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Abstract 
Deep Neural Networks (DNN) are widely utilized due to their outstanding 
performance, but the susceptibility to adversarial attacks poses significant se-
curity risks, making adversarial defense research crucial in the field of AI se-
curity. Currently, robustness defense techniques for models often rely on ad-
versarial training, a method that tends to only defend against specific types of 
attacks and lacks strong generalization. In response to this challenge, this pa-
per proposes a black-box defense method based on Image Denoising and 
Pix2Pix (IDP) technology. This method does not require prior knowledge of 
the specific attack type and eliminates the need for cumbersome adversarial 
training. When making predictions on unknown samples, the IDP method first 
undergoes denoising processing, followed by inputting the processed image 
into a trained Pix2Pix model for image transformation. Finally, the image 
generated by Pix2Pix is input into the classification model for prediction. This 
versatile defense approach demonstrates excellent defensive performance against 
common attack methods such as FGSM, I-FGSM, DeepFool, and UPSET, 
showcasing high flexibility and transferability. In summary, the IDP method 
introduces new perspectives and possibilities for adversarial sample defense, 
alleviating the limitations of traditional adversarial training methods and en-
hancing the overall robustness of models. 
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1. Introduction 

With the development of artificial intelligence and the improvement of hardware 
capabilities, deep neural networks have found extensive applications in fields such 
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as image recognition, object tracking, language translation, and more [1]. How-
ever, the existence of adversarial examples, as proposed by Szegedy et al., poses a 
significant threat to the security of neural networks and AI due to their stealthi-
ness and adversarial nature. There have been reports confirming the serious con-
sequences of adversarial examples in the field of autonomous driving. Therefore, 
research on defense techniques against adversarial examples has become criti-
cally important. 

Building upon the research and contributions of Pedro et al. [2] and Goodfel-
low et al. [3] in the study of adversarial examples, various adversarial attack me-
thods have been continually developed, and corresponding defense methods have 
emerged. These defense methods can be broadly categorized into two groups: 
those based on input transformation and those based on robust optimization. 
Input transformation methods typically involve preprocessing the input image 
before feeding it into the prediction model to remove adversarial perturbations 
as much as possible. Common preprocessing techniques include image denois-
ing, JPEG compression [4], image restoration, PCA dimensionality reduction, and 
more. These methods aim to recover the important information from unconta-
minated regions of the image. 

On the other hand, robust optimization-based methods primarily encompass 
adversarial training and model compression. Adversarial training involves incor-
porating adversarial examples during model training to enhance the model’s ro-
bustness against such examples, thereby improving its generalization capability. 
Model compression, on the other hand, reduces the complexity of the model to 
enhance its robustness. 

However, due to the varying noise distributions introduced by different ad-
versarial attack methods, a single defense method often struggles to withstand a 
multitude of adversarial attacks. Thus, improving defense flexibility according to 
different models and attack methods to achieve robust generalization remains a 
significant research challenge [5]. 

This article focuses on the issue of adversarial attacks faced by deep neural 
networks (DNNs), and we note that traditional defense methods have limitations 
in terms of their robustness to multiple attack types. That is, they require exces-
sive information about the parameters of adversarial attacks and are difficult to 
defend against various attacks. To address this challenge, we propose a novel 
black-box defense method based on image denoising and Pix2Pix technology 
(IDP). The contributions of this research are as follows: 

1) This research innovatively combines image denoising with Pix2Pix models 
to enhance the similarity of feature distributions between adversarial samples 
and original samples, thereby improving the model’s robustness. 

