
Journal of Computer and Communications, 2024, 12, 120-130
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2024.121008 Jan. 29, 2024 120 Journal of Computer and Communications

The Implementation of Ray Tracing Algorithm
with OpenMP Parallelization

Noor Alnasser, Raghad Alabssi, Batool Faran, Latifah Alessa, Naya Nagy

College of Computer Science and IT, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia

Abstract
Ray tracing is a computer graphics method that renders images realistically.
As the name suggests, this technique primarily traces the path of light rays
interacting with objects in a scene [1], permitting the calculation of lighting
and reflecting impact [2]. As ray tracing is a time-consuming process, the
need for parallelization to solve this problem arises. One downside of this so-
lution is the existence of race conditions. In this work, we explore and expe-
riment with a different, well-known solution for this race condition. Starting
with the introduction and the background section, a brief overview of the
topic is followed by a detailed part of how the race conditions may occur in
the case of the ray tracing algorithm. Continuing with the methods and re-
sults section, we have used OpenMP to parallelize the Ray tracing algorithm
with the different compiler directives critical, atomic, and first-private. Hence,
it concluded that both critical and atomic are not efficient solutions to pro-
duce a good-quality picture, but first-private succeeded in producing a high-
quality picture.

Keywords
Parallelization, Ray Tracing, Parallel Computer Architecture, OpenMP

1. Introduction

Consider the prospect of swiftly generating intricate, realistic worlds through
computational processes. This is made possible through the help of parallelism
in ray tracing. Ray tracing is a technique used in computer graphics that simu-
lates the behavior of real-time rendering [3] [4]. Introducing parallelism has ex-
pedited rendering processes, yielding improved visual experiences. Traditionally,
ray tracing was time-consuming, often requiring hours or even days to render a
single frame (which is one image generated by the ray tracing process). This was

How to cite this paper: Alnasser, N.,
Alabssi, R., Faran, B., Alessa, L. and Nagy,
N. (2024) The Implementation of Ray Trac-
ing Algorithm with OpenMP Parallelization.
Journal of Computer and Communications,
12, 120-130.
https://doi.org/10.4236/jcc.2024.121008

Received: December 4, 2023
Accepted: January 26, 2024
Published: January 29, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution-NonCommercial
International License (CC BY-NC 4.0).
http://creativecommons.org/licenses/by-nc/4.0/

 Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2024.121008
https://www.scirp.org/
https://doi.org/10.4236/jcc.2024.121008
http://creativecommons.org/licenses/by-nc/4.0/

N. Alnasser et al.

DOI: 10.4236/jcc.2024.121008 121 Journal of Computer and Communications

due to the complex calculations involved in tracing rays, determining object in-
tersections, calculating lighting effects, and shading pixels [5]. Nevertheless, the
integration of parallelism has significantly decreased rendering times, facilitating
the creation of virtual worlds more efficiently [2].

Parallelism in ray tracing leverages the collective power of multiple processors
or cores working simultaneously. Processors, or central processing units (CPUs),
are the brain of a computer responsible for executing instructions [6]. Con-
versely, cores are individual processing units within a CPU capable of handling
separate tasks concurrently. The overall process becomes significantly faster by
dividing the rendering workload into smaller tasks and executing them concur-
rently across these processors or cores. This concept of parallel execution opens
up new dimensions in computer graphics, enabling real-time or near-real-time
rendering of highly detailed and dynamic scenes.

One of the techniques used to achieve parallelism is multi-threading, where a
program divides its tasks into smaller threads that can be executed simulta-
neously on different processors or cores. Each thread handles a specific part of
the rendering process and can communicate and share data with other threads.
This allows for the efficient distribution of the workload and faster completion
of rendering tasks [7]. Another avenue for parallelism in ray tracing is the utili-
zation of Graphics Processing Units (GPUs). These specialized processors, de-
signed with numerous cores, excel at handling the intense computational re-
quirements of graphics processing. By leveraging the parallel architecture of
GPUs, ray tracing computations can be performed simultaneously, accelerating
the rendering process and delivering breath-taking visual results [8].

