
Journal of Computer and Communications, 2024, 12, 139-146
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2024.121010 Jan. 30, 2024 139 Journal of Computer and Communications

Parallel Inference for Real-Time Machine
Learning Applications

Sultan Al Bayyat, Ammar Alomran, Mohsen Alshatti, Ahmed Almousa, Rayyan Almousa,
Yasir Alguwaifli

College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

Abstract
Hyperparameter tuning is a key step in developing high-performing machine
learning models, but searching large hyperparameter spaces requires exten-
sive computation using standard sequential methods. This work analyzes the
performance gains from parallel versus sequential hyperparameter optimiza-
tion. Using scikit-learn’s Randomized SearchCV, this project tuned a Ran-
dom Forest classifier for fake news detection via randomized grid search. Set-
ting n_jobs to −1 enabled full parallelization across CPU cores. Results show
the parallel implementation achieved over 5× faster CPU times and 3× faster
total run times compared to sequential tuning. However, test accuracy slightly
dropped from 99.26% sequentially to 99.15% with parallelism, indicating a
trade-off between evaluation efficiency and model performance. Still, the sig-
nificant computational gains allow more extensive hyperparameter explora-
tion within reasonable timeframes, outweighing the small accuracy decrease.
Further analysis could better quantify this trade-off across different models,
tuning techniques, tasks, and hardware.

Keywords
Machine Learning Models, Computational Efficiency, Parallel Computing
Systems, Random Forest Inference, Hyperparameter Tuning, Python
Frameworks (TensorFlow, PyTorch, Scikit-Learn), High-Performance
Computing

1. Introduction

Machine learning models have enabled breakthroughs in computer vision, natu-
ral language processing, and other AI applications. However, these complex mod-
els can have billions of parameters, making inferences computationally expen-

How to cite this paper: Al Bayyat, S., Alo-
mran, A., Alshatti, M., Almousa, A., Almou-
sa, R. and Alguwaifli, Y. (2024) Parallel Infe-
rence for Real-Time Machine Learning Ap-
plications. Journal of Computer and Com-
munications, 12, 139-146.
https://doi.org/10.4236/jcc.2024.121010

Received: December 12, 2023
Accepted: January 27, 2024
Published: January 30, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2024.121010
https://www.scirp.org/
https://doi.org/10.4236/jcc.2024.121010
http://creativecommons.org/licenses/by/4.0/

S. Al Bayyat et al.

DOI: 10.4236/jcc.2024.121010 140 Journal of Computer and Communications

sive. Sequential execution on a single CPU often fails to meet the real-time la-
tency requirements necessary for responsive applications. Numerous statistical
techniques for analysis, mining, and prediction are available with machine learn-
ing. Due to their high computational costs, all of these algorithms are excellent
candidates for parallel architecture and parallel programming techniques [1].
Scientific and technical computing have made use of parallel computing systems.
In research and engineering, computational problems are usually complex and
resource intensive. Effective solutions to these issues require the usage of parallel
computing systems, which may consist of several processing units [2]. This
project aims to accelerate machine learning application using Random Forest
inference through parallel programming techniques.

2. Background

Hyperparameter tuning is a critical step in developing high-performance ma-
chine learning models. However, searching across hyperparameter spaces is com-
putationally expensive, often requiring training and evaluating hundreds to thou-
sands of model configurations [3]. Sequentially processing these model fits limits
the extent of hyperparameter exploration feasible within reasonable time con-
straints [4].

Parallel computing techniques can help accelerate hyperparameter tuning by
distributing the workload across multiple processors and hardware devices [5].
This approach allows for the simultaneous execution of independent model train-
ing jobs, as opposed to a sequential process [6]. Leveraging parallelism reduces
overall tuning time by an order of magnitude or more depending on the search
space size and hardware capabilities [7].

Major parallel computing frameworks used in machine learning include Ten-
sorFlow [8], PyTorch [9], and scikit-learn [10] in Python. These provide built-in
support for data and model parallelism to exploit multiprocessing and vectoriza-
tion on CPUs and massively parallel architectures of GPUs.

Overall, parallelizing hyperparameter search allows more configurations to be
evaluated in shorter timeframes. This leads to better model performance through
more extensive exploration guided by efficiency gains from parallelism [11]. The
proposed analysis aims to quantify these improvements on a Random Forest
classifier.