2) Unlike traditional defense methods, the IDP method does not require 
cumbersome adversarial training, nor does it require knowledge of the attack 
type. It has better generalization performance and a broader range of application 
scenarios. 
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2. Related Work 
2.1. Related Concepts and Attack Methods of Adversarial Samples  

Extensive experimental results have shown that existing classification models, 
despite being trained on large amounts of data and achieving excellent perfor-
mance on existing datasets, can still be highly susceptible to “misleading” adver-
sarial examples, resulting in misclassification. These images that cause the mod-
els to make incorrect predictions are referred to as adversarial examples [6]. One 
of the most common attack methods, FGSM (Fast Gradient Sign Method), was 
proposed by Goodfellow et al. FGSM utilizes gradient information to quickly 
compute adversarial perturbations. This method has been extensively studied by 
researchers. Subsequently, Seyed-Mohsen et al. [7] introduced the DeepFool ad-
versarial example generation method, which estimates the distance between in-
put samples and the decision boundary of the classifier. This distance is used as 
the minimal perturbation to be generated, providing stronger adaptability [8]. 

1) FGSM (Fast Gradient Sign Attack) is a classic method that rapidly gene-
rates adversarial examples by leveraging gradient information. It belongs to the 
category of untargeted attacks, where the attack is considered successful as long 
as the predicted result is not the true class of the sample. In traditional optimiza-
tion, we move in the opposite direction of the gradient to minimize the loss 
function, known as gradient descent. However, FGSM is designed to maximize 
the loss function, causing the classification result to differ from the true class. It 
can be seen as gradient ascent. 

2) I-FGSM (Iterative Fast Gradient Sign Method) is an improved version of 
FGSM that increases the attack success rate by iteratively applying FGSM [9]. In 
each iteration, FGSM perturbations are added to the original sample, while con-
straining the magnitude of the perturbation within a certain range. I-FGSM typ-
ically achieves higher attack success rates compared to FGSM. 

3) DeepFool attack is a method specifically designed to address the limitations 
of FGSM in non-linear models. It is based on a hyperplane classification ap-
proach and exhibits greater adaptability. The DeepFool algorithm iteratively 
computes the minimal perturbation that minimizes the distance from the sample 
to the decision boundary, gradually moving the sample towards the boundary 
until it is misclassified by the classifier. 

4) UPSET (Universal Perturbations for Steering to Exact Targets) is a subset 
estimation-based black-box adversarial attack method [10]. It calculates a uni-
versal perturbation over the entire dataset and then adds this perturbation to 
each individual sample to attack the model. 

2.2. Adversarial Defense Method 

With the existence of adversarial examples being proven, research on defending 
against adversarial examples has gradually garnered attention. Papernot et al. 
[11] proposed defensive distillation, which reduces the sensitivity of neural net-
works to adversarial perturbations by smoothing the model through distilling 
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extracted knowledge during the training process. Ross et al. [12] introduced in-
put gradient regularization, penalizing the magnitude of output changes when 
the input varies, to enhance the model’s robustness for defense. Cisse et al. [13] 
presented ParsEvalNetwork, which adds regularization constraints to the mod-
el’s weights to reduce the gradient of the model’s output with respect to the in-
put, thereby improving the model’s robustness for defense. Currently, adversari-
al defense methods can be classified into two major categories: those targeting 
the image data itself and those targeting the network model. The former includes 
techniques such as image denoising and image compression, while the latter en-
compasses a series of methods that utilize gradient information for defense. 
However, the former requires prior knowledge of the attack types to achieve 
strong defense, and the latter relies on substantial computation. As a result, me-
thods based on adversarial training have emerged. Adversarial training involves 
training neural networks with both adversarial examples and normal samples, 
aiming to capture the feature distribution of adversarial examples and enhance 
the model’s robustness. However, as research progresses, flaws in adversarial 
training have also been discovered. The performance and classification “bias” of 
neural networks often heavily rely on the features of the dataset. If the added 
adversarial examples are generated using specific attack methods, the trained 
model’s classification “bias” will lean towards the feature distribution of these 
attack-generated adversarial examples. This sensitivity makes the model highly 
susceptible to slight modifications, leading to a strong dependence of the per-
formance of adversarial training-based models on the types and quantities of 
adversarial attack methods used. Therefore, it is a research question worth ex-
ploring how to improve the flexibility of defense techniques to adapt to different 
models and attack methods.  

