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Abstract 
The traditional small target detection algorithm often results in a high false 
alarm rate on the sea surface background. To address this issue, a small target 
detection method based on guided filtering and local average gray level dif-
ference was proposed in this paper for the sea surface. Firstly, the method 
enhanced the details of the small targets by employing guided filtering to 
suppress the background clutter and noise in the sea surface image. Subse-
quently, the local average gray level difference of each point in the image was 
calculated to further distinguish the targets from other interference points. 
Finally, the threshold segmentation method was utilized to obtain the actual 
small targets on the sea surface. After conducting experiments on various sea 
surface scenes, the LSCRG, BSF, and ROC curve were computed for the pro-
posed method and five other algorithms. Comparative analysis with BS, 
Top-hat, TDLMS, Max-median, and LCM demonstrates the superiority of the 
proposed method for infrared small target detection on the sea surface. 
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1. Introduction 

The accurate detection of ship targets on the sea is essential in various contexts, 
including military operations for identifying potential threats, civilian applica-
tions such as search and rescue operations for shipwrecks. Infrared thermal im-
aging technology is commonly used due to its advantages of concealment, long 
detection range, and all-weather functionality. However, when objects are lo-
cated far away from the observer, they appear as small targets that can easily 
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blend into the complex and dynamic sea clutter, bright bands, and island back-
grounds. This poses significant challenges for detecting these small targets, leading 
to false alarms and missed detections [1]. 

Over the past few decades, extensive research has been conducted on sin-
gle-frame small target detection methods. These methods are primarily on anal-
ysis to the spatial grayscale information of individual infrared images to detect 
small targets. They are characterized by their simple structure, ease of operation, 
and convenient hardware implementation. Some of the commonly used algo-
rithms in this field include max-median filtering [2], morphological filtering [3], 
and two-dimensional least mean square (TDLMS) filtering [4]. 

Max-median filtering retains image details while filtering out small targets 
based on differential operations between the original image and the estimated 
background map. Morphological filtering eliminates small voids in the image by 
expanding and corroding the original image. TDLMS filtering [5] minimizes the 
error between the original image and an expected image through continuous 
iteration, resulting in an estimated background map that closely resembles the 
actual background. 

Other approaches employed in this area include Gaussian difference filtering 
and the local contrast method (LCM). Gaussian difference filtering applies Gaus-
sian kernels of different scales to process the image and then performs differen-
tial operations. Threshold segmentation is used to extract targets from the 
processed image. However, Gaussian difference filtering tends to have poor ro-
bustness and low accuracy in complex scenes. 

The local contrast algorithm, first proposed by Chen et al., utilizes the visual 
saliency mechanism of the human eye [6]. It calculates the local contrast infor-
mation for each point in the infrared image and enhances weak points that meet 
certain conditions while suppressing other pixels. Finally, small targets in the 
image are obtained through threshold segmentation [7]. Building upon the local 
contrast algorithm, Wei et al. proposed MPCM (multiscale patch-based contrast 
measure) by utilizing multiscale means for detection [8] [9]. New algorithms 
such as Novel Weighted Image Entropy (NWIE) and Local Difference Measure 
(LDM) have further improved background and noise suppression capabilities by 
introducing the probability of information entropy [10] [11] [12] [13]. However, 
these algorithms based on the visual saliency mechanism of the human eye may 
not be effective for small targets that are prone to being drowned out by noise 
and difficult to detect. 

Considering the specific challenges posed by far-range detection applications 
characterized by a low signal-to-noise ratio and significant disturbances, a small 
target detection method for the sea surface based on guided filtering and local 
average gray level difference is proposed in this paper. The proposed method 
enhances the details of small targets using guided filtering while suppressing the 
background and noise to improve target saliency. Then, the local average gray 
level difference of the image is calculated to further distinguish noise and dis-
turbance points. The location of targets is determined through threshold seg-
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mentation. Experimental results demonstrate that the algorithm proposed in this 
paper can effectively detects small targets on the sea surface from long distances, 
achieving a high detection rate with a low false alarm rate [14]. 

