
Journal of Computer and Communications, 2024, 12, 131-138
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2024.121009 Jan. 30, 2024 131 Journal of Computer and Communications

Accelerating Large-Scale Sorting through
Parallel Algorithms

Yahya Alhabboub , Fares Almutairi, Mohammed Safhi, Yazan Alqahtani,
Adam Almeedani, Yasir Alguwaifli

College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

Abstract
This study explores the application of parallel algorithms to enhance large-scale
sorting, focusing on the QuickSort method. Implemented in both sequential
and parallel forms, the paper provides a detailed comparison of their perfor-
mance. This study investigates the efficacy of both techniques through the
lens of array generation and pivot selection to manage datasets of varying
sizes. This study meticulously documents the performance metrics, recording
16,499.2 milliseconds for the serial implementation and 16,339 milliseconds
for the parallel implementation when sorting an array by using C++ chrono
library. These results suggest that while the performance gains of the parallel
approach over its serial counterpart are not immediately pronounced for
smaller datasets, the benefits are expected to be more substantial as the data-
set size increases.

Keywords
Sorting Algorithm, Quick Sort, QuickSort Parallel, Parallel Algorithms

1. Introduction

Sorting algorithms are an indispensable component in the landscape of modern
computation. As noted by Baqer [1], the problem-solving capacity and time effi-
ciency afforded by sorting techniques constitute tangible proof of their signifi-
cant reliability and utility. Amid the class of available sorting algorithms,
Quicksort stands out as one of the most ubiquitous sequential approaches owing
to its combination of conceptual simplicity, low processing overhead, and excel-
lent average-case complexity of O(nlogn) [2]. The kernel of Quicksort involves
selecting a pivot element and dividing the dataset into two partitions with values
less than the pivot and values greater than the pivot. This divide-and-conquer

How to cite this paper: Alhabboub, Y.,
Almutairi, F., Safhi, M., Alqahtani, Y., Al-
meedani, A. and Alguwaifli, Y. (2024) Acce-
lerating Large-Scale Sorting through Parallel
Algorithms. Journal of Computer and Com-
munications, 12, 131-138.
https://doi.org/10.4236/jcc.2024.121009

Received: December 13, 2023
Accepted: January 27, 2024
Published: January 30, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2024.121009
https://www.scirp.org/
https://orcid.org/0000-0002-5667-6865
https://doi.org/10.4236/jcc.2024.121009
http://creativecommons.org/licenses/by/4.0/

Y. Alhabboub et al.

DOI: 10.4236/jcc.2024.121009 132 Journal of Computer and Communications

strategy lends itself naturally to parallelization. In parallel Quicksort implemen-
tations, partitioning and sorting of divisions can occur simultaneously across
multiple processing units. Research has been undertaken into task scheduling
methodologies to best distribute workloads among processors in parallel Quick-
sort [3].

However, despite its widespread use and extensive research, the specific per-
formance implications of parallel Quicksort in large-scale data environments
remain underexplored. This paper aims to fill this gap by examining the perfor-
mance differential between sequential and parallel Quicksort implementations
under varying data conditions. Employing a comparative analytical approach,
we use empirical data from tests conducted on arrays of varying sizes. This study
not only contributes to a deeper understanding of Quicksort’s efficiency in mul-
ti-core processing environments but also aids in optimizing sorting processes in
big data analytics.

The quest for accelerated sorting has led to GPU-optimized variants of Quick-
sort as well. Sintorn and Assarsson [4] developed a GPU-Quicksort utilizing frag-
mented sorting and merging that leverages the massively parallel architecture of
graphics cards, yielding speedups of up to 6 times over single-threaded Quick-
sort. Their bucket sorting method for partitioning exhibits O(n) complexity in
the average case. Tsigas and Zhang [5] implemented a lock-free parallel Quicksort
on the Sun Enterprise 10,000, exploiting principles of efficient load-balancing
across processors. Testing showed sorting time speedups of up to 7 times faster
than alternatives like sample sort.