3. Approach 

In response to the issue of reduced flexibility and weak transferability associated 
with some defense methods that require extensive adversarial training tailored to 
specific attack methods, we propose a black-box adversarial defense approach 
that combines image denoising with Pix2Pix. Since our method is a black-box 
defense technique, we do not possess knowledge about the specific attack type or 
any parameters associated with the adversarial samples. 

In this paper, we take the original training samples X and feed them into an 
image denoising model A, resulting in denoised image samples X’. These de-
noised samples X’ are then used as inputs to train a Pix2Pix model, while the 
original samples X serve as the target samples for the Pix2Pix model. Subse-
quently, we input the X’ samples into the trained Pix2Pix model, obtaining the 
corresponding output samples Y. Finally, we employ these Y samples as training 
data for training a resnet50 [14] classification model, ultimately yielding the final 
defense model. 

The process of image denoising model A is as follows: 
S1: Firstly, perform an operation based on interpolation enlargement on the 
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image samples. 
S2: Apply Fourier transform to the images obtained in S1 to obtain their cor-

responding frequency spectrum images. 
S3: Perform Wiener filtering on the frequency spectrum images obtained in 

S2, followed by inverse Fourier transform to obtain the final denoised images. 
When testing unknown samples, the same process is followed: the samples are 

first transformed through the IDP model before being input into the classifica-
tion model. This is done to maximize the similarity in feature distribution be-
tween the images predicted by the model and the training samples. 

3.1. Image Denoising Model A 
3.1.1. Fourier Transform 
The Fourier transform is the process of converting a time-domain signal into a 
frequency-domain signal [15]. For one-dimensional space, any periodic signal 
can be composed of a combination of sine waves with different phases and am-
plitudes. In the case of a two-dimensional image, the grayscale value of each pix-
el can be understood as the “amplitude” in one-dimensional space. Therefore, in 
the two-dimensional domain, it can be seen as the superposition of countless 
two-dimensional plane waves. Fourier transform can be used to decompose an 
image into its constituent parts of different frequencies, enabling image en-
hancement, filtering, compression, and other functionalities. In image denoising, 
the two-dimensional discrete Fourier transform is widely applied. Its expression 
is shown below: 

( ) ( )1 1
0 0

1, , exp 2M N
x y

ux vyF u v f x y j
MN M N

− −

= =

  = − π +    
∑ ∑ .        (1) 

In the above Equation (1), u and v are the frequency variables corresponding 
to the x and y axes respectively, M and N are the height and width correspond-
ing to the function f(x, y) respectively, and F(u, v) is the frequency spectrum of 
image f(x, y). Fourier transform also has inverse transformation, that is, to con-
vert the spectrum F(u, v) into an image [16], the expression is as follows: 

( ) ( )
21 1

0 0

1, , e
ux vyjM N M N

u vf x y F u v
MN

  − π +  − −   
= =

= ∑ ∑ .            (2) 

In Equation (2), 0,1,2, , 1x M= −� , 0,1,2, , 1y N= −� . 
The spectrum and energy spectrum of the two-dimensional discrete Fourier 

transform are shown in Equations (3) and (4) respectively. R represents the real 
part of the two-dimensional discrete Fourier transform coefficient, and I represents 
the imaginary part: 

( ) ( ) ( )
1 22 2, , ,F u v R u v I u v = +  .                 (3) 

( ) ( ) ( )2 2, , ,E u v R u v I u v= + .                  (4) 

After Fourier transform, the image often needs to go through a frequency 
centralization step, because most of the effective information of the image is 
concentrated in the low frequency part; The formation of low frequency in the 
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periphery, high frequency in the center of the distribution; The image can be 
easily restored after Fourier transform and frequency centralization. 

