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Abstract 
Key challenges for 5G and Beyond networks relate with the requirements 
for exceptionally low latency, high reliability, and extremely high data rates. 
The Ultra-Reliable Low Latency Communication (URLLC) use case is the 
trickiest to support and current research is focused on physical or MAC 
layer solutions, while proposals focused on the network layer using Ma-
chine Learning (ML) and Artificial Intelligence (AI) algorithms running on 
base stations and User Equipment (UE) or Internet of Things (IoT) devices 
are in early stages. In this paper, we describe the operation rationale of the 
most recent relevant ML algorithms and techniques, and we propose and 
validate ML algorithms running on both cells (base stations/gNBs) and UEs 
or IoT devices to handle URLLC service control. One ML algorithm runs on 
base stations to evaluate latency demands and offload traffic in case of need, 
while another lightweight algorithm runs on UEs and IoT devices to rank 
cells with the best URLLC service in real-time to indicate the best one cell 
for a UE or IoT device to camp. We show that the interplay of these algo-
rithms leads to good service control and eventually optimal load allocation, 
under slow load mobility. 
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1. Introduction 

The main target of 5G and Beyond (B5G) networks is to extend the capabilities 
and performance of 4G (LTE) networks based on the three basic 5G use cases, 
which are: enhanced Mobile Broadband (eMBB), massive Machine Type Com-
munications (mMTC) and Ultra Reliable Low Latency Communications (URLLC) 
[1] [2]. The most difficult 5G use case to handle is URLLC, which is the key 
enabler for emerging applications, including tactile Internet and mission-critical 
applications such as industrial automation, intelligent communications for 
improved safety and autonomous driving. However, to successfully deploy the 
URLLC related applications, stringent requirements in terms of latency (1-milli- 
second) and reliability (99.999% in terms of packet non-drop rate) must be 
met [1] [2]. It is apparent that satisfying the strict requirements of URLLC is 
possibly the most challenging issue to tackle. 

We believe that an interesting approach towards URLLC service automated 
handling, is to embed ML algorithms at the next-generation NodeB (gNB) as 
well as at the UEs and IoT devices based on a collaborative approach among the 
two, contrary to other approaches that operate centrally without collaboration 
from the nodes. Our algorithms proposal leads to a Reinforcement Learning 
(RL) approach that combines Monte Carlo, Policy Gradient and Temporal Dif-
ference Methods with the bootstrapping technique leading to a solution able to 
be trained in real time and continuously interact with the environment, contrary 
to legacy ML techniques based on static training. Our main targets and contri-
butions in this paper, related to the B5G URLLC use case, are the following: A) 
We propose a combination of algorithms and techniques for gNB cells and 
UEs/IoT devices so that URLLC service is ensured in the Radio Access Network 
(RAN). Two sets of algorithms, running in a distributed manner at the base sta-
tions and at the end UEs/IoT devices are proposed, contrary to other recent ap-
proaches that focus only on the base station part. B) We propose the usage of a 
URLLC Overload Flag (OF), which is a very short data packet that includes a red 
flag, or a green flag header/attribute, used to inform that a cell is URLLC loaded 
or not. A green flag corresponds to an unloaded cell while a red one to an 
(over-)loaded one. Conceptually, the URLLC OF embodies the liaison between 
the algorithm running on the cells and the algorithm running on the UEs/IoT 
devices, thus our scheme is collaborative. C) We provide simulation results of 
the system with the developed solution and selected algorithms in a realistic he-
terogeneous environment including both UEs and IoT devices. As far as related 
research in URLLC resource allocation and load balancing is concerned the first 
proposals based on physical and MAC layer proposals evolved with network lev-
el approaches such as Mobile Edge Computing (MEC) and Network slicing [1] 
[2]. The most recent research approaches propose the embedding of ML algo-
rithms such as Supervised Learning (SL), Unsupervised Learning (UL) and 
mainly the cutting-edge RL and Deep Reinforcement Learning (DRL), able to 
interact and get trained from the environment in real time [1] [2] [3]. 
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2. Problem Statement and Proposed Solution for Cells and 
UEs/IoT Devices 