With parallelism, the possibilities in ray tracing are virtually limitless. Com-
plex scenes with intricate lighting effects, reflections, and shadows can be ren-
dered in real-time, allowing for interactive experiences that push the boundaries
of realism. From video games that transport players to magical worlds to movies
with awe-inspiring visual effects, parallelism has revolutionized the field of
computer graphics, ushering in a new era of immersive digital experiences [9].
Parallelism in ray tracing facilities to a faster rendering time, enabling the crea-
tion of realistic graphics. Through the power of multiple processors or cores,
multi-threading, and leveraging GPUs, ray tracing has transformed from a
time-consuming process to a real-time rendering powerhouse. Prospects for the
future abound as parallelism persistently extends the limits of visually attainable
outcomes. The impact of parallelism is poised to be revealed in unprecedented
ways.

A potential challenge introduced by parallel computing is the race condition.
Race conditions occur in parallel computing when multiple jobs or threads
access and modify the same data simultaneously, potentially resulting in uncer-
tain or incorrect outcomes. Picture two people attempting to change the same
document simultaneously without prior communication. This could lead to al-
terations or errors in the final text that do not make sense [10].

In ray tracing, race conditions may occur when multiple rays or threads at-

https://doi.org/10.4236/jcc.2024.121008

N. Alnasser et al.

DOI: 10.4236/jcc.2024.121008 122 Journal of Computer and Communications

tempt to modify the same piece of data simultaneously, such as a pixel’s color
[10]. This can result in issues like stuttering, inaccurate colors, or inconsistent
shadows, ultimately compromising the quality of the final image [2]. Different
processes, including critical, private, and atomic, are employed to mitigate race
conditions [2]. These methods guarantee that only one thread can access the
shared data at any given time, preserving the output image’s structure and pre-
venting issues [2]. Atomic operations execute as a single, indivisible unit, pre-
venting interference from other parallel processes [2].

On the other hand, critical sections are code portions that must be executed
by only one thread at a time to prevent concurrent access to shared data [11].
Protecting shared variables with locks or mutexes ensures that only one thread
can enter the critical section [12] simultaneously, preventing race conditions
[11]. In contrast, the “first private” method involves creating private copies of
variables for each thread to ensure that modifications in one thread do not affect
others. Ray tracing can be used in many areas, such as construction, virtual real-
ity, games, and movie production.

2. Methods

OpenMP makes shared-memory multiprocessing programming easier, improv-
ing the computational power needed for realistic image creation through ray
tracing. It facilitates cross-platform shared-memory multiprocessing program-
ming in C, C++, and Fortran, accommodating various platforms, instruction-set
architectures, and operating systems such as Solaris, AIX, HP-UX, Linux, ma-
cOS, and Windows. Comprising compiler directives, library routines, and envi-
ronment variables, OpenMP influences runtime behavior. The “#pragma” direc-
tive, conforming to the C standard, serves to convey additional information to
the compiler beyond the language itself [13]. This directive, considered a special
purpose, enables the activation or deactivation of specific features, and its usage
is compiler-specific, varying from one compiler to another. In computer graph-
ics, ray tracing is a technique [14] that simulates how light interacts with virtual
objects to generate realistic images [2]. Through the parallelization capabilities
of OpenMP, the computational demands of ray tracing can be efficiently distri-
buted across multiple processors, enhancing rendering speed and overall per-
formance [2].

The program starts by initializing variables and data structures, Reading the
input parameters, and then creating an empty image buffer; that image is di-
vided into smaller blocks. We start the parallel region using OpenMP; inside the
parallel region, a for loop is created for each block in the parallel region. We set
up the picture parameters, and then inside this for loop, another for loop is
created for each pixel in a block. We compute the ray direction and find the
closest intersection. If an intersection is found, we compute the shading at the
intersection point and update the pixel color in the image buffer. If the intersec-
tion is not found, we set the pixel to the background color. After setting the pixel

https://doi.org/10.4236/jcc.2024.121008

N. Alnasser et al.

DOI: 10.4236/jcc.2024.121008 123 Journal of Computer and Communications

color in both situations (intersection found and not found), the inner for loop
asks if this is the last pixel in the block. If not, it goes back to the start of the
loop; if yes, it is the last pixel in a block reached; the outer for loop asks if the last
block is reached or not; if the condition is not met, it will go back to the outer for
loop, if the last block is reached, We reach the end to the parallel region, the im-
age blocks are merged into the final image, and finally output the image. Figure
1 demonstrates the flowchart of the ray tracing program with OpenMP.