3.1.2. Interpolation Based Amplification Operations 
Since both the MNIST handwritten digit dataset and the CIFAR10 dataset con-
sist of low-resolution images, comparing the spectrum obtained from directly 
applying the DFT transformation to the original low-resolution images with the 
spectrum obtained after enlarging the images, the latter contains more pixels that 
can be used for classification. As the MNIST dataset consists of single-channel 
images, the DFT transformation only needs to be applied to a single channel. 
However, for CIFAR10, the transformation needs to be applied to all three 
channels (R, G, and B). Here, we select single-channel images from the MNIST 
dataset to illustrate the differences in the corresponding spectra under different 
operations. The left side shows the adversarial samples and their corresponding 
spectra. 

Figure 1 shows the two images of the digit “2”. On the left is the original im-
age with a size of 28 × 28 pixels, and on the right is the image after being en-
larged to a size of 128 × 128 pixels. Although the visually perceived difference 
between the enlarged adversarial sample and the original adversarial sample may 
be minimal to the human eye, it is evident that the spectrum of the enlarged im-
age, after undergoing the DFT transformation, contains more detailed informa-
tion and less interference. The interpolation-based enlargement operation can be 
seen as a means of super-resolution, transforming the low-resolution image into 
a higher-resolution one. As a result, the enlarged image exhibits smoother tex-
ture and sharper lines, which is reflected in the clearer spectrum. Therefore, in-
corporating the operation of enlarging these paired images is necessary. 

3.1.3. Wiener Filtering 
Wiener Filtering is a signal processing technique used to estimate or recover a 
signal that has been corrupted by noise. Its primary objective is to model the 
signal and noise in the frequency domain and attempt to minimize the estima-
tion error to restore the original signal. In Wiener Filtering, the signal is as-
sumed to be a linear combination of the original signal and noise. This model 
can be represented as: 

( ) ( ) ( )y t s t n t= + .                        (5) 
 

  

  

Figure 1. The spectrum diagram corresponding 
to the adversarial sample and the adversarial 
sample after adding the amplification operation. 
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Here, y(t) is the observed signal, s(t) is the original signal, and n(t) is the 
noise. 

Wiener Filtering typically operates in the frequency domain because the spec-
tra of the signal and noise are often easier to model. The signal, noise, and ob-
served signal can all be represented in the frequency domain. Wiener Filtering 
aims to determine the estimate by minimizing the Mean Square Error [17], 
which is the squared difference between the estimated signal and the original 
signal. This criterion is usually expressed as: 

( ) ( ) ( )2ˆ ˆarg minEs t s t s t = −  
.                  (6) 

where E represents the expectation operation. The objective of this criterion is to 
find a result that minimizes the expected value of the mean square error, and 
Wiener Filtering is capable of addressing the issue of boundary blurring more 
effectively compared to other linear filters [18]. 

3.1.4. Analysis of the Advantages of Combining Fourier Transform and  
Wiener Filtering for Denoising 

1) Frequency domain analysis: Fourier Transform converts the signal from the 
time domain to the frequency domain, allowing for a better understanding of the 
noise components in the signal. By analyzing the frequency characteristics of the 
signal and noise, we can selectively remove noise in the frequency domain while 
preserving the useful information of the signal. 

2) Noise characterization: By incorporating Wiener Filtering in the frequency 
domain, it is possible to target the removal of noise within specific frequency 
ranges [19]. Through Fourier Transform, we can obtain the spectral information 
of the signal and noise, including their power spectral densities and frequency 
distributions. Accurate characterization of the noise allows for better guidance in 
the design of the Wiener filter, aiming to minimize the impact of noise. 

3) Minimum mean square error filtering: Wiener Filtering is a minimum mean 
square error filter that minimizes the mean square error between the filtered 
signal and the original signal. In the frequency domain, the Wiener filter can be 
optimized based on the power spectral densities of the signal and noise, as well 
as the signal-to-noise ratio [20]. Fourier Transform provides the spectral infor-
mation of the signal and noise, aiding in determining the optimal filter parame-
ters to minimize the error [21]. 

