
Journal of Computer and Communications, 2024, 12, 110-119
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2024.121007 Jan. 29, 2024 110 Journal of Computer and Communications

Parallel Technologies with Image Processing
Using Inverse Filter

Rahaf Alsharhan, Areej Muheef, Yasmin Al Ibrahim, Afnan Rayyani, Yasir Alguwaifli

College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), Dammam,
Saudi Arabia

Abstract
Real-time capabilities and computational efficiency are provided by parallel
image processing utilizing OpenMP. However, race conditions can affect the
accuracy and reliability of the outcomes. This paper highlights the importance
of addressing race conditions in parallel image processing, specifically focus-
ing on color inverse filtering using OpenMP. We considered three solutions
to solve race conditions, each with distinct characteristics: #pragma omp atom-
ic: Protects individual memory operations for fine-grained control. #pragma
omp critical: Protects entire code blocks for exclusive access. #pragma omp
parallel sections reduction: Employs a reduction clause for safe aggregation of
values across threads. Our findings show that the produced images were un-
affected by race condition. However, it becomes evident that solving the race
conditions in the code makes it significantly faster, especially when it is ex-
ecuted on multiple cores.

Keywords
Parallel, Parallelization, Image Processing, Inverse Filtering, OpenMP, Race
Conditions

1. Introduction

Welcome to our project on parallel technologies with image processing using in-
verse filter! In today’s digital age, image processing plays a crucial role in various
industries such as healthcare, security, entertainment, and more [1]. It involves
manipulating digital images to enhance their quality, extract valuable informa-
tion, or identify certain patterns. However, image processing algorithms can be
computationally demanding, leading to longer processing times. Image processing

How to cite this paper: Alsharhan, R.,
Muheef, A., Al Ibrahim, Y., Rayyani, A. and
Alguwaifli, Y. (2024) Parallel Technologies
with Image Processing Using Inverse Filter.
Journal of Computer and Communications,
12, 110-119.
https://doi.org/10.4236/jcc.2024.121007

Received: December 15, 2023
Accepted: January 26, 2024
Published: January 29, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2024.121007
https://www.scirp.org/
https://doi.org/10.4236/jcc.2024.121007
http://creativecommons.org/licenses/by/4.0/

R. Alsharhan et al.

DOI: 10.4236/jcc.2024.121007 111 Journal of Computer and Communications

is the task of analyzing and manipulating images to enhance their quality or ex-
tract useful information. It is a rapidly growing field with a wide range of appli-
cations in various industries, such as filmmaking, diagnostic devices, manufac-
turing, and weather prediction [1].

The process of improving an image and extracting relevant information from
it is known as image processing [1]. As the demand for real-time digital image
processing increases, the emphasis is being shifted towards parallel/pipeline
processing technologies, which are essential for handling large and complex im-
ages, such as medical scans, satellite images, or facial recognition [2]. Parallel
technologies, such as parallel libraries and algorithms, are being increasingly
integrated with image processing to expedite the restoration and manipulation
of images. One such technique used in image restoration is inverse filtering,
which is a fundamental concept in the field of image processing and is increa-
singly being integrated with parallel computing to accelerate the restoration
process [1].

The integration of parallel technologies with image processing using inverse
filter holds great promise for accelerating image restoration and manipulation,
thereby contributing to advancements in various domains, including healthcare,
entertainment, and manufacturing. The use of parallel computing in image
processing can lead to more efficient results, as it supports data, task, and pipe-
line parallelism, which are beneficial for several image processing techniques,
such as edge detection, histogram equalization, noise removal, image registra-
tion, picture segmentation, feature extraction, and many optimization strategies
[1].

Image processing is an essential area of study that plays a crucial role in vari-
ous applications. Digital images are manipulated and analyzed by utilizing ma-
thematical approaches and algorithms to improve, restore, analyze, and com-
prehend images more effectively.

In image processing, color images, in particular, involve an additional chal-
lenge. The goal of color processing techniques is to modify the color channels to
extract useful information and produce desired results. A noteworthy technique
in image processing is color inverse filtering. It is used to describe the technique
of reversing the intensity levels of each color channel in an image to reverse its
colors. Color inverse filtering generates interesting effects, such as reversing col-
or contrasts or producing a negative image.