The Quicksort algorithm in the Intel Threading Building Blocks (TBB) library
stands as a sophisticated exemplar of concurrent Quicksort execution in a shared
memory space [6]. The TBB interface encapsulates the intricate details of paral-
lelism from the developer while allowing platform-specific optimization. This
enables software engineers to efficiently tap into the parallel capabilities afforded
by multi-core and multi-processor commodity hardware that has become ubi-
quitous. Indeed, as Reinders [6] highlights, although concurrent programming
has presented deep theoretical challenges, relentless advances in silicon manu-
facturing rendered parallelism a mainstream necessity. Practical libraries like
TBB lower the barrier for software developers to realize the performance benefits
of concurrency with minimal added complexity.

2. Literary Review

In the study by Philippas Tsigas et al. [5], they used SUN ENTERPRISE 10,000
data center to test and compare quick and sample sort. They used multiple me-
thods to develop the model such as fine-grain parallelism to divide large tasks
into smaller ones, and all the subtasks can run simultaneously. The Sedgewick
pivot selection approach was implemented for data and computation sharing
without causing blocking effects. A cache-coherent shared address space multi-
processor with 32 SUN ENTERPRISE 10,000 processors achieved a greater

https://doi.org/10.4236/jcc.2024.121009

Y. Alhabboub et al.

DOI: 10.4236/jcc.2024.121009 133 Journal of Computer and Communications

speed-up with parallel quick sort compared to sample sort. The quick sort was
found to be over six times quicker than the sample sort. This occurred by leve-
raging the capabilities of the multiprocessor system.

The method proposed by Philip Heidelberger et al. [3], for parallelization of
the Quicksort algorithm for shared memory multiprocessor. Multiprocessor shared
memory underwent the use of fetch-and-add operation during the Quicksort
algorithm. Add an atomic operation that adds to the current value of a memory
location after reading it. Adaptive scheduling algorithms were employed to allo-
cate a designated value to the memory location. By utilizing the technique of di-
vide-and-conquer, it is possible to reduce the period of processor wait time as
well as synchronization. Effective load balancing and improved efficiency were
achieved due to overhead reduction, resulting in an optimized system. Algo-
rithm Quicksort boasts an impressive 80% increase in speed.

In the study made by Tinku Singh et al. [7], they used a parallel quicksort al-
gorithm to measure CPU core utilization. Quicksort is used to test the workload
on different cores of the CPU. They test quicksort in serial and parallel with va-
riable size input to measure the performance of CPU usages, then store all the
results in tables. Comparison graphs are used to show the utilization of the CPU.
After reviewing the comparison graphs, they concluded that Quicksort’s parallel
version better utilizes CPU cores compared to the sequential version. Not only
the multicore is responsible for this result, but they also developed an effective
code that uses multithreading.

In the study made by Erik Sintorn et al. [4], they presented a technique that
uses recent GPUs to rapidly sort huge lists while fully utilizing the parallelism of
the GPU. They used GPU-based bucket sort or quick sort split lists into sub lists
then they are sorted in parallel using merge sort. This GPU-based sorting algo-
rithm performs faster than radix sort and other GPU-based sorting algorithms
and the algorithm is 6 times faster than single CPU quicksort. The algorithm has
the complexity of n log n. They did another test by utilizing two graphics cards
for additional speed-up and achieved a 1.8 times speedup when utilizing the two
graphics cards.

In the study by Marszalek et al. [8], they developed a flexible merge sorting
algorithm designed for parallel processing on multicore architectures, the me-
thod is based on a modified merge sorting algorithm. The suggested approach
has been implemented into effect utilizing an Opteron AMD Processor 8356 8p
for the research, running C MS Visual 2015 on MS Windows Server 2012. The
tasks are flexibly distributed between logical cores to increase efficiency and each
processor works separately without cross-actions or interruptions. The proposed
method was tested and compared to other methods, showing high efficiency.
With each newly added processor, sorting becomes faster and more efficient.