Overall, the combination of Fourier Transform and Wiener Filtering provides 
a powerful approach for denoising images. It leverages the frequency domain re-
presentation and adaptive filtering capabilities to effectively remove noise while 
preserving important image features, leading to improved image quality. 

3.2. Pix2Pix Model 

The Pix2Pix model is a variant of Generative Adversarial Networks (GANs) used 
for image translation or image-to-image transformation tasks. Introduced by 
Phillip Isola et al. in 2016 [22], this model is designed to translate input images 
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into corresponding output images. Pix2Pix’s primary capability lies in learning 
to convert one type of image into another, such as turning black and white im-
ages into color images or transforming real images into cartoon-style images. 

The core concept of the Pix2Pix model involves training through two convo-
lutional neural networks: a generator and a discriminator. The generator at-
tempts to produce images that closely match the expected output, while the dis-
criminator tries to differentiate between the images generated by the generator 
and the real target images. The generator takes input images and aims to gener-
ate images close to the desired output, while the discriminator takes both types 
of images (those generated by the generator and real target images) and attempts 
to distinguish between them. This process is a game where the generator conti-
nually strives to improve the quality of the generated images, while the discri-
minator continuously enhances its ability to differentiate, ultimately resulting in 
the generator producing realistic target images. 

The Pix2Pix model excels in many image processing tasks, including semantic 
segmentation, image translation, transformation between different styles of im-
ages, image inpainting, and more. This model finds wide applications across 
various domains, and its core idea has provided essential inspiration for subse-
quent tasks in image translation and the development of generative adversarial 
networks. In summary, Pix2Pix is a deep learning model for image-to-image 
translation, achieved through the use of generative adversarial networks to per-
form the transformation task between input images and desired output images. 

In this article, the reasons for choosing the Pix2Pix model can be summarized 
as follows: 

1) The Pix2Pix model possesses powerful image transformation capabilities, 
enabling the conversion of images from one feature distribution to another, 
while maintaining consistency in size with the original images after transforma-
tion. 

2) The image denoising model reduces the dissimilarity in feature distribution 
between adversarial samples and original samples. By combining the Pix2Pix 
model with image denoising, through the training of the generator and discri-
minator, the generator is capable of producing images closer to the desired out-
put. This further diminishes the differences between adversarial samples and 
original samples. This combined strategy contributes to enhancing the robust-
ness of the defense model, thereby better addressing black-box adversarial at-
tacks. 

Model Structure 
The generator G adopts a Unet structure, which is fundamentally an encod-
er-decoder architecture. It involves a series of down-sampling convolutional op-
erations followed by up-sampling transposed convolutional operations, ulti-
mately producing the generated image at the output layer. The discriminator 
consists of four fundamental convolutional blocks. Each block comprises a con-
volutional operation, batch normalization, and a LeakyReLU activation function. 
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The network architecture corresponding to this description is depicted in the 
following diagram. 

Figure 2 shows the constituent architecture of the Pix2Pix model. The gene-
rator takes one image as input and produces another image as output. The role 
of the discriminator is to score the input image and determine its authenticity. 
With an ample number of training samples and under the assumption of model 
convergence, once the training is complete, the model can achieve the transfor-
mation of one image A into another image B. 

4. Experimental Results 
4.1. Experimental Platform and Data Set 

Experimental Platform. This study conducted experiments on an AMD 
R9-5900HX CPU and an NVIDIA GeForce RTX 3080 laptop GPU (16 GB), 
equipped with 32 GB of RAM. The proposed method was implemented using 
the open-source machine learning framework PyTorch. 

Datasets. Two datasets were selected for this study, namely the MNIST 
handwritten digit dataset and the CIFAR-10 dataset. The MNIST dataset con-
sists of black-background, white-digit images with a resolution of 28 × 28 pixels. 
The CIFAR-10 dataset contains RGB three-channel color images with a resolu-
tion of 32 × 32 pixels. Both datasets consist of ten distinct classes. The selected 
adversarial attack methods include FGSM, I-FGSM, DeepFool, and UPSET. A 
ResNet-50 classification model was employed for evaluation, with defense suc-
cess rate as the performance metric. 