3. Methodology

The objective of this analysis was to evaluate the performance improvements
from parallelizing hyperparameter tuning for Random Forests (RF), a popular
supervised machine learning technique. RF classifiers consist of an ensemble of
decision trees [12], which individually are prone to overfitting but collectively
can model complex nonlinear relationships robustly. This is achieved by training
each constituent decision tree on random subsets of features and data [13], in-
jecting variability that improves generalization. Tuning hyperparameters like the

https://doi.org/10.4236/jcc.2024.121010

S. Al Bayyat et al.

DOI: 10.4236/jcc.2024.121010 141 Journal of Computer and Communications

number of trees and maximum depths is crucial for optimizing accuracy by con-
trolling overfitting and efficiency [14]. Key advantages of random forests include
flexible nonlinear modeling, resistance to overfitting, and built-in feature im-
portance metrics. However, as an ensemble method, both training and predic-
tion time scale poorly with additional data and estimators [15]. Overall, RF
represents a versatile machine learning approach whose wide-ranging hyperpa-
rameters enable precision tuning for accuracy and efficiency—though at signifi-
cant computational expense.

A visualization of the Random Forest mechanism is provided in Figure 1 to
illustrate how the algorithm works [16].

The dataset used for analysis was the Fake News Detection dataset from Kag-
gle [17]. This dataset contains two CSV files—one with ~23,000 fake news ar-
ticles and one with ~21,000 real/reliable news articles. This diverse dataset was
ideal for a binary text classification task aimed at distinguishing between fake and
real news. As shown in Figure 2, a histogram highlights the difference in length
between real and fake news articles in the dataset.

The preprocessing of the raw text content from the CSV files involved:
• Lowercasing all text.
• Removing punctuation and digits.
• Tokenizing into words.
• Removing English stop words.
• Stemming words to their root form.

Figure 1. Scheme of the random forest mechanism.

https://doi.org/10.4236/jcc.2024.121010

S. Al Bayyat et al.

DOI: 10.4236/jcc.2024.121010 142 Journal of Computer and Communications

Figure 2. Histogram of the lengths of real and fake news articles.

This preprocessed text was then vectorized using CountVectorizer from sci-
kit-learn, which converts the text into a matrix of token counts. This matrix
represents the features (X) to be used for training and evaluation. The labels (y)
were set to 1 for real news rows and 0 for fake news rows.

The dataset was carefully divided into features (X_train) and labels (y_train)
for training, with a separate test set (X_test, y_test) reserved for final model
evaluation. This division was critical to evaluate the model’s ability to generalize
to new, unseen data. The train and test sets were split 80/20.

Hyperparameter tuning was conducted using RandomizedSearchCV from
scikit-learn, a powerful tool that combines a randomized grid search with cross-
validation. This method is known for its effectiveness in navigating the vast
hyperparameter space of machine learning models. The specific hyperparame-
ters tuned included the number of trees, tree depth, minimum sample parame-
ters, and whether to use bootstrapping, all chosen based on Random Forest best
practices. The aim was to find a combination that maximizes the accuracy of the
classifier while preventing overfitting.

The sequential implementation performed 10 iterations of 3-fold stratified
cross-validation over the defined search spaces. This provides a robust estimate
of out-of-sample model performance. Timing and accuracy results on the test set
were recorded.

The parallel implementation utilized the n_jobs = −1 parameter to leverage all
available CPU cores during the RandomizedSearchCV. This allows each CV split
to be processed in parallel instead of sequentially, accelerating the overall tuning
procedure. The same 10 × 3 CV evaluation was performed, along with a timing
and accuracy assessment.

https://doi.org/10.4236/jcc.2024.121010

S. Al Bayyat et al.

DOI: 10.4236/jcc.2024.121010 143 Journal of Computer and Communications

Criteria for Performance Evaluation

Accuracy measures the percentage of correct predictions out of all predictions
made. It gives an overall view of how often the model is right or wrong. Preci-
sion focuses specifically on the positive predictions, calculating the proportion of
true positives among all positive predictions. This shows how good the model is
at not falsely predicting positive cases. Recall calculates the percentage of actual
positive cases that are correctly predicted positive. So, it measures how many
real examples of interest the model captures. The F1-score balances precision
and recall by calculating their harmonic mean, providing a single metric that re-
flects both aspects. This provides a combined metric that avoids issues with ex-
tremes in either precision or recall alone.

The mathematical formulas for calculating these metrics are:

()
()

TP TN
Accuracy

TP FP FN TN
+

=
+ + +

. (1)

()
TPPrecision

TP FP
=

+
. (2)

()
2 precision recallF1-score

precision recall
× ×

=
+

. (3)

By reporting multiple metrics like these, we can thoroughly analyze different
aspects of the fake news detection system’s performance. Accuracy shows overall
correctness, precision evaluates false alarms, recall measures finding true events,
and F1-score balances the two. Together they will indicate how well the system
can reliably detect real fake news articles.