To execute the code [15] efficiently, we utilized an Intel(R) Core(TM) i7-10510U
CPU with 4 cores and 8 logical processors, operating at a clock speed of 1.80
GHz. The code utilizes three crucial variables, directionX, directionY, and direc-
tionZ, pivotal to a ray tracing algorithm that defines rays based on their origin
and direction [5]. These three variables play a crucial role in calculating the di-
rection of each ray for specific pixels in the rendered image. The methodology
involves a detailed breakdown of:

How these direction variables are utilized:
1) directionX: Calculated as (i + 0.5) − rows/2., where i is the current pixel’s X

coordinate. This centers the rays horizontally, directing them towards the image
center.

2) directionY: Calculated as −(j + 0.5) + cols/2., where j is the current pixel’s Y
coordinate. This flips the image vertically, ensuring rays are directed towards the
image center.

3) directionZ: Calculated as −cols/(2. * tan(fov/2.)), where cols is the image
height and fov is the field of view. This determines the depth of rays in the scene,
aligning them appropriately based on the field of view.

After computing the direction components, a Vec3f vector is normalized us-
ing the normalize() method on the Vec3 f (directionX, directionY, directionZ)
vector. This vector represents the normalized direction of the ray. Subsequently,
the cast ray function is invoked with the origin (0, 0, 0) and the calculated direc-
tion vector to determine pixel properties. The results are stored in the image ar-
ray at the corresponding index. To enhance computational efficiency, the code
incorporates OpenMP (#pragma omp parallel for) for parallelizing the ray trac-
ing algorithm, allowing concurrent computation of multiple rays for different
pixels [5].

Moreover, the methodology encompasses the resolution of obstacles of race
conditions in variables that are globally specified. Our primary objective was to
comprehend race conditions’ effect on images’ visual quality. We systematically
assessed numerous solutions utilizing varying quantities of processing threads to
achieve this. Additionally, this project examines how the number of threads im-
pacts the time the program runs on a 4-core device. The effectiveness of our pa-
rallelization approach is clear even with race conditions present, and the code
runs fastest when using eight threads. This highlights our systematic approach to
addressing race conditions, evaluating visual results, and optimizing perfor-
mance with different thread counts and core setups. The three solutions to the

https://doi.org/10.4236/jcc.2024.121008

N. Alnasser et al.

DOI: 10.4236/jcc.2024.121008 124 Journal of Computer and Communications

Figure 1. Parallel ray tracing with OpenMP.

https://doi.org/10.4236/jcc.2024.121008

N. Alnasser et al.

DOI: 10.4236/jcc.2024.121008 125 Journal of Computer and Communications

race conditions issue will be introduced in more detail in the next section.

3. Results

The Results of our parallel solutions to have best picture results and with no race
conditions using OpenMP compiler directives in a C++ programming language
were as follows: we calculated the execution time of the parallel region of our
code that is in Figure 2, and the resulting Picture of the race condition is in
Figure 3 now, applying the solutions, first, we applied a critical compiler direc-
tive solution, and we found that the time of executing the parallel solution with
critical on the default number of threads (that is, without forcing the threads to
have a specific number using the omp set num threads()), does not reduce the
execution time, Figure 4 nor that it provides a picture with no race condition
(race condition, in our case, indicates the noise and the many dots in the Pic-
ture). Figure 5 means that the critical solution is inefficient for solving the race

Figure 2. Execution time of the code having a race condition.

Figure 3. Output picture of the race condition.