In conclusion, this project investigates image processing with an emphasis on
color inverse filtering and the integration of parallel technologies [1]. The pur-
pose is to contribute to existing knowledge and shed light on the possible ad-
vantages of this technique. By leveraging parallel computing and inverse filter-
ing, image processing tasks can be accelerated, enabling real-time analysis, ma-
nipulation, and restoration of digital images. This has significant implications
for various industries, allowing for faster and more efficient image processing in
applications such as medical diagnosis, security surveillance, entertainment, and
manufacturing. The integration of parallel technologies with image processing

https://doi.org/10.4236/jcc.2024.121007

R. Alsharhan et al.

DOI: 10.4236/jcc.2024.121007 112 Journal of Computer and Communications

using inverse filter holds great potential for advancing the field and driving in-
novation in the years to come.

2. Literature Review

Tang et al. [3] developed a multifractal detrended fluctuation analysis (MF-DFA)
program which involves image preprocessing. Then, the performance characte-
ristics of each MF-DFA module were then examined, compared and they ex-
plored its parallelism. Eventually, they proposed a parallel optimization ap-
proach based on OpenMP for the MF-DFA. In their code, the added #pragma
omp parallel to make sure that the iterations are divided between the threads
equally. They used OpenMP clause reduction in order to aggregate all the results
of each thread by the main thread. Their experimental outcomes demonstrate
that the proposed parallel optimization approach has better performance.

Mallegowda, M et al. [4] developed an algorithm that uses image processing
concept to improve the original bone scan so that it may be easily interpreted. In
order to achieve higher performance for the same outcomes, OpenCV and
OpenMP will both be used in the development of this program. At each stage of
the procedure, they also keep an eye on the present condition of the input image
and gain a deeper comprehension of the practical implications of the underlying
mathematical ideas. Ultimately, the serial and parallel execution of the process
are compared depending on how long each step takes to complete. Their expe-
rimental results show that the proposed parallel computing approach exceeds
the serial computing approach in terms of performance.

Han Xiao et al. [5] focuses extensively on the parallelization of image processing
algorithms, particularly emphasizing the advantages of parallel computing using
OpenCL. In the context of the weighted mean filtering algorithm, parallelization
is crucial for achieving efficient and rapid processing of large-scale image data-
sets. Their paper recognizes the escalating demand for real-time data processing
in the face of increasing image data volumes, asserting that traditional sin-
gle-processor or multiprocessor computing equipment falls short in meeting
these demands. The proposed OpenCL-based parallel algorithm operates at two
levels: workgroup and work-item, tapping into the parallel processing capabili-
ties of modern high-performance GPUs.

This study delves into the intricacies of image discrete convolution computing
and the multi-layer logic architecture of high-performance computers, strategi-
cally leveraging these features to optimize task mapping from the computing
model to computing resources. Throughout the paper, the term “parallelism” is
recurrent, underlining the researchers’ commitment to exploring and harnessing
parallel computing capabilities.

Greg Slabaugh et al.’s paper titled “Multicore Image Processing with OpenMP”
discusses the use of OpenMP (Open Multi-Processing) in parallelizing image
processing applications on multicore processors [6]. It highlights the benefits of
multicore processors in achieving higher performance and explores how pro-

https://doi.org/10.4236/jcc.2024.121007

R. Alsharhan et al.

DOI: 10.4236/jcc.2024.121007 113 Journal of Computer and Communications

grammers can leverage parallelism to optimize their code for multiple cores.
OpenMP is introduced as an industry-standard API for parallel programming
on shared memory multi-processors. The paper explains the basics of OpenMP,
including its directives and clauses for specifying parallel regions and loop-level
parallelism. It emphasizes the simplicity and effectiveness of OpenMP in imple-
menting parallel image processing operations. The paper also touches upon top-
ics such as variable scope, scheduling mechanisms, and the availability of OpenMP
in various compilers and operating systems. Several examples, including loop
parallelization and image warping, are provided to demonstrate the application
of OpenMP in image processing. Overall, the paper serves as a high-level over-
view of OpenMP and its potential for optimizing image processing algorithms
on multicore CPUs.