2. Principle of Guided Filtering 

Guided filtering [15], as the name suggests, makes use of a guided map to process 
a image. Assuming that q represents the output image, I represents the guided 
image, and p is the original image, the local linear model of guided filtering can 
be expressed as follows: 

( )
i

i ij j
j w

q W I p
∈

= ⋅∑                       (2.1) 

In the above equation, ( )ijW I  represents the weighted value of guide image I 
at the corresponding position. When the guided image is the same as the origi-
nal image, the result shows the effect of edge preservation. the above equation 
can be written as: 

i k i kq a I b= +                         (2.2) 

k For a pixel point in the guided image, ka  and kb  are the linear coefficients 
of the guided image at point k. 

Taking derivatives on both sides of Equation (2.2) yields: 

q a I∇ = ∇                          (2.3) 

From Equation (2.3), it can be seen that there is a linear relationship between 
the gradient of the output image q and the gradient of the guided image I, which 
is why the output image is able to get the corresponding guided information 
from the guided image. 

The original image p is usually blended with noise, q is the output image, To 
solve ka  and kb , according to the principle of unconstrained recovered image, 
it is necessary to ( )2min

k
i i

i w
q p

∈

−∑ , that is: 

( )2min
k

k i k i
i w

a I b p
∈

+ −∑                    (2.4) 

This was then transformed into the solution of a least squares problem with a 
penalty term introduced for computational convenience, i.e., regularization was 
applied. 

( ) ( )( )2 2,
k

k k k i k i k
i

E a b a I b p a
ω

ε
∈

= + − +∑             (2.5) 

In Equation (2.5): ε  is the regularization factor, which is used to regularize 
the larger value of ka , and p represents the original image. After calculation, the 
corresponding ka  and kb  are respectively: 

2

1

k
i i k k

i
k

k

I p p
a ω

µ
ω

σ ε
∈

−
=

+

∑
                 (2.6) 

k k k kb p a µ= −                      (2.7) 
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In Equation (2.6): ω  is the number of pixels in the window, kµ  is the av-
erage value of the gray scale of I in the window ω , 2

kσ  is the variance of the 
gray scale of I in the window ω , and kp  is the average gray scale value of the 
input image p in the window ω . When calculating the linear coefficients for 
each window, it will be found that a pixel will be contained by more than one 
window. so it is sufficient to average the values of all the linear functions that 
contain the point, as shown in Equation (2.8) and Equation (2.9): 

( )1

k
i k i k k i k

i
q a I b a I b

ωω ∈

= + = +∑                 (2.8) 

1 1;
k k

k k k k
i i

a a b b
ω ωω ω∈ ∈

= =∑ ∑                  (2.9) 

After completing the computation of ka  and kb , the resultant graph after 
processing by the guided filtering algorithm can be obtained by the computation 
of Equation (2.2). 

3. Detection Metod 
3.1. Adaptive Detail Enhancement and Noise Suppression 

The image obtained by subtracting the original image from the guided filter is 
the detail layer of the image. 

r I q= −                          (3.1) 

In Equation (3.1) q represents the base layer of the image, which Means the 
slowly changing background part, while r represents the detail part of the image. 
Since it is required to enhance need to enhance the details of the image, so first 
assume that multiplying by a certain gain coefficient β , and get the enhanced 
detail layer r′ , as shown in the following equation: 

( )r r I qβ β′ = ⋅ = ⋅ −                     (3.2) 

This can be obtained by bringing Equation (3.2) into Equation (2.2) 

( ) ( )1r I aI b a I bβ β β′ = ⋅ − − = ⋅ − − ⋅             (3.3) 

Thus the gradient of the enhanced detail layer is calculated as shown below 

( )1r a Iβ′∇ = ⋅ − ∇                     (3.4) 

And the gradient of the base layer can be calculated as follows. 

q a I∇ = ⋅∇                         (3.5) 

The detail layer represents the part of the image where the gradient Variation 
is more obvious, which naturally contains the noise in the image. To ensure that 
the details of the enhanced image do not amplify the noise at the same time, it is 
necessary that the gradient value of the enhanced detail layer at any point should 
be less than or equal to the gradient value of the base layer at the corresponding 
position. From this, the value of β  is calculated as shown in Equation (3.7), 
and a  are the coefficients of the linear function obtained from the guided fil-
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tering calculation. 