Figure 4. Execution time of critical.

https://doi.org/10.4236/jcc.2024.121008

N. Alnasser et al.

DOI: 10.4236/jcc.2024.121008 126 Journal of Computer and Communications

Figure 5. Resulted picture after applying the critical solution.

Figure 6. Execution time of atomic.

condition problem with the Ray tracing algorithm. Furthermore, we have im-
plemented a solution that uses an atomic solution. As critical, it did not reduce
the execution time Figure 6 or the noise in the Picture, as demonstrated in Fig-
ure 7 indicating that we need to find another solution to this problem. Last but
not least, we have used the first-private solution to ensure that the variable that
gets copied is not assigned wrong values. Even though it did not reduce the ex-
ecution time in Figure 8 with the default number of threads, it gave us a nice
picture with no noise in it, as displayed in Figure 9 outstanding to be the best
solution in our case, considering the number of cores, which is four that we have
used, a comparison of the execution time of the code that produces race condi-
tions with the other solutions, is displayed in Figure 10.

We have made a comparison between the execution time of the code having
race conditions with the code of the best solution that is with firstprivate, and
the results appeared as follows in Figure 11 and Figure 12.

4. Discussion

This project aims to resolve issues associated with using the ray tracing algorithm
in conjunction with OpenMP parallelization. Implementing OpenMP directives
and race conditions within the algorithm presented considerable obstacles that

https://doi.org/10.4236/jcc.2024.121008

N. Alnasser et al.

DOI: 10.4236/jcc.2024.121008 127 Journal of Computer and Communications

Figure 7. Resulted picture of atomic solution.

Figure 8. Execution time of firstprivate.

Figure 9. Resulted picture of the firstprivate solution.

needed to be addressed. The results indicate neither the critical nor the atomic
compiler directive solutions reduced the execution time nor did they provide a
noise-free image; on the other hand, the first private solution was found to be

https://doi.org/10.4236/jcc.2024.121008

N. Alnasser et al.

DOI: 10.4236/jcc.2024.121008 128 Journal of Computer and Communications

Figure 10. Execution time of all the solutions as well as race condition, all in seconds.

Figure 11. Comparison made with 1, 2, 4, and 8 threads.

Figure 12. Comparison made with 1, 2, 4, and 8 threads.

https://doi.org/10.4236/jcc.2024.121008

N. Alnasser et al.

DOI: 10.4236/jcc.2024.121008 129 Journal of Computer and Communications

the one that produced the best results among all.
The research findings clearly correlate the quantity of threads utilized and the

execution duration. This confirmed that augmenting the number of threads re-
duces execution time, which is consistent with the generally acknowledged prin-
ciple of employing parallelism.

In this project, we were limited to the execution of only 3 race condition solu-
tions: critical, atomic, and first-private; it was not feasible to execute.

A 4th solution is the reduction, as the equations used in the code are complex,
and this solution is only available to a specific operation. Also, some other possi-
ble solutions, such as locks, mutex, and data synchronization strategies, were not
explored; furthermore, due to this limitation, we can conclude that it is not
possible to determine what would be the possible effect on both the execution
time and the image noise if these solutions were applied to the presented prob-
lem. Also, the presented results may vary.

As all of the presented explorations and findings in this project are based on
executing a 4-core device with different thread counts, the solution’s scalability
to a larger system and a higher number of cores was not discussed.

Acknowledgments

We thank Naya Nagy for her invaluable guidance and support throughout this
research. Her expertise and feedback have been crucial in shaping the direction
of our study. Additionally, we extend our appreciation to our university, Imam
Abdulrahman Bin Faisal (IAU), especially our College of Computer Science and
Information Technology (CCSIT), for providing us with a valuable and informa-
tive course on Parallel Computer Architecture. In conclusion, completing this
research was only possible with the help of Naya Nagy and the colleagues who
participated in the success of this project.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Nicks, S. (2023, February 17). RTX Cards Information and Review 2023. Stone-

AgeHacks. https://stoneagehacks.com/rtx/

[2] Pharr, M. and Humphreys, G. (2016) Physically Based Rendering: From Theory to
Implementation. Morgan Kaufmann, Burlington.