4.2. Attack and Training Settings 

Attack setting: For FGSM adversarial attack, although high disturbance in-
tensity has strong attack effect, it is accompanied by a sharp decline in the over-
all picture quality. In order to give consideration to both picture quality and at-
tack performance, the disturbance intensity is set at 0.20. For I-FGSM attack, the 
attack disturbance is also set to 0.20 and epochs to 10. For the DeepFool attack, 
the step length overshoot is set to 0.4 and the number of iterations max_iter is 
set to 50; For UPSET adversarial attacks, step size eta is set to 0.1, algorithm ite-
ration number max_iter is set to 20, and disturbance size epsilon is set to 0.1. 

 

 
Figure 2. Pix2Pix model structure diagram. 
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Training Settings: Parameter information of Pix2Pix model: set batch_size to 
64 and epoch to 100; MSE and L1 loss functions were selected for the loss func-
tion, and adam optimizer was selected for the optimizer. 

Resnet50 model parameters: Set batch_size to 64 and epoch to 30. The cross 
entropy loss function was selected as the loss function, and the adam optimizer 
was selected as the optimizer. The data enhancement operations of random clip-
ping and random rotation are added to the trained sample data. 

4.3. Loss Function of Pix2Pix Model 

In the generator, we employ both Mean Squared Error (MSE) and L1 loss func-
tions. MSE loss, also known as Mean Squared Error loss, is used for training the 
generator (pix_G). The Mean Squared Error loss function calculates the squared 
differences at the pixel level between the generated image and the target image. 
It measures the overall pixel-wise differences between the generated image and 
the target image, with the aim of making the generated image as close as possible 
to the target image. During training, the generator’s objective is to minimize the 
MSE loss. The MSE expression is as follows: 

( )21 ˆMSE i iy y
n

= ∗ −∑ .                    (7) 

The L1 loss function, also known as Mean Absolute Error (MAE) loss, is used 
for training the generator (pix_G) alongside the Mean Squared Error (MSE) loss. 
The Mean Absolute Error loss function calculates the absolute differences at the 
pixel level between the generated image and the target image. Unlike the MSE 
loss, the L1 loss places more emphasis on detailed differences between the gen-
erated image and the target image because it measures absolute differences at the 
pixel level. During training, the generator’s objective is to minimize the L1 loss. 
The MAE expression is as follows: 

1 ˆMAE i iy y
n

= ∗ −∑ .                    (8) 

By using both of these loss functions together, the generator can simulta-
neously focus on the overall structure and local features to generate high-quality 
images. The final generated image should be both globally similar to the target 
image and preserve fine details. This combination of losses is common in many 
image-to-image generation tasks, such as image translation, denoising, style 
transfer, and more. 

In the case of the discriminator, we only use the MSE Loss function. The dis-
criminator’s role is to distinguish between the generated images and real images. 
Therefore, it needs to measure pixel-level differences between the two to help 
train the generator to produce more realistic images. 

4.4. Training Process 

We trained both the generator and discriminator of the Pix2Pix model using 
pairs of corresponding original samples and samples obtained by passing the 
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original samples through denoising model A. Here’s a description of the loss 
changes for both the generator and discriminator during training: 

Figure 3 shows that both the generator and discriminator losses have stabi-
lized after 100 epochs of training indicating that the training process has con-
verged. This convergence suggests that the Pix2Pix model has learned to gener-
ate images that are close to the target images and that the discriminator can no 
longer effectively distinguish between the generated and real images. 

4.5. Defense Performance Analysis 

We input the original samples into the trained Pix2Pix model, use the generated 
samples as input to the resnet50 classification model for training, and save the 
best results on the validation set during training as the final defense model. 