r q′∇ ≤ ∇                          (3.6) 

( )1 a I a Iβ ⋅ − ∇ ≤ ⋅∇                      (3.7) 

1
a

a
β =

−
                         (3.8) 

From the derivation of guided filtering, it can be concluded that: when a pixel 
is located in the “high variance”, that is to say, the image I in the window kω  
has a large variation in kσ ε≥ , so a  will be close to 1, b  will be close to 0. 
on the contrary, if the variation is slow in the flat area of a  will be close to 0, 
and b  will be close to kµ , then β  will decrease, so as to restrain the noise. 

When a  will is close to 1, the value of β  will become very large. In order 
to prevent the edge details of the image from being over-amplified, the adjust-
ment coefficient λ  is introduced in Equation (3.9), and λ  can take a value 
between 0 and 1. With the help of λ , the problem of over-amplification of the 
edge information can be avoided effectively. 

1
a

a

λ

β  =  − 
                         (3.9) 

The results of the enhancement of the detail layer after the guided filtering 
process can be observed in Figure 1. In this figure, the upper part of each subfi-
gure represents the original image, while the lower part shows the results of 
adaptive detail enhancement and noise suppression. 

From the figures, it is evident that the brightness of the small target in the 
processed sea surface image remains unchanged, indicating that the guided fil-
tering process effectively preserves the details of the targets. Meanwhile, the 
background and noise are significantly suppressed, leading to a clearer and more 
distinguishable small target against the background. This outcome demonstrates 
the effectiveness of the guided filtering method in enhancing the details of small 
targets while reducing the impact of noise and clutter. 

 

 
Figure 1. Adaptive detail enhancement and noise suppression. 
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3.2. Local Average Grayscale Difference 

The results of the enhancement of the detail layer after the guided filtering 
process analyze common small targets and noise, such as bright spots and isl-
ands. Figure 2 provides further insight into these characteristics. In this figure, 
Figure 2(a) represents a typical infrared small target, while Figures 2(b)-(d) 
represent different types of background or noise in the image. The upper part of 
each subfigure shows the grayscale map, while the lower part displays the cor-
responding three-dimensional maps, which reveal distinct structural characteris-
tics. 

In Figure 2(a), the bright pixels are mainly concentrated in the center of the 
window, with a rapid decrease in grayscale value in the surrounding area. This 
spike-like pattern is a typical characteristic of small targets. Figure 2(b) exhibits a 
brighter center area; however, the distribution of bright pixels is more dispersed. 
The three-dimensional map shows that although the overall gray value is higher, 
it fluctuates similarly to noise patterns. Figure 2(c) demonstrates that the gray 
value is larger in the horizontal direction but significantly smaller in all other di-
rections. This pattern often corresponds to waves or bright spots in the sea sur-
face image. Lastly, Figure 2(d) displays an obvious high gray value along the 
sub-diagonal, while remaining very dark in all other directions. Such patterns are 
commonly observed at the edges of islands or large ships on the sea surface. 

These observations provide valuable information about the characteristics of 
small targets and different types of noise in the sea surface image. By utilizing 
guided filtering, the algorithm effectively enhances the details of small targets 
while suppressing the background and noise. This enables the detection of small 
targets with improved clarity and distinction against the complex and dynamic 
background. 

Combining the above analysis, it can be known that the weak targets on the 
sea surface have a unique local average grayscale difference, i.e., presenting a 
kind of raised spike-like shape. And from the local average grayscale difference, 
we can further distinguish the targets and non-targets (background and noise), 
which there by improves the accuracy of the algorithm and reduces the false 
alarm rate of the algorithm. 

Based on this, a combination of guided filtering and local average gray level 
difference is proposed for the detection of small targets on the sea surface, and 
the overall flow of the algorithm is shown in Figure 3. 

The original infrared image is first processed by guided filtering, and then the 
detail layer of the image is enhanced meanwhile noise suppressed, By the above 
method, the target is enhanced, while the background and noise are suppressed, 
and then the local average gray difference of the image is calculated, which con-
sequently completes the detection of small targets on the sea surface under the 
complex background of the sea surface. 