If we consider the scenario where URLLC services must be offered in heteroge-
neous outdoor environments and 5G UEs and IoT devices coexist, extra diffi-
culty is added due to the non-stable outdoor propagation environment and the 
unpredictable movement of UEs/IoT devices in real time. Our landscape in-
cludes a specific outdoor area planned to serve 5G UE and IoT devices with 
URLLC service and from a RAN aspect the cells covering the specific area might 
be microcells, femtocells, picocells. We use a realistic scenario and regard one or 
more UEs or IoT devices that need URLLC service (depicted in Figure 1), cov-
ered by urban 5G cells. The specific dense urban area was selected since highly 
loaded and unloaded 5G cells can coexist. More specifically, we consider a clus-
ter of 4 × 25 = 100 cells and a UE/IoT device positioned at the center of the area. 
25 5G cells with 9 different gNBs exist in each direction (quadrant) so that a 360 
degrees coverage area with 100 cells in total is considered. 

Our target is to provide the missing URLLC service control, resource alloca-
tion and load balancing in this outdoor heterogenous environment already de-
scribed, thus we propose an ML algorithm running on every cell and a (different, 
lightweight) ML algorithm running on each UE/IoT device. The combination of 
the two algorithms and their resulting interaction (cooperation) in addition to 
the introduced Overload Flag (OF), broadcast by the cells and evaluated by the 
UEs and IoT devices, which links the two sides, is our proposed approach to 
URLLC service control. Our scheme can be applied in any quadrant of the sce-
nario depicted in Figure 1, thus any cell combination belonging to gNBs of dif-
ferent quadrants is feasible. Consequently, any cells or parameters involved in both 
algorithms can interact. Finally, a UE/IoT device can be located in either quadrant, 
but for simplicity, we shall refer to only to the first quadrant (Quadrant 1). 

Key ML Algorithms 

We provide the key definitions and parameters for the ML algorithms proposed  
 

 
Figure 1. Map of the area divided in four quadrants for the considered scenario including 
gNBs. 
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in order to provide a clear understanding of their operation rationale and para-
meter spaces [3] [4] [5] [6]: 
• A Reward (Rt or R) is the response provided to the agent when a specific ac-

tion is taken. The target is to maximize the sum of rewards in the long-term. 
• Action (A) is a choice made, which impacts the future state. E.g., a cell se-

lected for a device to camp. 
• Policy (π) is the rationale that the agent follows to decide on the next action 

according to the current state. 
• Q value (Q) or Action Value is an estimation of how good it is to take an ac-

tion at each state. Trajectory is a collection of rewards and state actions con-
cerning a sequential set of episodes or a single episode. 

• Q-Table is a lookup table helping to calculate the best rewards for each action 
at each state. 

• Discount Factor (γ) is a value between zero and one that aims at discounting 
future rewards compared to current ones, so that the most efficient sum of 
rewards is identified in a long-term rationale. 

Monte Carlo methods operate through repeated random sampling and learn 
the optimal state values or q-values based on samples collected by the agent that 
interacts with the environment. Their final target is to collect the most optimum 
values after the random sampling while the estimate of each state does not de-
pend on the rest, contrary to dynamic programming methods. At the very first 
step, the agent selects random policies till the end of an episode where a reward 
from every state is obtained. The value of a state is the expected Return (G) (The 
sum of rewards that the agent receives from a point in time (t) until an action is 
completed) following the present policy [3] [4] [5] [6]. 

