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Abstract 
This study explores the application of parallel algorithms to enhance large-scale 
sorting, focusing on the QuickSort method. Implemented in both sequential 
and parallel forms, the paper provides a detailed comparison of their perfor-
mance. This study investigates the efficacy of both techniques through the 
lens of array generation and pivot selection to manage datasets of varying 
sizes. This study meticulously documents the performance metrics, recording 
16,499.2 milliseconds for the serial implementation and 16,339 milliseconds 
for the parallel implementation when sorting an array by using C++ chrono 
library. These results suggest that while the performance gains of the parallel 
approach over its serial counterpart are not immediately pronounced for 
smaller datasets, the benefits are expected to be more substantial as the data-
set size increases. 
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1. Introduction 

Sorting algorithms are an indispensable component in the landscape of modern 
computation. As noted by Baqer [1], the problem-solving capacity and time effi-
ciency afforded by sorting techniques constitute tangible proof of their signifi-
cant reliability and utility. Amid the class of available sorting algorithms, 
Quicksort stands out as one of the most ubiquitous sequential approaches owing 
to its combination of conceptual simplicity, low processing overhead, and excel-
lent average-case complexity of O(nlogn) [2]. The kernel of Quicksort involves 
selecting a pivot element and dividing the dataset into two partitions with values 
less than the pivot and values greater than the pivot. This divide-and-conquer 
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strategy lends itself naturally to parallelization. In parallel Quicksort implemen-
tations, partitioning and sorting of divisions can occur simultaneously across 
multiple processing units. Research has been undertaken into task scheduling 
methodologies to best distribute workloads among processors in parallel Quick-
sort [3]. 

However, despite its widespread use and extensive research, the specific per-
formance implications of parallel Quicksort in large-scale data environments 
remain underexplored. This paper aims to fill this gap by examining the perfor-
mance differential between sequential and parallel Quicksort implementations 
under varying data conditions. Employing a comparative analytical approach, 
we use empirical data from tests conducted on arrays of varying sizes. This study 
not only contributes to a deeper understanding of Quicksort’s efficiency in mul-
ti-core processing environments but also aids in optimizing sorting processes in 
big data analytics. 

The quest for accelerated sorting has led to GPU-optimized variants of Quick-
sort as well. Sintorn and Assarsson [4] developed a GPU-Quicksort utilizing frag-
mented sorting and merging that leverages the massively parallel architecture of 
graphics cards, yielding speedups of up to 6 times over single-threaded Quick-
sort. Their bucket sorting method for partitioning exhibits O(n) complexity in 
the average case. Tsigas and Zhang [5] implemented a lock-free parallel Quicksort 
on the Sun Enterprise 10,000, exploiting principles of efficient load-balancing 
across processors. Testing showed sorting time speedups of up to 7 times faster 
than alternatives like sample sort. 

The Quicksort algorithm in the Intel Threading Building Blocks (TBB) library 
stands as a sophisticated exemplar of concurrent Quicksort execution in a shared 
memory space [6]. The TBB interface encapsulates the intricate details of paral-
lelism from the developer while allowing platform-specific optimization. This 
enables software engineers to efficiently tap into the parallel capabilities afforded 
by multi-core and multi-processor commodity hardware that has become ubi-
quitous. Indeed, as Reinders [6] highlights, although concurrent programming 
has presented deep theoretical challenges, relentless advances in silicon manu-
facturing rendered parallelism a mainstream necessity. Practical libraries like 
TBB lower the barrier for software developers to realize the performance benefits 
of concurrency with minimal added complexity. 

2. Literary Review 

In the study by Philippas Tsigas et al. [5], they used SUN ENTERPRISE 10,000 
data center to test and compare quick and sample sort. They used multiple me-
thods to develop the model such as fine-grain parallelism to divide large tasks 
into smaller ones, and all the subtasks can run simultaneously. The Sedgewick 
pivot selection approach was implemented for data and computation sharing 
without causing blocking effects. A cache-coherent shared address space multi-
processor with 32 SUN ENTERPRISE 10,000 processors achieved a greater 
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speed-up with parallel quick sort compared to sample sort. The quick sort was 
found to be over six times quicker than the sample sort. This occurred by leve-
raging the capabilities of the multiprocessor system. 

The method proposed by Philip Heidelberger et al. [3], for parallelization of 
the Quicksort algorithm for shared memory multiprocessor. Multiprocessor shared 
memory underwent the use of fetch-and-add operation during the Quicksort 
algorithm. Add an atomic operation that adds to the current value of a memory 
location after reading it. Adaptive scheduling algorithms were employed to allo-
cate a designated value to the memory location. By utilizing the technique of di-
vide-and-conquer, it is possible to reduce the period of processor wait time as 
well as synchronization. Effective load balancing and improved efficiency were 
achieved due to overhead reduction, resulting in an optimized system. Algo-
rithm Quicksort boasts an impressive 80% increase in speed. 