3. Methods

OpenMP allows for the implementation of shared-memory multiprocessing,
which boosts computational efficiency in many fields, for example the image
processing field. OpenMP enables parallel image processing by employing mul-
tiple threads to distribute workload among available CPU cores. We set the
number of threads to 1, 2, 4, 8, and 16 using omp_set_num_threads (number of
threads). Because of this parallelization, several image processing methods run
faster and perform better. Through the offering of environment variables, library
routines, and compiler directives that enable shared-memory multiprocessing,
OpenMP improves the implementation of parallelism. This makes it simple for
developers to distribute the effort associated with image processing across sever-
al threads, making better use of the processing power that is available. Image
processing methods can benefit from the parallel nature of today’s processors by
utilizing OpenMP, which can result in a noticeable speed increase and enhanced
real-time processing capabilities. OpenMP allows developers to concentrate on
algorithm design and high-level code optimization by simplifying the process of
using parallelism without having to learn the ins and outs of low-level multiple
threads. Additionally, OpenMP is a cross-platform approach that works with
several different operating systems and programming languages, including For-
tran, C, and C++. This adaptability maximizes the advantages of parallel
processing over a broad range of hardware architectures by enabling image
processing programs to be developed and implemented on several platforms.

In this paper, we employ color inverse filtering in our code, which is an image
processing technique that flips an image’s colors to produce an “opposite” effect.
With shared-memory multiprocessing, OpenMP may greatly facilitate the color
inverse filtering process. Image processing processes can be split up across sev-
eral threads by utilizing OpenMP, which enables parallel execution on available
CPU cores. The process of color inverse filtering is flipping an image’s pixel val-
ues in each of the three-color channels usually red, green, and blue. Because of
OpenMP’s parallelization features, the workload may be distributed efficiently

https://doi.org/10.4236/jcc.2024.121007

R. Alsharhan et al.

DOI: 10.4236/jcc.2024.121007 114 Journal of Computer and Communications

among several threads, enabling them to process multiple parts of the image at
the same time. The processing time needed for color inverse filtering is greatly
decreased by using this parallel technique, especially for large images or real-
time applications.

To run the code, we used a Ryzen 7 5800H CPU with 16 logical processors
and 8 cores running at 4.4 GHz and 16 GB RAM. Also, on a Windows system,
utilize the built-in Microsoft Visual Studio 2022 OpenMP compiler by selecting
“C/C++” as the programming language and setting the “OpenMP support” op-
tion to yes in the project’s property page. With the support of outside sources
and references, we took the already developed sequential code for image
processing utilizing color inverse filtering and converted them into parallel using
OpenMP [7]. The essential libraries, such as iostream, opencv2/opencv.hpp, and
omp.h, which provides OpenMP main functionality, are included. To execute
the code in parallel we make sure to include #pragma omp parallel to demon-
strate the inverse filtering in parallel without any problems. Several significant
variables, including image1, image2, output_image1, output_image2, and pixel,
are involved in the color inverse filtering image processing process in this code.
A thorough analysis of the methodology’s use of these variables is provided be-
low:

1) Image1 and image2: The input images for processing are stored in these va-
riables. The code assumes that the cv::imread() function was used to correctly
load these images. The function won’t produce the wanted output if these va-
riables aren’t properly initialized with legitimate image data.

2) Output_image1 and output_image2: The output images for processing are
stored in these variables. The size and type are adjusted to correspond with the
input images.

3) Pixel: pixel is important for accessing and modifying the pixel values in the
image. The pixel variable’s separate channel values (pixel [0], pixel [1], pixel [2])
are then modified to carry out several operations, like color inverse filtering and
applying a sharpening filter. The neighbor pixels in the immediate vicinity pro-
vide the basis for these changes.

Moreover, The execution time is measured by first recording the current time
with omp_get_wtime() and then subtracting the recorded start time from the
current time with omp_get_wtime() after the parallel sections. So, in order to
enhance computational efficiency, the #pragma omp parallel parts directive is
used to parallelize the image processing processes. This enables the execution of
the directive’s parts at the same time. Furthermore, the race condition is a sig-
nificant concern in the process.

We concentrated on how these race conditions impacted overall performance
and execution time. We attempted to carefully assess several race condition
solutions utilizing varied numbers of processing threads. This research also
investigates how the number of threads affects the time it takes for the pro-
gram to perform image processing. This demonstrates our methodical approach

https://doi.org/10.4236/jcc.2024.121007

R. Alsharhan et al.

DOI: 10.4236/jcc.2024.121007 115 Journal of Computer and Communications

to dealing with race condition issues, analyzing visual outcomes, and optimiz-
ing performance with various threads and solutions. The three solutions to the
race conditions problem will be discussed in greater detail in the following sec-
tion.