Temporal Difference Methods (TDM) combine Monte Carlo methods with 
dynamic programming methods that enable the segmentation of a single prob-
lem into smaller chunks or subproblems. TDM are advantageous compared with 
other legacy ML techniques since they provide the ability to the agent to learn 
the optimal values based on experience collected from the environment without 
receiving an initial model of it, since the agent interacts with the latter in order 
to the generate a trajectory with the states visited [3] [4] [5] [6]. TDM algorithms 
can start updating the Q-table immediately after the agent takes the first action, 
something not possible with Monte Carlo methods, and through this rationale 
the actions taken at the beginning of the episode start influencing the behavior 
of the agent immediately and without waiting until the end of the episode. Com-
bined with the bootstrapping technique that is based on random sampling, TDM 
can result in more effective results. In TDM two different estimates are esti-
mated. The first (the old one prior to each new estimate after each step) and the 
new one that incorporates real information from the environment [3] [4] [5] [6]. 
The update process of the Q values can be described by the following equation 
where the new estimate is α percent of new estimate adding 1 − α of the old es-
timate. As an example, in case α is 30% the old estimate shall represent 70% of 
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the new estimate. 

( ) ( ) ( ) ( )1 1 1, 1 , ,t t t t t t tQ S A Q S A R Q S Aα α γ+ + + ← − + +          (1) 

TDM algorithms might face difficulties dealing with complex tasks when the 
number of states is large such as our scenario. A possible solution to this prob-
lem is the combination of TDM with a technique called function approximation 
leading to a set of methods called Policy Gradient Methods (PGM) that estimate 
the probability of taking an action in small increments. The basic rationale is 
that instead of keeping an independent estimate of each value, we use a norma-
lized exponential function (σ) that is modified for each step during the learning 
process so that we get more accurate results. Each action taken at every step of 
the algorithm will obtain a probability that can be estimated [3] [4] [5] [6]. 

Reinforcement Learning (RL) algorithms derive as a combination of Monte 
Carlo and PGM and have already proved effective for autonomous vehicles, IoT 
devices and B5G network automation techniques including self-organization [4] 
[5] [6]. The basic rationale is based on learning through interacting with the 
neighboring nodes since RL algorithms receive as input a reward function indi-
cating that they operate by providing the most optimum result optimized after 
algorithm step. The most common examples of are Q-learning and Fuzzy Q- 
learning that are extensively discussed in the bibliography [3] [4] [5] [6]. 

3. Algorithms for Cells and UEs/IoT Devices 
3.1. Algorithm Running on (5G) gNB Cell 

The conceptual target of the gNB cell (agent) algorithm (see Figure 2), based on 
a combination of Monte Carlo and Policy Gradient Methods that leads to a 
Reinforcement Learning (RL) rationale, is to predict the URLLC load after a few 
algorithm iterations and inform the neighboring cells and UEs/IoT devices  

 

 
Figure 2. Algorithm running on the cell. 
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about the URLLC load in the cell through the URLLC OF broadcast. Apart from 
OF we use as input to the algorithm the uw (URLLC weight), which is the ratio 
of the UEs/IoT device URLLC requests per unit of time (millisecond), and the 
nuw (neighboring cell URLLC weight), which is the neighboring cells’ URLLC 
load weight. The neighboring cells’ URLLC OF flag is collected as well. The col-
lection of (nuw) and OFs is performed all around 360 degrees instead of in a 
specific direction. uw, nuw and neighboring cells OFs consist of the state (S) of 
the algorithm Action(a) corresponds to the broadcast of a red OF or a green OF, 
and Reward(R) corresponds to the fraction of measured green flags/red OF (in a 
period or iteration). 

The output of the algorithm includes: a) The prediction of the URLLC over-
load probability (uw and nuw) for each cell. b) The Red or Green OF broadcast 
(not necessarily over the air) in real time to the neighboring cells. If unloaded, it 
means that it can serve overloaded neighboring cells by offloading them. c) The 
Red or Green OF broadcast in real time to the UEs and IoT devices. Red means 
the cell is loaded, avoid it; green means unloaded and can serve UEs/IoT devices. 