In order to intuitively compare the defensive performance of the models, we 
conducted tests using four types of adversarial samples that succeeded in attacks. 
We compared the results of three different classification models: the model ob-
tained through adversarial training by directly mixing normal samples with ad-
versarial samples generated by different attack methods (Adv-train), the non-local 
means filtering algorithm (NL-means), and the matrix estimation-based effective 
adversarial robustness defense model (ME-Net). Among these, Adv-train is a 
white-box defense method, NL-means is a black-box defense method, and 
ME-Net is a semi-black-box defense method. The results are as follows: 

Table 1 and Table 2 have revealed that the IDP model exhibits robust defen-
sive performance. In some cases, it even outperforms white-box defense models 
like Adv-train. This is because our approach, which incorporates denoising and 
Pix2Pix image transformation during both training and testing phases, reduces 
the feature distribution disparities between different adversarial samples and the 
original samples. As a result, it delivers better performance. In contrast, 
Adv-train struggles to achieve good convergence during training due to the di-
versity and complexity of different adversarial samples, which lead to significant 
differences in feature distribution. NL-means, on the other hand, applies a con-
sistent preprocessing method when facing unknown adversarial samples, but it 
cannot effectively remove the noise impact from adversarial samples. ME-Net’s 
approach involves disrupting the structure of adversarial noise by using ran-
domly masked images. It then employs matrix estimation techniques to recover 
the intrinsic structure of the images from noisy and incomplete observations, 
enhancing the neural network’s robustness to adversarial noise. It also provides 
additional training data by generating variants to improve robustness. However, 
when dealing with noise of different feature distributions simultaneously, the 
significant differences in distribution can disrupt pixel correlations in the image, 
potentially affecting the final defensive performance. In contrast, the IDP ap-
proach in this paper focuses on minimizing the dissimilarity between adversarial 
samples and training samples rather than merely targeting noise removal. The 
combination of image denoising and image transformation represents two 
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Figure 3. Changes in training loss of Pix2Pix model. 

 
Table 1. Prediction accuracy of mnist images by different methods. 

algorithm FGSM I-FGSM DeepFool UPSET 

Adv-train 0.861 0.824 0.889 0.902 

NL-means 0.467 0.396 0.453 0.381 

ME-Net 0.669 0.678 0.796 0.645 

IDP 0.761 0.685 0.843 0.836 

 
Table 2. Prediction accuracy of CIFAR10 images by different methods. 

algorithm FGSM I-FGSM DeepFool UPSET 

Adv-train 0.686 0.634 0.757 0.728 

NL-means 0.420 0.363 0.371 0.415 

ME-Net 0.641 0.578 0.696 0.663 

IDP 0.736 0.624 0.821 0.785 

 
distinct defense methods that, when combined, further enhance the model’s 
performance. 

In order to compare the similarity of data distributions between datasets, we 
employed t-SNE (t-Distributed Stochastic Neighbor Embedding) [23], a nonli-
near dimensionality reduction technique. T-SNE is widely used in data science 
and machine learning for clustering, classification, dimensionality reduction, and 
visualization. It maps each sample in the dataset to a point in a two-dimensional 
space, allowing us to observe the distances between corresponding points and 
compare their feature similarity. 

Figure 4 shows the distribution among samples contained in different catego-
ries. Specifically, we conducted feature dimensionality reduction on the original 
samples, adversarial samples, and adversarial samples generated through IDP. 
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Figure 4. t-SNE diagram. 

 
We then calculated the Euclidean distance between the reduced-dimensional 
corresponding samples for both the original and IDP-generated samples in 
comparison to the adversarial samples. The average Euclidean distance for each 
category was determined. By comparing these average Euclidean distances 
within the same category, we could assess the degree of feature distribution si-
milarity. Smaller average Euclidean distances indicate higher similarity, while 
larger distances suggest lower similarity. 