In the study made by Tinku Singh et al. [7], they used a parallel quicksort al-
gorithm to measure CPU core utilization. Quicksort is used to test the workload 
on different cores of the CPU. They test quicksort in serial and parallel with va-
riable size input to measure the performance of CPU usages, then store all the 
results in tables. Comparison graphs are used to show the utilization of the CPU. 
After reviewing the comparison graphs, they concluded that Quicksort’s parallel 
version better utilizes CPU cores compared to the sequential version. Not only 
the multicore is responsible for this result, but they also developed an effective 
code that uses multithreading. 

In the study made by Erik Sintorn et al. [4], they presented a technique that 
uses recent GPUs to rapidly sort huge lists while fully utilizing the parallelism of 
the GPU. They used GPU-based bucket sort or quick sort split lists into sub lists 
then they are sorted in parallel using merge sort. This GPU-based sorting algo-
rithm performs faster than radix sort and other GPU-based sorting algorithms 
and the algorithm is 6 times faster than single CPU quicksort. The algorithm has 
the complexity of n log n. They did another test by utilizing two graphics cards 
for additional speed-up and achieved a 1.8 times speedup when utilizing the two 
graphics cards. 

In the study by Marszalek et al. [8], they developed a flexible merge sorting 
algorithm designed for parallel processing on multicore architectures, the me-
thod is based on a modified merge sorting algorithm. The suggested approach 
has been implemented into effect utilizing an Opteron AMD Processor 8356 8p 
for the research, running C MS Visual 2015 on MS Windows Server 2012. The 
tasks are flexibly distributed between logical cores to increase efficiency and each 
processor works separately without cross-actions or interruptions. The proposed 
method was tested and compared to other methods, showing high efficiency. 
With each newly added processor, sorting becomes faster and more efficient. 

After reviewing the previous literature studies, we found out that parallelism 
in computing not only depends on a powerful machine but also needs effective 
code to utilize the CPU or GPU to its maximum potential [7]. Since we do not 
have machines that specialize in data parallelism like in the studies [5] [8]. We 
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will use our devices with an effective code to minimize processor waiting time 
and synchronization overhead [3] and we will use large datasets to compare the 
sequential and the parallel version of the code [4] [7]. We will use the newest 
technology we have with an effective code to achieve the highest speed-up per-
centage possible. 

3. Methodology 

The objective is to accelerate large-scale sorting by leveraging parallel processing. 
We implement both sequential and parallelized versions of the QuickSort algo-
rithm [2] in C++ to sort randomly generated integer arrays. 

3.1. Framework 

The framework of the code is illustrated in Figure 1 below. 

3.2. The Key Techniques Used 
3.2.1. Array Generation 
An integer array of configurable size N is generated by uniformly sampling ran-
dom numbers between specified minimum and maximum bounds. The C++ 
standard random library [9] is utilized, specifically the classes: 

1) std::random_device—Generates non-deterministic random numbers as a 
source of entropy 

2) std::mt19937—Mersenne twister pseudo-random number engine seeded by 
random_device 

3) std::uniform_int_distribution—Generates evenly distributed random integers 
Together these facilitate stochastically generating large arrays with high en-

tropy to enable statistical analysis of algorithm performance across a wide input 
distribution. 

3.2.2. Pivot Selection 
Efficient pivot selection is key to optimizing QuickSort’s O(nlogn) average case 
performance. We implement the median-of-three pivot selection scheme [10],  

 

 
Figure 1. The framework of the code. 
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choosing the median value of three randomly sampled array elements as the pi-
vot in each partition. Selecting the median pivot versus a single random element 
mitigates always choosing extreme min/max values as pivots causing unbalanced 
partitions and quadratic O(n^2) runtime in worst case already sorted arrays. 
The random sampling increases the likelihood of balanced partitions across 
random input. 

3.2.3. Sequential Implementation 
The standard recursive, sequential QuickSort logic is implemented in quick-
sort_sequential (). It divides the array into two partitions centered around a pi-
vot, recursively sorts the smaller partitions, and concatenates the sorted 
sub-arrays. This exploits the divide-and-conquer approach by breaking the large 
array sort into smaller sub-problems but executes them sequentially in a single 
thread. 