After a few algorithm iterations the process leads to a heterogenous system 
consisting of cells and UEs/IoT devices that predict the ideal URLLC serving cell. 
Moreover, cell balance in a cell’s cluster is achieved, URLLC service bottlenecks 
are avoided and the backhaul latency load is protected. Our proposal is to run 
the algorithm in a distributed manner on every cell since a possible centralized 
operation through an orchestrator might be beneficial for larger cell clusters, 
however extra processing and backhaul latency might be created. 

3.2. Algorithm Running on UEs and IoT Devices 

The target of the lightweight algorithm (see Figure 3) running at each UE/IoT 
device (agent) based on Temporal Difference Methods (TDM) and the boot-
strapping technique, is to rank the cells according to their capability to offer the 
best latency and URLLC service (in real time) and to determine the best cell for a 
device to camp, based on the received green vs. red Overload Flag (OF) flags ratio. 

We use as input to the algorithm the fraction of measured green to red flags 
(OF collected from each cell in four directions, φ). Each search/measurement 
cycle is an episode, or algorithm iteration, and considers 25 cells. These 25 cells 
can belong to any 90 degrees slice in the coverage area. 

Each UE/IoT device camping/attaching to a specific cell comprises an Action 
(a), the State (s) corresponds to the fraction of measured green flags to red flags 
for each direction and the Reward (R) equals to the number of green flags col-
lected from the environment in each direction. 

The output of the algorithm includes 1) The prediction of Q (s, a) values and 
the ranking of the surrounding cells according to their Reward (R). 2) The up-
date of the covering cells OF. The algorithm must calculate and rank after a few 
iterations, what is the reward (R) value of the surrounding cells and which is the 
ideal to camp. The cells gradually take multiple reward and Q (s, a) values till the  
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Figure 3. Algorithm running on the UEs and IoT devices. 

 
ideal cell to camp with the highest Q (s,a) value is found. After the algorithm 
ranking process ends, the 5G UE or IoT device can send a registration request 
which is always accepted from the network side and PDU establishment takes 
place. The process is similar to the 5G NR Sidelink (SL) introduced in Release 
16, where devices communicate directly without packets passing through the 
core network [7]. The only restriction to this is that a UE/IoT device cannot 
camp in cells positioned far to avoid adding the propagation delay to the overall 
latency. 

4. Evaluation and Simulation Results 
4.1. Algorithm Running on Cells 

At each episode, the algorithm can predict URLLC load probability π(s) based 
on the URLLC load weight (uw) and neighboring load weight (nuw) per milli-
second, collected at the end of each episode, in real time. Through this process a 
table including π(s) values is created at every timestamp. Figure 4 depicts the 
algorithms’ performance insight based on the returns to episodes as well as the 
losses to episodes ratio. The stability gained after a specific number of episodes is 
important since the learning performed at the early stage (beginning of the algo-
rithm) affects the policy during the later episodes, by improving the algorithm 
decision making process. The fewer the number of episodes/iterations of the al-
gorithm, the better; in our case, 75 episodes can be considered satisfactory. 

According to our simulation based on Pytorch, the returns (the sum of re-
wards that the agent receives from a point in time (t) until an action is com-
pleted) improve and become stable after 75 episodes (iterations). Correspon-
dingly, the policy performance follows a similar trajectory, as depicted in the 
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losses graph and the algorithm appears to stabilize after 75 episodes (the loss is 
calculated through the use of TDM based on previous transitions). Loss consists 
of the penalty for a bad prediction but there is no perfect algorithm with zero 
loss. We regard that our algorithm performs well since our loss is low and stable 
after 75 episodes and our intention is to get a stable graph in less episodes. Same 
stands for the returns number. 