4. Results

In our code the variables output_image1 and output_image2 (Figure 1 & Figure
2) produce race condition and we tried to fix the race using various options like
critical, atomic and reduction, and after we run the code before and after the
race condition, we conclude that the images did not get effected by these va-
riables only the execution time get decrease.

This is the result we get after solving the race condition (Figure 3):
• Solving the race condition by #pragma omp atomic.
• As we can see in Figure 4 the time decreases after solving the race condition.

Therefore, the code without a race is 0.002353 seconds faster.

Figure 1. Result of image 1.

Figure 2. Result of image 2.

https://doi.org/10.4236/jcc.2024.121007

R. Alsharhan et al.

DOI: 10.4236/jcc.2024.121007 116 Journal of Computer and Communications

• Solving the race condition by #pragma omp critical.
• As we can see in Figure 5 the execution time is decreased a lot after solving

the race condition by critical. Therefore, the code without a race is 0.002517
seconds faster.

• Solving the race condition by pragma omp parallel sections reduction (+:
output_image1) reduction (+: output_image2).

• As we can see in Figure 6 the execution time is decreased after solving the
race condition by reduction. Therefore, the code without a race is 0.0037033
seconds faster.

While the code’s visual output remains unaffected, it’s crucial to note that race
conditions can still significantly impact performance and execution time. Figure
1 and Figure 2 demonstrate that image processing proceeds correctly even in the
presence of race conditions. However, as illustrated in Figure 3, execution time
can get affected compared to the results after solving the race condition in Fig-
ures 4-6. Further analysis of execution time using multi-threading, as depicted
in Figure 7, reinforces this impact. Therefore, addressing this issue is paramount

Figure 3. Execution time with race conditions.

Figure 4. Execution time after atomic.

Figure 5. execution time after critical.

Figure 6. Execution time after reduction.

https://doi.org/10.4236/jcc.2024.121007

R. Alsharhan et al.

DOI: 10.4236/jcc.2024.121007 117 Journal of Computer and Communications

Figure 7. Execution time before and after the race condition.

to ensure optimal code performance and program speed.

5. Findings

Parallelizing image processing algorithms using OpenMP offers several advan-
tages in terms of computational efficiency and real-time processing capabilities.
However, race conditions pose a significant challenge in obtaining precise and
trustworthy results. This paper highlights the importance of addressing race
conditions in parallel image processing with an emphasis on color inverse filter-
ing using OpenMP. Moreover, we considered three solutions: #pragma omp
atomic, #pragma omp critical, and #pragma omp parallel sections reduction.

Our results demonstrate that while race condition can affect performance and
the execution time, the produced images were unaffected by the race conditions
that were present in our code. In terms of computational efficiency, our results
demonstrated significant improvements in execution time after implementing
the race condition solutions. We noticed a decrease in execution time for all three
solutions. Particularly, the #pragma omp atomic solution resulted in 0.002353
seconds faster, the #pragma omp critical solution was faster by 0.002517 seconds,
and the #pragma omp parallel sections reduction solution was faster by 0.0037033
seconds. These time reductions show that the code’s computational efficiency was
significantly enhanced by eliminating race conditions.

Our findings reveal that race conditions were successfully eliminated from the
code for color inverse filtering without having a negative impact on the quality
of the produced images. The benefits of mitigating race conditions are further
highlighted by the observed improvements in execution time.

6. Conclusion

In today’s image-driven world, fast and efficient processing is crucial. Our project

https://doi.org/10.4236/jcc.2024.121007

R. Alsharhan et al.

DOI: 10.4236/jcc.2024.121007 118 Journal of Computer and Communications

Table 1. The result of literature reviews.

image processing concepts Techniques Results References

MATLAB used to turn the rape
leaf image into a grayscale image

Their technique based on
OpenMP.

Their optimization approach significantly
improves the performance and the maximum
speedup achieved can reach 1.59.

Tang et al. [3]

Serial and Parallel Technologies
with Image Processing
Using Inverse Filter

Their technique makes use of
OpenMP and OpenCV.

They achieved a speed-up and a reduction in
processing time by using a parallel
computing approach to bone scan image
processing compared to a serial computing
approach.

Mallegowda,
M et al. [4]

Image Mean Filtering Based on
OpenCL

Their technique involves a
hierarchical weighted mean
filtering parallel algorithm
specifically designed for
OpenCL, which leverages
multi-layer GPU architecture to
efficiently distribute image
processing tasks across
workgroups and work-items for
accelerated performance.