[3] Breitenmoser, S. (2023) The Ray Tracing Update Is Finally Coming to Elden Ring.
EarlyGame. https://earlygame.com/gaming/ray-tracing-update-elden-ring

[4] Geeks, L. (2023) Ray Tracing Techniques: A Comprehensive Guide for Stunning
Visuals. https://lambdageeks.com/ray-tracing-techniques/

[5] Pearsoncmg.com (n.d.).
https://ptgmedia.pearsoncmg.com/images/9780321399526/samplepages/032139952
8.pdf

https://doi.org/10.4236/jcc.2024.121008
https://stoneagehacks.com/rtx/
https://earlygame.com/gaming/ray-tracing-update-elden-ring
https://lambdageeks.com/ray-tracing-techniques/
https://ptgmedia.pearsoncmg.com/images/9780321399526/samplepages/0321399528.pdf
https://ptgmedia.pearsoncmg.com/images/9780321399526/samplepages/0321399528.pdf

N. Alnasser et al.

DOI: 10.4236/jcc.2024.121008 130 Journal of Computer and Communications

[6] Ahmad, S. (2023, February 17) Technology.
https://expertsadvices.net/technology/page/3/

[7] Kirvan, P. (2022, May 26) What Is Multithreading? WhatIs.
https://www.techtarget.com/whatis/definition/multithreading

[8] Awati, R., Gillis, A.S. and Steele, C. (n.d.) Graphics Processing Unit (GPU).
https://www.techtarget.com/searchvirtualdesktop/definition/GPU-graphics-process
ing-unit

[9] Sanderson, J. (2023, September 6) The Evolution of Metaverse Gaming and Its Im-
pact. Textually.
https://textually.org/the-evolution-of-metaverse-gaming-and-its-impact/

[10] Larus, J. and Kozyrakis, C. (2008) Transactional Memory. Communications of the
ACM, 51, 80-88. https://doi.org/10.1145/1364782.1364800

[11] Slusallek, C. and Daniel, P. (2003) PVG 2003 (Parallel and Large-Data Visualization
and Graphics). Computers & Graphics, 27, 662.
https://doi.org/10.1016/S0097-8493(03)00098-0

[12] User (n.d.) Java Core Technology Volume 18. Java Concurrency.
https://topic.alibabacloud.com/a/java-core-technology-volume-18-java-concurrenc
y_1_27_30242925.html

[13] Trobec, R. (2018) Introduction to Parallel Computing: From Algorithms to Pro-
gramming on State. Springer International Publishing.
https://doi.org/10.1007/978-3-319-98833-7

[14] TNW (n.d.) Ray Tracing (Graphics) News.
https://thenextweb.com/topic/ray-tracing-graphics

[15] Manjunath, A. (n.d.) Adarshkoppmanjunath/Raytracing. GitHub.
https://github.com/AdarshKoppManjunath/Raytracing

https://doi.org/10.4236/jcc.2024.121008
https://expertsadvices.net/technology/page/3/
https://www.techtarget.com/whatis/definition/multithreading
https://www.techtarget.com/searchvirtualdesktop/definition/GPU-graphics-processing-unit
https://www.techtarget.com/searchvirtualdesktop/definition/GPU-graphics-processing-unit
https://textually.org/the-evolution-of-metaverse-gaming-and-its-impact/
https://doi.org/10.1145/1364782.1364800
https://doi.org/10.1016/S0097-8493(03)00098-0
https://topic.alibabacloud.com/a/java-core-technology-volume-18-java-concurrency_1_27_30242925.html
https://topic.alibabacloud.com/a/java-core-technology-volume-18-java-concurrency_1_27_30242925.html
https://doi.org/10.1007/978-3-319-98833-7
https://thenextweb.com/topic/ray-tracing-graphics
https://github.com/AdarshKoppManjunath/Raytracing

	The Implementation of Ray Tracing Algorithm with OpenMP Parallelization
	Abstract
	Keywords
	1. Introduction
	2. Methods
	3. Results
	4. Discussion
	Acknowledgments
	Conflicts of Interest
	References