After reviewing the previous literature studies, we found out that parallelism
in computing not only depends on a powerful machine but also needs effective
code to utilize the CPU or GPU to its maximum potential [7]. Since we do not
have machines that specialize in data parallelism like in the studies [5] [8]. We

https://doi.org/10.4236/jcc.2024.121009

Y. Alhabboub et al.

DOI: 10.4236/jcc.2024.121009 134 Journal of Computer and Communications

will use our devices with an effective code to minimize processor waiting time
and synchronization overhead [3] and we will use large datasets to compare the
sequential and the parallel version of the code [4] [7]. We will use the newest
technology we have with an effective code to achieve the highest speed-up per-
centage possible.

3. Methodology

The objective is to accelerate large-scale sorting by leveraging parallel processing.
We implement both sequential and parallelized versions of the QuickSort algo-
rithm [2] in C++ to sort randomly generated integer arrays.

3.1. Framework

The framework of the code is illustrated in Figure 1 below.

3.2. The Key Techniques Used
3.2.1. Array Generation
An integer array of configurable size N is generated by uniformly sampling ran-
dom numbers between specified minimum and maximum bounds. The C++
standard random library [9] is utilized, specifically the classes:

1) std::random_device—Generates non-deterministic random numbers as a
source of entropy

2) std::mt19937—Mersenne twister pseudo-random number engine seeded by
random_device

3) std::uniform_int_distribution—Generates evenly distributed random integers
Together these facilitate stochastically generating large arrays with high en-

tropy to enable statistical analysis of algorithm performance across a wide input
distribution.

3.2.2. Pivot Selection
Efficient pivot selection is key to optimizing QuickSort’s O(nlogn) average case
performance. We implement the median-of-three pivot selection scheme [10],

Figure 1. The framework of the code.

https://doi.org/10.4236/jcc.2024.121009

Y. Alhabboub et al.

DOI: 10.4236/jcc.2024.121009 135 Journal of Computer and Communications

choosing the median value of three randomly sampled array elements as the pi-
vot in each partition. Selecting the median pivot versus a single random element
mitigates always choosing extreme min/max values as pivots causing unbalanced
partitions and quadratic O(n^2) runtime in worst case already sorted arrays.
The random sampling increases the likelihood of balanced partitions across
random input.

3.2.3. Sequential Implementation
The standard recursive, sequential QuickSort logic is implemented in quick-
sort_sequential (). It divides the array into two partitions centered around a pi-
vot, recursively sorts the smaller partitions, and concatenates the sorted
sub-arrays. This exploits the divide-and-conquer approach by breaking the large
array sort into smaller sub-problems but executes them sequentially in a single
thread.

3.2.4. Parallel Implementation
To leverage multi-core parallelism, the key technique used is OpenMP [11]
pragmas in quicksort_parallel () to parallelize the two recursive sort calls on the
partitioned sub-arrays. Figure 2 below illustrates OpenMP multi-core paral-
lelism:

This concurrent divide-and-conquer enables near-linear speedup on mul-
ti-processor systems by simultaneously quicksorting multiple sub-problems in
parallel. Nested parallelism can further be introduced by recursively invoking
the parallel quicksort on each thread.

3.3. Evaluation

The relative performance is quantified by comparing runtimes of the sequential
vs. parallel implementations using the C++ chrono library’s [1] high_resolution_
clock. For validating correctness, the sort outputs are printed and verified to be
identical. Speedup ratios are calculated over varying input sizes N.

Figure 2. OpenMP multi-core parallelism.

https://doi.org/10.4236/jcc.2024.121009

Y. Alhabboub et al.

DOI: 10.4236/jcc.2024.121009 136 Journal of Computer and Communications

3.4. Expected Outcomes

The parallel implementation is expected to demonstrate significantly lower run-
times than sequential QuickSort for large N, validating the methodology of ac-
celerating scale through parallel divide-and-conquer. Sub-linear speedup is ex-
pected due to overheads like thread creation.

4. Result

Table 1 provides a succinct overview of the results, followed by a comprehensive
analysis and detailed explanation of the findings below.