By parallelizing their image processing
algorithms on GPUs with OpenCL, the
researchers achieved efficient and high-speed
processing of large datasets, preparing their
work for real-time applications in the face of
ever-growing data volumes.

Han Xiao et al.
[5]

Multicore image processing
using OpenMP

Their technique used OpenMP By leveraging parallelism through OpenMP,
programmers can modify their
single-threaded code to run efficiently on
multiple cores, thereby potentially enhancing
the performance of image processing
algorithms.

Greg Slabaugh
et al. [6]

successfully combined parallel technology (OpenMP) with image processing via
color inverse filtering. This sped up image restoration and manipulation. By pa-
rallelizing tasks, we significantly reduced processing time, especially for large
images. Careful handling of race conditions ensured optimal performance. This
research paves the way for further exploration of parallel technologies in image
processing, unlocking a world of exciting possibilities.

Acknowledgments

We would like to thank DR. YASIR ALGUWAIFLI for his essential guidance
and support throughout this project. His skills and feedback were critical in in-
fluencing the course of our research. Furthermore, we thank our institution, Imam
Abdulrahman Bin Faisal (IAU), particularly our College of Computer Science and
Information Technology, for providing us with a valuable and interesting course
on Parallel Computer Architecture.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

https://doi.org/10.4236/jcc.2024.121007

R. Alsharhan et al.

DOI: 10.4236/jcc.2024.121007 119 Journal of Computer and Communications

References
[1] Algorithms (2023) How Can You Incorporate Parallel Computing into Algorithmic

Research for Image Processing?
https://www.linkedin.com/advice/0/how-can-you-incorporate-parallel-computing-a
lgorithmic-ektkc

[2] Tutors India (n.d.) Parallel Computing in Image Processing.
https://www.tutorsindia.com/our-sample-works/parallel-computing-in-image-proc
essing/

[3] Tang, X., Yang, X. and Wu, F. (2019) Multifractal Detrended Fluctuation Analysis
Parallel Optimization Strategy Based on openMP for Image Processing. Neural
Computing and Applications, 32, 5599-5608.
https://doi.org/10.1007/s00521-019-04164-2

[4] Mallegowda, M., and Karthik, N. and Anvith, A. (2023) Serial and Parallel Compu-
tation of Bone Scan Image Processing. Proceedings of the International Conference
on Innovative Computing & Communication (ICICC) 2022.
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4361148
https://doi.org/10.2139/ssrn.4361148

[5] Xiao, H., Guo, B.Y., Zhang, H.Y. and Li, C.L. (2021) A Parallel Algorithm of Image
Mean Filtering Based OpenCL.
https://www.researchgate.net/publication/350365944_A_Parallel_Algorithm_of_Im
age_Mean_Filtering_Based_on_OpenCL

[6] Slabaugh, G., Boyes, R. and Yang, X.Y. (n.d.) Multicore Image Processing with
OpenMP.
https://www.eecs.qmul.ac.uk/~gslabaugh/publications/OpenMP_SPM.pdf

[7] Lajoie, L. (2023) Python: Python-Based Inverse Filtering.
https://copyprogramming.com/howto/inverse-filtering-using-python

https://doi.org/10.4236/jcc.2024.121007
https://www.linkedin.com/advice/0/how-can-you-incorporate-parallel-computing-algorithmic-ektkc
https://www.linkedin.com/advice/0/how-can-you-incorporate-parallel-computing-algorithmic-ektkc
https://www.tutorsindia.com/our-sample-works/parallel-computing-in-image-processing/
https://www.tutorsindia.com/our-sample-works/parallel-computing-in-image-processing/
https://doi.org/10.1007/s00521-019-04164-2
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4361148
https://doi.org/10.2139/ssrn.4361148
https://www.researchgate.net/publication/350365944_A_Parallel_Algorithm_of_Image_Mean_Filtering_Based_on_OpenCL
https://www.researchgate.net/publication/350365944_A_Parallel_Algorithm_of_Image_Mean_Filtering_Based_on_OpenCL
https://www.eecs.qmul.ac.uk/%7Egslabaugh/publications/OpenMP_SPM.pdf
https://copyprogramming.com/howto/inverse-filtering-using-python

	Parallel Technologies with Image Processing Using Inverse Filter
	Abstract
	Keywords
	1. Introduction
	2. Literature Review
	3. Methods
	4. Results
	5. Findings
	6. Conclusion
	Acknowledgments
	Conflicts of Interest
	References