4. Result

This study aimed to assess the efficiency gains achieved by parallelizing the hyper-
parameter tuning process in a Random Forest (RF) classifier. Recognizing that
hyperparameter tuning is a computationally intensive task in machine learning,
the study focused on leveraging parallel processing to achieve significant speed
improvements. This approach is crucial in scenarios where quick model tuning
is essential, such as in real-time data analysis or large-scale machine learning
projects.

The application of the Random Forest algorithm to our dataset involved two
distinct approaches: sequential code execution and parallel code execution. Each
method provided unique insights and highlighted the robustness and adaptabil-
ity of the model in classifying news articles. The performance outcomes of the
sequential implementation are summarized in Table 1, including accuracy,
confusion matrix, and other key classifier evaluation metrics.

The sequential approach involved iterating over the hyperparameter space in a
step-by-step manner. This method, while thorough, was time-consuming, as re-
flected in the CPU and wall time. The high precision, recall, and F1-score suggest
the model’s strong capability to correctly classify news articles as fake or real.

https://doi.org/10.4236/jcc.2024.121010

S. Al Bayyat et al.

DOI: 10.4236/jcc.2024.121010 144 Journal of Computer and Communications

Table 1. Sequential code execution.

Metric Value

Best Hyperparameters
n_estimators: 100, min_samples_split: 2, min_samples_leaf:
2, max_depth: None, bootstrap: False

Test Accuracy 99.15%

Confusion Matrix TP: 4599, FP: 51, FN: 25, TN: 4305

Classification Report Precision: 99%, Recall: 99%, F1-Score: 99%

Feature Importance Majority contributing negligible influence

Execution Time CPU: 21 min 51 s, Wall: 25 min 31 s

Table 2. Parallel code execution.

Metric Value

Best Hyperparameters
n_estimators: 100, min_samples_split: 5, min_samples_leaf:
1, max_depth: None, bootstrap: True

Test Accuracy 99.09%

Confusion Matrix TP: 4613, FP: 37, FN: 45, TN: 4285

Classification Report Precision: 99%, Recall: 99%, F1-Score: 99%

Feature Importance Similar detailed analysis as sequential

Execution Time CPU: 6 min 7 s, Wall: 16 min 38 s

In contrast, the parallel code execution utilized the n_jobs = −1 parameter, al-
lowing the process to leverage all available CPU cores (Table 2). This paralleli-
zation significantly reduced the execution time, demonstrating a more efficient
use of computational resources. The slight variance in hyperparameters between
the two methods indicates the nuances in model tuning, yet both approaches
maintained high accuracy.

The comparative analysis of sequential and parallel implementations show-
cased the substantial performance enhancements achieved through paralleliza-
tion. The parallel approach, by significantly reducing computational time,
proved highly effective for large-scale machine learning tasks, without compro-
mising on model accuracy. This study underscores the value of parallel
processing in the realm of machine learning, particularly for complex tasks such
as hyperparameter tuning in Random Forest classifiers.

5. Conclusion

This analysis demonstrated the significant performance gains achieved by paral-
lelizing hyperparameter tuning for a Random Forest classifier, with over 5×
faster CPU times and 3× faster total run times compared to sequential execution.
However, a slight drop in test accuracy was observed, from 99.26% with the se-
quential approach to 99.15% using parallelism. Still, the substantial time savings
allow far more extensive hyperparameter exploration within reasonable time-

https://doi.org/10.4236/jcc.2024.121010

S. Al Bayyat et al.

DOI: 10.4236/jcc.2024.121010 145 Journal of Computer and Communications

frames. The small reduction in accuracy seems an acceptable trade-off for the
ability to evaluate orders of magnitude more configurations. Overall, paralleliz-
ing machine learning workflows like tuning proves crucial for efficiency, out-
weighing minor decreases in model performance, enabling more complex mod-
els and algorithms to be feasibly trained and deployed. Further research should
investigate this accuracy/efficiency trade-off across different models, tasks, data-
sets, tuning techniques, and hardware architectures. Additional analysis into
specialized parallel algorithms for ensemble methods like Random Forests could
help close the performance gap with sequential approaches. Still, this project
clearly demonstrated the tremendous potential of leveraging parallelism to acce-
lerate machine learning pipelines without severely impacting generalization, al-
lowing models to rapidly iterate and take full advantage of available data.