Regarding the OF, Figure 5 depicts the red and green flags propagation as an 
output of the algorithm with three UEs (UE6, UE7 and UE8) in the first qua-
drant of our area of interest and the surrounded gNBs/5G cells. UE6 is within an 
area with red OF, thus in case URLLC service is needed, it should try to camp on 
another cell. On the other hand, UE7 and UE8 are within areas where green OF 
is propagated. 

4.2. Algorithm Running on UE and IoT Device 

The target of the lightweight algorithm is to rank the cells and determine the 
best cell for a device to camp. Each search/measurement cycle is an episode or  

 

 
Figure 4. Performance graphs based on returns and losses. 
 

 
Figure 5. Unloaded and loaded URLLC traffic areas due to OF propagation. 
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algorithm iteration and considers 25 cells. These 25 cells can belong to any 90 
degrees slice in the coverage area as depicted in Figure 1 that depicts our scena-
rio. The cells gradually take multiple rewards and Q (s, a) values, till the ideal 
cell to camp with the highest Q (s,a) value is found. 

During the first step and the initialization of the algorithm all action values 
are empty and gradually all the cells get Q (s, a) values and rewards and each cell 
is ranked by this process as shown in Figure 6. The agent picks random actions 
during some iterations and the higher the Q values the better cell for the device 
to camp. 

At the end of the algorithm, we shall have the following status, which in our 
case depicts that the target cell to camp is the cell with the four zeros (higher 
value if compared to the other negative values) as a Q (s, a) value. 

Our simulation can be explained by the following table as well (Table 1). Each 
UE/IoT device has a starting cell (cell 1) as depicted in Table 1. And the algo-
rithm must calculate and rank after a few iterations, what is the reward (R) value 
of each cell and which is the ideal to camp. The cells gradually take bad rewards 
(Red marked cells) and low Q (s, a) values, intermediate rewards (yellow cells) 
and Q (s, a) values and finally the green marked cell (cell 25) corresponds to the  

 

 
Figure 6. Action values for the scenario. 
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Table 1. Depicting overloaded cells (red), non-overloaded (yellow), and the target (green, 
optimal). 

cell 1 cell 6 cell 11 cell 16 cell 21 

cell 2 cell 7 cell 12 cell 17 cell 22 

cell 3 cell 8 cell 13 cell 18 cell 23 

cell 4 cell 9 cell 14 cell 19 cell 24 

cell 5 cell 10 cell 15 cell 20 cell 25 

 
ideal cell to camp that includes the highest Q (s,a) value. 

5. Conclusion and Future Work 

In this paper, we describe ML techniques and propose a set of two (different) 
algorithms to support URLLC service provisioning, for cells/gNBs and UEs or 
IoT devices. The proposed solution is based on the combination of cutting-edge 
algorithms and techniques such as Monte Carlo, Policy Gradient Methods, RL, 
TDM and bootstrapping techniques. In order to provide the cells, the agility to 
communicate their URLLC load to the devices and neighboring cells, we intro-
duced a short control packet called URLLC OF (Overload Flag) that embodies 
the liaison between the two sides and their proposed algorithms (for cells and 
devices). Additionally, we provided simulation results and performance metrics 
of the selected algorithms and considered a realistic heterogeneous outdoor en-
vironment. Possible advancements to our approach include the usage of Deep 
Reinforcement Learning (DRL) algorithms as an advanced form of RL. The dif-
ference between RL and DRL relates to the fact that the former is based on dy-
namic learning with a trial-and-error method, while the latter is learning from 
existing knowledge and applying it to a new data set [8] [9]. Directional cell 
search of URLLC loaded areas through DRL might be a future advancement. 
Moreover, we believe that our proposed solution can be applied together with 
other critical network services such as enhanced Mobile Broadband (eMBB) 
since multiplexing of eMBB/URLLC services is already a realistic scenario [10]. 
Finally, our proposal can be embedded in Self-Organizing Network (SON) plat-
forms in a form of a SON application assigned to perform resource allocation 
and load balancing. 
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