Table 1 shows the time taken in milliseconds to sort arrays of random num-
bers of varying sizes, from 10 elements up to 1 million elements. For both the
sequential and parallel QuickSort implementations, the time taken to sort the
array increases as the number of elements grows, which is expected since the al-
gorithms have higher complexity for larger inputs.

However, the parallel QuickSort algorithm displays marginally better perfor-
mance over the sequential version. For the smaller array sizes up to 1000 ele-
ments, there is little difference between the two, with parallel QuickSort just
slightly faster by a few milliseconds. As the number of elements increases to
10,000 and beyond, a small but consistent performance gain for parallel Quick-
Sort emerges.

At 1 million elements, parallel QuickSort takes 16,499.2 ms while sequential
takes 16,339 ms—an improvement of about 160 milliseconds or just under 1%.
The fact that parallel QuickSort scales slightly better indicates that it can leverage
multiple threads and cores to efficiently divide-and-conquer the sorting problem
for large inputs. However, since QuickSort relies heavily on pivot selection, op-
timizations like choosing the median as pivot could help the sequential version
match or exceed parallel QuickSort.

To summarize, although parallel QuickSort exhibits slightly superior compu-
tational efficiency compared to sequential QuickSort, the disparity is minimal,
and factors such as implementation simplicity might impact the choice between
the two versions. Additional experimentation with diverse hardware setups might
unveil scenarios where parallel QuickSort significantly surpasses its sequential
counterpart.

Table 1. A comparative analysis of the parallel and sequential QuickSort algorithms.

Number of Elements Sequential (Millisecond) Parallel (Millisecond)

10 0.094 0.109

100 1.122 1.118

1000 11.968 11.551

10,000 120.909 116.260

100,000 1242.510 1239.960

1,000,000 16499.200 16339.000

https://doi.org/10.4236/jcc.2024.121009

Y. Alhabboub et al.

DOI: 10.4236/jcc.2024.121009 137 Journal of Computer and Communications

5. Discussion

Sorting data is more critical than ever as we enter the data-driven age. In ex-
amining the performance outcomes between parallel and sequential QuickSort
algorithms, as detailed in Table 1, we observe a nuanced escalation in execution
times corresponding with increased array sizes, which aligns with the expected
computational complexity behaviors of both algorithms. Upon closer inspection,
the parallel QuickSort algorithm demonstrates an incremental yet noteworthy
advantage over its sequential analogue. For modestly sized data sets (up to 1000
elements), the performance difference is marginal. This observation suggests that
for small-scale sorting tasks, the overhead associated with parallelism does not
yield significant benefits. However, as the data volume expands to 10,000 ele-
ments and beyond, the parallel QuickSort begins to reveal its strengths. At the
substantial scale of 1 million elements, the parallel QuickSort completes the task
in 16,499.2 milliseconds, a slight improvement over the sequential QuickSort’s
16,339 milliseconds. This improvement indicates that parallel QuickSort’s scala-
bility edges out the sequential approach in high-volume scenarios. The efficien-
cies gained through concurrent execution on multiple threads and cores become
increasingly apparent as the data challenge grows. Consequently, while the pa-
rallel QuickSort showcases slightly improved computational efficiency, the dis-
cernible benefit is relatively minor. This outcome raises pertinent considerations
about the practicality of adopting a parallel algorithm given its complexity and
the potential for increased error rates and debugging challenges. In scenarios
where development resources are limited or where the application demands sim-
plicity and reliability over marginal performance gains, the sequential QuickSort
may be preferred.

Acknowledgments

We express our sincere gratitude to Dr. Yasir Alguwaifli for his invaluable con-
tributions to this scientific endeavor. Yasir’s expertise, dedication, and insightful
perspectives significantly enriched the quality of our research. We extend our
appreciation for his unwavering support, guidance, and collaborative spirit
throughout the entire process.

Additionally, we would like to thank Imam Abdulrahman bin Faisal Univer-
sity for their assistance and resources that played a crucial role in the successful
completion of this paper.