For the Guided Filtering, the original window is divided into 9 chunks as 
shown in Figure 4, and then the average grayscale difference on the horizontal, 
vertical, main diagonal, and sub-diagonal is calculated separately. 
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Figure 2. Difference between local structural features of targets and non-targets. 
 

 
Figure 3. Flowchart of small target detection method at sea surface based on 
guided filtering and average gray level difference. 

 

 
Figure 4. Schematic structure of 
a sliding window. 
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In the above equation, 
iBm  denotes the average grayscale of each subregion 

from 0B  to 8B , and id  denotes the average grayscale difference between the 
center subregion 0B  and the i subregion. From the previous analysis, if the 
subregion is a target, then id  will be larger in all directions, while the non-target 
subregions (background and noise) have average grayscale values in other direc-
tions similar to the center region. And to further expand these differences, mul-

(a) (b) (d)(c)
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tiplication will be applied on average grayscale difference of two regions on the 
same directional line. 

8 , 1,2,3,4i i ip d d i−= ∗ =                   (3.11) 

ip  denotes the product of two average grayscale differences in a certain direc-
tion, For example, 4p  denotes the product of two average grayscale differences 
in the horizontal direction, If the two average grayscale differences is small, then 
the result of the product is small but if the difference of the gray scale values in a 
certain direction is large, then the product will also be large. For small target, the 
product is usually large, while for noise and some disturbance, it should be. 

To further amplify these differences, we multiply the smallest two of ip  as 
our result. The resulting computational expression is given below: 

( )1 2 3 41, 2 _2 , , ,
_ 1 2

min min min p p p p
I out min min

 =


= ∗
             (3.12) 

In the above equation, 1min  and 2min  represent the smallest and the pe-
nultimate values in ip , and then 1min  and 2min  are multiplied as the result 
for output. 

With the above calculations, the final output _I out  turns out to be very large 
in the target area, while the values in the non-target area are very small and, in 
some cases even negative. 

The final output will still contain some intrusive regions that require further 
threshold segmentation, and a suitable threshold is summarized based on expe-
riments to be one-half of the maximum _I out  value. 

( )1 _ 2Th max I out= ∗                    (3.13) 

Th denotes the threshold value of the output map based on the local structural 
features algorithm, and the binarization of _I out  using this threshold value can 
get the position where the small target is located on the sea surface. The result of 
the algorithm in this paper is shown in Figure 5. 

Where Figure 5(a) represents the original image, Figure 5(b) represents a 
three-dimensional image of the original image, Figure 5(c) represents a 
three-dimensional image processed by the algorithms Figure 5(d) represents the 
detection result, and Figure 5(e) represents the three-dimensional image of 
Figure 5(d).  

4. Analysis and Evaluation of Results  
4.1. Detection Results and Comparative Analysis 

To analyze the detection ability of the proposed method for small infrared tar-
gets on the sea surface, several comparison methods are employed, including the 
background subtraction method (BS), top-hat filtering, 2D minimum mean 
square filtering, maximum median filtering, and the LCM algorithm. The results 
of the experiments are shown in Figure 6, where Figure 6(a) displays the origi-
nal infrared images of five different scenes, and Figures 6(b)-(g) represent the 
processed results of the above methodology, including the proposed method. 
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In Figure 6, the red box indicates the actual position of the small target in the 
image, while the yellow circles represent the false alarm points generated by each 
method. From the overall results, it can be observed that the algorithm proposed 
in this paper exhibits superior detection ability, accurately detecting all the tar-
gets with fewer false alarm points compared to other methods. 

The second-best performance is achieved by the traditional LCM algorithm, 
which successfully detects all the targets but generates some false alarm points 
due to clutter. 

The next methods, including top-hat filtering, 2D minimum mean square fil-
tering, and maximum median filtering, demonstrate varying levels of adaptabil-
ity depending on the complexity of the current background. The more complex 
the background, the poorer their rangeability, indicating that these methods may 
struggle to effectively detect targets under challenging conditions. 

The last method, the background subtraction method, proves effective for 
predicting the complex sea background. However, it faces difficulties in com-
pletely separating the target from the background, leading to potential limita-
tions in accurate target detection. 

