
the parallel block. Each thread configuration aimed to reduce execution time by
leveraging parallel processing. The single-threaded scenario, where no benefit of
parallelization, had the slowest execution time and speedup the efficiency is set
as the baseline due to sequential execution. We saw an observable improvement

Table 1. Size of image and speedup table.

Size of image Speedup

100 × 100 1.1623

250 × 250 1.522077

500 × 500 2.23088

1000 × 1000 3.1810

Table 2. C sequential vs OpenMP execution time table.

Size of image C sequential execution time OpenMP parallel execution time

100 × 100 0.001919 0.001651

250 × 250 0.009376 0.006160

500 × 500 0.034543 0.015484

1000 × 1000 0.136276 0.04284

https://doi.org/10.4236/jcc.2024.122001

B. AlHumaidan et al.

DOI: 10.4236/jcc.2024.122001 8 Journal of Computer and Communications

Table 3. Speedup and efficiency for number of threads table.

Number of threads Speedup Efficiency

1 1 1

2 1.4018 0.700835

4 1.779160 0.4447390

8 2.3331547 0.2916108

Figure 2. C sequential vs OpenMP parallel execution time in term of image size.

Figure 3. Speedup and efficiency based on number of cores.

in execution time and speedup as we moved to two threads and introduced mi-
nimal parallelization and the efficiency decreases to 0.700835, indicating an ad-
ditional work or inefficiency introduced in the parallelization process, though
this improvement was not perfect because of inherent overhead and thread de-
pendencies, especially with smaller image sizes. Four threads introduced mod-
erate parallelization, further dividing the image into segments for simultaneous
processing and improving execution time and increased the speedup, particular-

https://doi.org/10.4236/jcc.2024.122001

B. AlHumaidan et al.

DOI: 10.4236/jcc.2024.122001 9 Journal of Computer and Communications

ly for large images but the drops to 0.4447390. Finally, the fastest execution time
and the highest speedup were achieved by using eight threads to maximize pa-
rallelization because we utilize all cores that we have. We noticed the efficiency
decreases in cores 4 and 8, indicating potential issues like communication issues
or uneven workload distribution, indicating that adding more cores may not yield
the expected speedup as is shown in Figure 3.

5. Conclusion

In summary, using OpenMP for parallel image processing, especially for grays-
cale conversion, offers substantial performance improvements. As OpenMP’s
capabilities enable concurrent processing of multiple cores, it significantly reduces
execution times by distributing tasks across multiple cores. According to the pre-
sented speedup values for various image sizes, the parallel approach proves espe-
cially useful when working with large images. However, as the table illustrates,
parallelization efficiency may decrease with an increase in number of cores. This
highlights the importance of carefully optimizing the parallelization strategy, con-
sidering factors such as load balancing and minimizing communication overhead.
Despite these challenges, the overall scalability and efficiency achieved through
parallel image processing underscore OpenMP’s effectiveness in accelerating
image manipulation tasks, with the potential for even greater gains through meti-
culous tuning and optimization. This demonstrates the significance of carefully
balancing load and reducing communication overhead while optimizing the pa-
rallelization strategy. Even with these difficulties, OpenMP is a powerful tool for
speeding up image manipulation tasks due to its overall scalability and efficiency
through parallel image processing. With careful tuning and optimization, how-
ever, even bigger gains may be possible.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Kendurkar, A. (2021) A Comparative Analysis of Parallelisation Using OpenMP and

Pymp for Image Convolution. International Research Journal of Engineering and
Technology, 8, 54-64. https://www.irjet.net/

[2] Saxena, S., Sharma, S. and Sharma, N. (2016) Parallel Image Processing Techniques,
Benefits and Limitations. Research Journal of Applied Sciences, Engineering and
Technology, 12, 223-238. https://doi.org/10.19026/rjaset.12.2324

[3] Slabaugh, G., Boyes, R. and Yang, X. (2010) Multicore Image Processing with OpenMP
[Applications Corner]. IEEE Signal Processing Magazine, 27, 134-138.
https://doi.org/10.1109/MSP.2009.935452

[4] Gupta, S. and Rahman, M. (2015) Performance Analysis of Image Segmentation Us-
ing Parallel Processing. International Journal of Innovative Research in Computer
Science & Technology (IJIRCST), 3, 57-63.

https://doi.org/10.4236/jcc.2024.122001
https://www.irjet.net/
https://doi.org/10.19026/rjaset.12.2324
https://doi.org/10.1109/MSP.2009.935452

B. AlHumaidan et al.

DOI: 10.4236/jcc.2024.122001 10 Journal of Computer and Communications

[5] Iqbal, M. and Raghuwanshi, S. (2013) Analysis of Digital Image Processing with Pa-
rallel and Overlap Segment Technique. International Journal of Engineering Research
and Technology (IJERT), 2, 2116-2121. https://www.ijert.org/

[6] Saravanan, C. (2010) Color Image to Grayscale Image Conversion. 2010 Second Inter-
national Conference on Computer Engineering and Applications, Bali, 19-21 March
2010, 196-199. https://doi.org/10.1109/ICCEA.2010.192

https://doi.org/10.4236/jcc.2024.122001
https://www.ijert.org/
https://doi.org/10.1109/ICCEA.2010.192

	Parallel Image Processing: Taking Grayscale Conversion Using OpenMP as an Example
	Abstract
	Keywords
	1. Introduction
	2. Literature Review
	3. Grayscale Conversion
	Implementing the Grayscale Conversion

	4. Results and Discussions
	Experimental Results

	5. Conclusion
	Conflicts of Interest
	References