3.2.4. Parallel Implementation 
To leverage multi-core parallelism, the key technique used is OpenMP [11] 
pragmas in quicksort_parallel () to parallelize the two recursive sort calls on the 
partitioned sub-arrays. Figure 2 below illustrates OpenMP multi-core paral-
lelism: 

This concurrent divide-and-conquer enables near-linear speedup on mul-
ti-processor systems by simultaneously quicksorting multiple sub-problems in 
parallel. Nested parallelism can further be introduced by recursively invoking 
the parallel quicksort on each thread. 

3.3. Evaluation 

The relative performance is quantified by comparing runtimes of the sequential 
vs. parallel implementations using the C++ chrono library’s [1] high_resolution_ 
clock. For validating correctness, the sort outputs are printed and verified to be 
identical. Speedup ratios are calculated over varying input sizes N. 

 

 
Figure 2. OpenMP multi-core parallelism. 
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3.4. Expected Outcomes 

The parallel implementation is expected to demonstrate significantly lower run-
times than sequential QuickSort for large N, validating the methodology of ac-
celerating scale through parallel divide-and-conquer. Sub-linear speedup is ex-
pected due to overheads like thread creation. 

4. Result 

Table 1 provides a succinct overview of the results, followed by a comprehensive 
analysis and detailed explanation of the findings below. 

Table 1 shows the time taken in milliseconds to sort arrays of random num-
bers of varying sizes, from 10 elements up to 1 million elements. For both the 
sequential and parallel QuickSort implementations, the time taken to sort the 
array increases as the number of elements grows, which is expected since the al-
gorithms have higher complexity for larger inputs. 

However, the parallel QuickSort algorithm displays marginally better perfor-
mance over the sequential version. For the smaller array sizes up to 1000 ele-
ments, there is little difference between the two, with parallel QuickSort just 
slightly faster by a few milliseconds. As the number of elements increases to 
10,000 and beyond, a small but consistent performance gain for parallel Quick-
Sort emerges. 

At 1 million elements, parallel QuickSort takes 16,499.2 ms while sequential 
takes 16,339 ms—an improvement of about 160 milliseconds or just under 1%. 
The fact that parallel QuickSort scales slightly better indicates that it can leverage 
multiple threads and cores to efficiently divide-and-conquer the sorting problem 
for large inputs. However, since QuickSort relies heavily on pivot selection, op-
timizations like choosing the median as pivot could help the sequential version 
match or exceed parallel QuickSort. 

To summarize, although parallel QuickSort exhibits slightly superior compu-
tational efficiency compared to sequential QuickSort, the disparity is minimal, 
and factors such as implementation simplicity might impact the choice between 
the two versions. Additional experimentation with diverse hardware setups might 
unveil scenarios where parallel QuickSort significantly surpasses its sequential 
counterpart. 

 
Table 1. A comparative analysis of the parallel and sequential QuickSort algorithms. 

Number of Elements Sequential (Millisecond) Parallel (Millisecond) 

10 0.094 0.109 

100 1.122 1.118 

1000 11.968 11.551 

10,000 120.909 116.260 

100,000 1242.510 1239.960 

1,000,000 16499.200 16339.000 
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5. Discussion 

Sorting data is more critical than ever as we enter the data-driven age. In ex-
amining the performance outcomes between parallel and sequential QuickSort 
algorithms, as detailed in Table 1, we observe a nuanced escalation in execution 
times corresponding with increased array sizes, which aligns with the expected 
computational complexity behaviors of both algorithms. Upon closer inspection, 
the parallel QuickSort algorithm demonstrates an incremental yet noteworthy 
advantage over its sequential analogue. For modestly sized data sets (up to 1000 
elements), the performance difference is marginal. This observation suggests that 
for small-scale sorting tasks, the overhead associated with parallelism does not 
yield significant benefits. However, as the data volume expands to 10,000 ele-
ments and beyond, the parallel QuickSort begins to reveal its strengths. At the 
substantial scale of 1 million elements, the parallel QuickSort completes the task 
in 16,499.2 milliseconds, a slight improvement over the sequential QuickSort’s 
16,339 milliseconds. This improvement indicates that parallel QuickSort’s scala-
bility edges out the sequential approach in high-volume scenarios. The efficien-
cies gained through concurrent execution on multiple threads and cores become 
increasingly apparent as the data challenge grows. Consequently, while the pa-
rallel QuickSort showcases slightly improved computational efficiency, the dis-
cernible benefit is relatively minor. This outcome raises pertinent considerations 
about the practicality of adopting a parallel algorithm given its complexity and 
the potential for increased error rates and debugging challenges. In scenarios 
where development resources are limited or where the application demands sim-
plicity and reliability over marginal performance gains, the sequential QuickSort 
may be preferred. 
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