We selected the “7th” class and calculated the two-dimensional coordinates 
for each sample. For example, for samples P1, P2, and P3, let their correspond-
ing coordinates be (x1, y1), (x2, y2), and (x3, y3) respectively. For the “7th” class 
cluster, the average coordinates are calculated as follows: 

1 2 1 2,n nx x x y y y
n n

+ + + + + + 
 
 

� �
.                (9) 

We calculate the average coordinates for each cluster and then compare the 
distances between the average coordinates of the same clusters. 

Table 3 and Table 4 show the average coordinates of the same clusters. Typi-
cally, in a t-SNE plot, if the samples within each cluster are more tightly 
grouped, it indicates better robustness of the model. For adversarial samples, the 
distribution within each cluster is generally more scattered. We use the Average 
Cluster Inertia (ACI) metric to measure the tightness of sample distributions 
within the same category. A smaller ACI value suggests that the sample distribu-
tion is tighter, whereas a larger value indicates a more scattered distribution. The 
expression for Average Cluster Inertia is as follows, where ( )ˆ ˆ,x y  represents the 

https://doi.org/10.4236/jcc.2023.1112002


Z. Y. Rui, X. G. Gong 
 

 

DOI: 10.4236/jcc.2023.1112002 27 Journal of Computer and Communications 
 

average coordinates of a particular category:  

( ) ( )2 21 ˆ ˆACI i ix x y y
n

= − + −∑ .                (10) 

Table 5 and Table 6 show that samples generated by the IDP model have a 
smaller average Euclidean distance within the same original sample cluster com-
pared to adduced samples. Additionally, smaller average intra-cluster and in-
ter-cluster distances among different classes imply that the samples within each 
class are distributed more closely. The experimental results strongly validate the 
higher feature similarity between the samples generated by the IDP model and 
the original samples. As a black-box defense model, the IDP model demonstrates 
effective defense against adversarial attacks, particularly when facing unknown 
attack types, relying solely on the robust transformation capabilities of image 
denoising and Pix2Pix. 

 
Table 3. Average distance between original sample and adversarial sample. 

Class 0 37.069 

Class 1 35.116 

Class 2 64.660 

Class 3 58.290 

Class 4 65.758 

Class 5 61.934 

Class 6 53.944 

Class 7 61.045 

Class 8 40.001 

Class 9 58.332 

 
Table 4. Average distance between original sample and the sample generated by IDP. 

Class 0 21.731 

Class 1 27.026 

Class 2 40.796 

Class 3 41.618 

Class 4 33.097 

Class 5 39.059 

Class 6 34.703 

Class 7 41.469 

Class 8 22.585 

Class 9 30.533 
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Table 5. ACI value of the adversarial sample. 

Class 0 34.31 

Class 1 28.36 

Class 2 50.39 

Class 3 44.65 

Class 4 45.42 

Class 5 39.70 

Class 6 45.03 

Class 7 34.00 

Class 8 49.06 

Class 9 34.31 
 

Table 6. ACI value of the sample generated by IDP. 

Class 0 16.12 

Class 1 19.59 

Class 2 24.31 

Class 3 30.40 

Class 4 30.33 

Class 5 31.71 

Class 6 21.53 

Class 7 25.05 

Class 8 13.25 

Class 9 24.06 

5. Conclusion 

This paper explores the challenges faced by current adversarial defense mechan-
isms and proposes a practical solution. Traditional defense models often rely on 
adversarial training, which may have practical issues such as high training costs 
and difficulties in defending against unknown attacks. To address these chal-
lenges, this paper introduces a black-box adversarial defense method based on 
image denoising and Pix2Pix. This method does not require adversarial training 
yet demonstrates significant robustness. While this approach performs well against 
various unknown attacks, it has certain limitations. Specifically, it is less effective 
in defending against adversarial perturbations that make significant global pixel 
modifications. This is an area for further research and improvement. Future 
work will focus on optimizing the model, exploring transfer learning, ensemble 
methods, and other techniques to enhance the overall performance of the de-
fense method. 
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