 

 
Figure 5. Graph of the results of the algorithm of Th. 
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Figure 6. Comparison of detection results of various algorithms. 
 

Based on the comparative analysis, the algorithm proposed in this paper out-
performs the other methods in terms of detection ability, accurately identifying 
all the targets with fewer false alarms. This demonstrates the effectiveness of the 
proposed method for small infrared target detection on the sea surface, particu-
larly in handling complex backgrounds and reducing false alarms. 

4.2. Quantitative Comparative Analysis 

For a more objective evaluation of algorithm performance, this paper adopts the 
widely used Local Signal-to-Clutter Ratio Gain (LSCRG), Background Suppres-
sion Factor (BSF), and Receiver Operating Characteristic (ROC) curve as the 
evaluation criteria. 

1) Localized Signal-to-Hash Ratio Gain (LSCRG) 
The defined expression for Local Signal-to-Clutter Ratio (LSCR) is shown be-

low: 

LSCR t b

b

G G
G
−

=                       (4.1) 

In the above equation, tG  represents the average gray value of the target pix-
el; bG  represents the average gray value of the background pixel around the 
target; bσ  represents the standard deviation of the background around the tar-
get. The LSCRG indicates the change of the local signal-to-heterodyne ratio after 
the algorithm processing, the larger the LSCRG, the better noise suppression ef-
fect, and the stronger target detection capability. 
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LSCRLSCRG
LSCR

out

in

=                      (4.2) 

The five scenes in the above section are used for experiments, and Table 1 
presents the LSCRG results of six algorithms. 

2) Background suppression factor (BSF) 
The formula for calculating the background suppression factor is as follows: 

BSF in

out

σ
σ

=                         (4.3) 

Where, inσ  denotes the standard deviation of the background around the 
target of the input original image and outσ  d denotes the standard deviation of 
the background around the image target of the processed image. 

The above images in Figure 7 are used as the experiment image, and Table 2 
presents the BSF results of the six methods in the above five scenes. 

 
Table 1. Comparison of LSCRG indices for each algorithm. 

 BS Top-hat TDLMS Max-Median LCM The paper 

Image 1 1.9091 2.7445 3.9231 6.0379 2.9134 12.3512 

Image 2 1.6429 1.9229 2.4410 3.7222 2.1955 9.2345 

Image 3 1.3202 2.5120 2.2807 1.7648 2.1368 10.3122 

Image 4 2.3976 1.4367 2.4561 3.2451 2.7642 16.2146 

Image 5 1.3245 1.4621 3.2145 2.3046 1.8924 14.3241 

 

 
Figure 7. Comparison of ROC curves for each target detection algorithm. 
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Table 2. Comparison of the BSF indices of the algorithms. 

 BS Top-hat TDLMS Max-Median LCM The paper 

Image 1 3.2498 7.7459 12.5777 7.1011 3.6503 45.2341 

Image 2 6.7423 8.0913 10.4024 7.1547 3.7896 36.6473 

Image 3 4.2319 4.4713 4.2299 4.9191 2.4389 31.3452 

Image 4 9.3497 14.0841 18.2055 9.5953 5.5577 58.7639 

Image 5 8.2564 7.8016 17.8781 9.0663 3.0289 35.3617 

 
3) ROC curve 
The ROC curve is an important objective evaluation index of the classifier, the 

ROC curve is the ROC curve is the relationship curve between the detection rate 
TPR and the false alarm rate FPR, and the expressions of the detection rate TPR 
and the false alarm rate FPR are shown below: 

TPTPR
TP FN

FPFPR
FP TN

=
+

=
+

                       (4.4) 

In the given equation, “TP” represents the number of true positives (real tar-
gets detected), “FN” represents the number of false negatives (real targets missed), 
“FP” represents the number of false positives (false targets detected), and “TN” 
represents the number of true negatives (non-target elements correctly identified 
as non-targets). 

The coordinates in the ROC curve correspond to different detection rates and 
false alarm rates obtained at various thresholds. There is a positive correlation 
between the false alarm rate and the detection rate. When the threshold is set 
low, more potential targets are detected, leading to a higher detection rate. 
However, this also increases the likelihood of false alarms, resulting in a higher 
false alarm rate. 