This work is a testament to the collaborative efforts of a supportive scientific
community, and we are truly grateful for the collective contributions that have
made this research possible.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

https://doi.org/10.4236/jcc.2024.121009

Y. Alhabboub et al.

DOI: 10.4236/jcc.2024.121009 138 Journal of Computer and Communications

References
[1] Baqer, Z.T. (2018) Parallel Computing for Sorting Algorithms.

https://www.researchgate.net/publication/328465897_Parallel_Computing_for_Sort
ing_Algorithms

[2] Hoare, C.A.R. (1962) Quicksort. Computer Journal, 5, 10-16.
https://doi.org/10.1093/comjnl/5.1.10

[3] Heidelberger, P., Norton, A. and Robinson, J.T. (1990) Parallel Quicksort Using
Fetch-and-Add. IEEE Transactions on Computers, 39, 133-138.
https://doi.org/10.1109/12.46289

[4] Sintorn, E. and Assarsson, U. (2008) Fast Parallel GPU-Sorting Using a Hybrid Al-
gorithm. Journal of Parallel and Distributed Computing, 68, 1381-1388.
https://doi.org/10.1016/j.jpdc.2008.05.012

[5] Tsigas, P. and Zhang, Y. (2003) A Simple, Fast Parallel Implementation of Quick-
sort and Its Performance Evaluation on SUN Enterprise 10000. Eleventh Euromicro
Conference on Parallel, Distributed and Network-Based Processing, 2003. Proceed-
ings, Genova, 5-7 February 2003, 372-381.
https://doi.org/10.1109/EMPDP.2003.1183613

[6] Reinders, J. (2007) Intel Threading Building Blocks. O’Reilly Media, Inc., Sebasto-
pol, CA.

[7] Singh, T., Srivastava, D.K. and Aggarwal, A. (2017) A Novel Approach for CPU Uti-
lization on a Multicore Paradigm Using Parallel Quicksort. 2017 3rd International
Conference on Computational Intelligence & Communication Technology (CICT),
Ghaziabad, 9-10 February 2017, 1-6. https://doi.org/10.1109/CIACT.2017.7977382

[8] Marszałek, Z., Woźniak, M. and Połap, D. (2018) Fully Flexible Parallel Merge Sort
for Multicore Architectures. Complexity, 2018, Article ID: 8679579.
https://doi.org/10.1155/2018/8679579

[9] ISO/IEC (2017) ISO/IEC 14882: C++ standard library. International Organization
for Standardization, Geneva.

[10] Sedgewick, R. (1978) Implementing Quicksort Programs. Communications of the
ACM, 21, 847-857. https://doi.org/10.1145/359619.359631

[11] Dagum, L. and Menon, R. (1998) OpenMP: An Industry-Standard API for
Shared-Memory Programming. IEEE Computational Science & Engineering, 5,
46-55. https://doi.org/10.1109/99.660313

https://doi.org/10.4236/jcc.2024.121009
https://www.researchgate.net/publication/328465897_Parallel_Computing_for_Sorting_Algorithms
https://www.researchgate.net/publication/328465897_Parallel_Computing_for_Sorting_Algorithms
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1109/12.46289
https://doi.org/10.1016/j.jpdc.2008.05.012
https://doi.org/10.1109/EMPDP.2003.1183613
https://doi.org/10.1109/CIACT.2017.7977382
https://doi.org/10.1155/2018/8679579
https://doi.org/10.1145/359619.359631
https://doi.org/10.1109/99.660313

	Accelerating Large-Scale Sorting through Parallel Algorithms
	Abstract
	Keywords
	1. Introduction
	2. Literary Review
	3. Methodology
	3.1. Framework
	3.2. The Key Techniques Used
	3.2.1. Array Generation
	3.2.2. Pivot Selection
	3.2.3. Sequential Implementation
	3.2.4. Parallel Implementation

	3.3. Evaluation
	3.4. Expected Outcomes

	4. Result
	5. Discussion
	Acknowledgments
	Conflicts of Interest
	References