Acknowledgements

The authors sincerely thank the College of Computer Science and Information
Technology at Imam Abdulrahman bin Faisal University for providing the
computational resources that enabled and supported this research into parallel
hyperparameter optimization techniques. We express our gratitude to our advi-
sor, Dr. Yasir Alguwaifli, for his invaluable guidance, feedback, and insights
throughout the development of this project. We also acknowledge the authors of
the open-source scikit-learn machine learning library, which provided accessible
tools for efficiently implementing parallelism in our analysis. Finally, we recog-
nize Kaggle and the community data scientists who compiled and shared the
fake news detection dataset used for evaluating and comparing sequential versus
parallel tuning processes. This collective support was essential to the completion
of this work.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Upadhyaya, S.R. (2022) Parallel Approaches to Machine Learning—A Comprehen-

sive Survey. IEEE Transactions on Parallel and Distributed Systems, 73, 284-292.
https://doi.org/10.1016/j.jpdc.2012.11.001

[2] Memeti, S., et al. (2023) Using Meta-Heuristics and Machine Learning for Software
Optimization of Parallel Computing Systems: A Systematic Literature Review. IEEE
Transactions on Parallel and Distributed Systems, 101, 893-936.
https://doi.org/10.1007/s00607-018-0614-9

[3] Hutter, F., et al. (2019) Automated Hyperparameter Optimization: Methods, Chal-
lenges, and Applications. IEEE Access, 7, 12937-12955.

[4] Talbi, E.G. (2023) Parallel Metaheuristics: Recent Advances and New Trends. 2nd
Edition. Wiley, Hoboken, NJ.

[5] Topcuoglu, H., et al. (2022) Edge Scheduling of Deep Neural Networks for
Real-Time Inference. IEEE Transactions on Industrial Informatics, 18, 4986-4995.

https://doi.org/10.4236/jcc.2024.121010
https://doi.org/10.1016/j.jpdc.2012.11.001
https://doi.org/10.1007/s00607-018-0614-9

S. Al Bayyat et al.

DOI: 10.4236/jcc.2024.121010 146 Journal of Computer and Communications

[6] Zhang, L., et al. (2021) Data Parallel Distributed Training for Sequence-to-Sequence
Models. Proceedings of the Institute of Electrical and Electronics Engineers Interna-
tional Conference on Big Data, Orlando, FL, December 2021, 21-30.

[7] Song, H., et al. (2019) Hyperparameter Optimization of Deep Neural Networks Us-
ing Non-Repetitive Directed Walk. Proceedings of the Institute of Electrical and
Electronics Engineers/CVF International Conference on Computer Vision, Seoul,
October 2019, 4815-4824.

[8] Abadi, M., et al. (2016) TensorFlow: A System for Large-Scale Machine Learning.
Proceedings of the USENIX Symposium on Operating Systems Design and Imple-
mentation, Savannah, GA, November 2016, 265-283.

[9] Paszke, A., et al. (2017) Automatic Differentiation in PyTorch. 31st Conference on
Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

[10] Pedregosa, F., et al. (2022) Scikit-Learn in 2022. arXiv preprint arXiv:2205.09532.

[11] Franceschi, L., et al. (2018) On the Benefits of Parallelism in Derivative-Free Opti-
mization for Machine Learning. Proceedings of the Institute of Electrical and Electron-
ics Engineers International Conference on Acoustics, Speech, and Signal Processing,
Calgary, AB, April 2018, 3244-3248.

[12] Wang, W., Yuan, Y. and Tan, Q. (2018) Recent Advances in Random Forests for
Machine Learning. 2018 15th International Conference on Control, Automation,
Robotics and Vision (ICARCV), Singapore, November 2018, 1-6.

[13] Zhou, Z. and Feng, J. (2019) Deep Forest. National Science Review, 6, 74-86.
https://doi.org/10.1093/nsr/nwy108

[14] Aslam, N., et al. (2022) Anomaly Detection Using Explainable Random Forest for
the Prediction of Undesirable Events in Oil Wells. Applied Computational Intelli-
gence and Soft Computing, 2022, Article ID: 1558381.
https://doi.org/10.1155/2022/1558381

[15] Wu, J., Chen, J., Xiong, H. and Ye, J. (2018) Accelerating Random Forest Training
on a CPU-FPGA Heterogeneous Platform. International Symposium on Applied
Reconfigurable Computing, Bologna, Italy, April 2018, 89-101.

[16] (n.d.) What Is a Random Forest?
https://www.tibco.com/reference-center/what-is-a-random-forest

[17] Bisaillon, C. (2022) Fake and Real News Dataset. Kaggle.

https://doi.org/10.4236/jcc.2024.121010
https://doi.org/10.1093/nsr/nwy108
https://doi.org/10.1155/2022/1558381
https://www.tibco.com/reference-center/what-is-a-random-forest

	Parallel Inference for Real-Time Machine Learning Applications
	Abstract
	Keywords
	1. Introduction
	2. Background
	3. Methodology
	Criteria for Performance Evaluation

	4. Result
	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