The ROC curve provides a visual representation of this trade-off between the 
detection rate and false alarm rate at different operating points. By adjusting the 
threshold, one can move along the curve to achieve different trade-offs accord-
ing to the specific requirements of the application. 

The area under the ROC curve (AUC) serves as an important performance 
metric for the algorithm. The AUC quantifies the overall accuracy of the target’s 
location judgment provided by the algorithm. A larger AUC indicates better 
performance, indicating that the algorithm achieves higher accuracy in distin-
guishing between targets and non-targets. Conversely, a smaller AUC suggests 
lower accuracy in target localization. 

Thus, the ROC curve and its associated AUC provide valuable information for 
evaluating the performance of a small target detection algorithm, allowing for 
comparisons between different approaches and determining the effectiveness of 
target detection in terms of both detection rate and false alarm rate. 

In Figure 7, the ROC curves for the six methods are displayed. Each algo-
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rithm’s results for images 1-5 are represented by plots a-e, respectively. It is evi-
dent that different scenes yield varied outcomes for the algorithms. 

Overall, the algorithm proposed in this paper demonstrates the best detection 
performance among the six methods. Top-hat filtering and max-median filtering 
are significantly influenced by the size of the target. TDLMS (Time-Domain 
Least Mean Square) is greatly affected by the background, with image 2 being 
much brighter than image 1 due to differences in capture time. As a result of li-
mited background brightness prediction ability, the detection capability of TDLMS 
is considerably reduced. 

The traditional LCM algorithm generally outperforms the other four methods 
but falls short in image 4 and image 5. Image 4 includes large ships, while image 
5 contains a significant amount of clutter on the sea surface. These factors im-
pede target detection, resulting in a high number of false alarms. 

The background subtraction method proves unsuitable for all scenes, and the 
simple time-domain low-pass algorithm struggles to accurately predict the com-
plex sea surface background. 

In summary, compared to the other five methods, the improved algorithm 
proposed in this paper demonstrates superior detection ability for infrared small 
targets on the sea surface. It achieves better performance across different scenes 
and exhibits improved accuracy in target detection, making it an effective ap-
proach for small target detection in challenging maritime environments. 

5. Conclusions 

Traditional small target detection algorithms encounter significant challenges in 
the unique marine environment, which is often cluttered with bright spots, isl-
ands, ships, and other disturbances. These obstructions inhibit effective target 
detection, leading to an inflated false alarm rate for the algorithm. This article 
proposes a novel small target detection method on marine surfaces that utilizes 
guided filtering and local average gray level difference to enhance image detail. 

Upon analysis, it is found that while small targets and interference spots share 
characteristics like small size, high energy, and noticeable contrast, they exhibit 
local structural differences. Small targets display a substantial average grayscale 
difference in all directions surrounding them, whereas interference spots main-
tain a similar average grayscale in certain directions. It is thus feasible to diffe-
rentiate targets based on disparities in local average gray scale difference. 

The superiority and applicability of the proposed algorithms for detecting small 
targets on marine surfaces are substantiated through comparative experiments 
with five other methods on actual marine scenarios. Performance indices includ-
ing the LSCRG index, BSF index, and ROC curve for each algorithm were calcu-
lated, and the resultant data underscores the efficacy of the algorithms presented 
in this study. 

This paper’s objective is to improve identification techniques for minuscule 
infrared targets on marine surfaces using an algorithm derived from intensive 
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examination and analyses of real-world marine scenes. It is important to ac-
knowledge that the complexity of marine scenes implies that the experimental 
data may not encompass all possible scenarios. As such, the universality of the 
algorithm’s implementation for all forms of marine surface infrared small target 
detection may be somewhat restricted. 

Future research endeavors will aim to mitigate this limitation through more 
comprehensive experimentation and meticulous analysis. A wider range of ex-
periments and thorough investigations of results can facilitate the refinement of 
the algorithm and deepen understanding of its effectiveness across diverse ma-
rine surface scenarios. The continuing research seeks to offset previously men-
tioned limitations and further elevate the algorithm’s performance for small tar-
get detection on marine surfaces. 
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