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Abstract 
MIMO (Multiple Input Multiple Output) is a key technology underpinning 
fourth generation or 4G networks. This technology allows 4G networks to 
increase throughput. However, the dynamics of the MIMO system are not 
under control due to the many uncertainties that destabilize the system. 
This work is therefore very relevant in the sense that an observer can be 
used to monitor the dynamics of such a system. This work presents a neu-
ro-adaptive observer based on a radial basis function neural network for 
generic non-linear MIMO systems. Unlike most neuro-adaptive observers, 
the proposed observer uses a neural network that is non-linear in its para-
meters. It can therefore be applied to systems with high degrees of nonli-
nearity without any a priori knowledge of the system dynamics. Indeed, in 
addition to the fact that neural networks are very good nonlinear approx-
imators, their adaptive behavior makes them powerful tools for observing 
the state without any a priori knowledge of the dynamics of the system. The 
learning rule of the neural network is an approach based on the modified 
backpropagation algorithm: A term has been added to guarantee the ro-
bustness of the observer. The proposed approach is not limited by a strong 
assumption. The stability of the neuro-adaptive observer is demonstrated 
by the direct Lyapunov method. Simulation results are presented in the 
context of MIMO signal transmission applied in LTE, to demonstrate the 
performance of our observer. 
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1. Introduction 

An observer is a “computer” measurement tool that allows all the states of an 
industrial system to be retrieved with the minimum of information about these 
states. This minimum information is very often obtained with the help of a sen-
sor. However, exclusive use of sensors is not always possible for the following 
reasons: 
• The prohibitive cost of the physical sensor(s); 
• The sensor that does not fit the dynamics of the system (sensor too slow); 
• The non-existence of a sensor for the quantity to be measured [1]. 

An observer is therefore responsible for estimating the state of a system while 
optimising the number of sensors in an industrial application: hence its eco-
nomic interest. 

Furthermore, the state of a process specifies its behaviour and many control 
schemes rely on the availability of states. However, in many practical systems, 
only the input and output of a system are measurable. Therefore, estimation of 
the system state plays a crucial role in monitoring the process, detecting and di-
agnosing faults and achieving better performance [2]. The presence of several 
inputs and outputs in a MIMO system causes a difficulty in modelling the dy-
namics and thus becomes a potential source of uncertainty that can degrade the 
performance of a MIMO system and even in some cases destabilise the system. 
Specifically in the case of the 4G LTE network at CAMTEL, no tool or platform 
is used to monitor the dynamics of the MIMO system: once the system is confi-
gured, it is “left” to its own devices and the maintenance teams’ only return 
when users report problems. The design of our observer is therefore very im-
portant, as it will not only serve as a software sensor to monitor the dynamics of 
the MIMO system but also to estimate the states of the MIMO system in the 
transmission of signals. 

Problem 
MIMO is the flagship technology used in the 4G network to increase 

throughput and spectral efficiency. However, when transmitting MIMO signals, 
many uncertainties arise, such as multipath propagation, fading and others. All 
these problems affect the performance of MIMO and have a direct impact on the 
end user. In short, the dynamics of the MIMO system at CAMTEL are not under 
control. In order to overcome this problem, we propose a neuro-adaptive ob-
server that will be able to evaluate and monitor the dynamics of the MIMO sys-
tem. The main question that is highlighted here is how to efficiently and reliably 
estimate the states of a MIMO system in signal transmission? 

Objectives 
The main objective of this work is to design a neural network based steady 

state observer for MIMO systems. To achieve this, we will specifically: 
• Model and implement the proposed state observer with Simulink and 

MATLAB for state estimates of a MIMO system; 
• Model the MIMO system through this observer; 
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• Evaluate the stability of our observer by the direct Lyapunov method. 

2. Key Concepts and Literature Review 
2.1. Key Concepts 

1) Dynamic system 
From the point of view of mathematics, a dynamical system presents a ma-

thematical concept by which a guiding rule is established to define how a point 
propagates in time in a geometric space [3]. In other words, a dynamic system is 
a mechanical, physical, economic, environmental or any other domain whose 
state evolves with time [4]. 

There are two general components of a dynamic system, namely: 
• States: these are referred to as the essential information required to define the 

output of the system at a given time or simply a set of quantities sufficient to 
qualify the system; 

• Dynamics: this is referred to as a set of rules that define the evolution of the 
system’s states over time. 

Figure 1 illustrates the classification of dynamic systems. 
In this work, we focus on nonlinear continuous-time dynamical systems be-

cause MIMO systems are similar to them. We call a continuous-time dynamical 
system on a set Ω a family of applications { };t tϕ +∈ , where { };t tϕ ∈ , pa-
rameterized either by the set R+ of positive or zero real numbers, or by the set of 
all real numbers R, verifying the following properties: 

a) Each application tϕ  is defined on a part tU  of Ω, and with values in Ω. 
b) The application 0ϕ , defined on an integer Ω, is idΩ. 
c) if 1 20 t t≤ ≤ , then 

2 1t tU U⊂ . 

d) Are t and s be 02 elements of the set ( +  or  ) which parameterises the 
family of applications under consideration. Let sx U∈ . Then ( )s xϕ  is an ele-
ment of tU  if and only if x is an element of s tU +  and, when this is the case, 

( )( ) ( )t s s tx xϕ ϕ ϕ +=  [5]. 

The set Ω is called the phase space of the dynamical system. 
 

 
Figure 1. Classification of dynamic systems. 

https://doi.org/10.4236/jcc.2023.1111006


J. G. K. Wamba et al. 
 

 

DOI: 10.4236/jcc.2023.1111006 90 Journal of Computer and Communications 
 

2) Principle of state estimation 
An observer or state reconstructor is a software sensor that allows the recon-

struction of the internal state variables of a system from the inputs and outputs 
of the real system. In other words, an observer is a “computer” measurement 
tool that allows the retrieval of all the states of an industrial system with the 
minimum of information about these states. The block diagram of a state ob-
server is presented as follows in Figure 2: 

For a system presented by the following system of equations: 

( ) ( ) ( )( )
( ) ( )( )

,x t f x t u t

y t h x t

 =


=



                      (1) 

A state observer is shown in Figure 3. 
This structure first reveals the presence of a state estimator operating in an 

open loop characterised by the same dynamics as the system. The dynamics de-
sired in closed loop by this observer is obtained by introducing a vector (or ma-
trix in the multivariable case) of gains L. 

3) Lyapunov stability of dynamic systems 
In general, Lyapunov stability theory can deal with an unforced system i.e. 

where nx∈ , t +∈ , and if ( ) ( )( ),x t f x t t=  where nx∈ , t +∈ , and 

: n nf + →×   . 

If ( ), 0ef x t = , then xe is an equilibrium point. Furthermore, it is assumed  
 

 

Figure 2. Block diagram of a state observer. 
 

 
Figure 3. Principle of estimation of a state observer. 
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that ( )( ),f x t t  can satisfy standard conditions on the existence and unique-
ness of the solution. For example, such a condition could state that ( )( ),f x t t  
is continuous in the Lipschitz sense with respect to x, or it is uniformly and 
piecewise continuous at t. 

There are two general methods consisting of the analysis of the stability of the 
equilibrium, namely the direct Lyapunov method or second Lyapunov method 
and the indirect Lyapunov method or first method. On the one hand, the direct 
Lyapunov method examines the existence of Lyapunov functions, i.e. scalar aux-
iliary functions of the state space, to determine the stability properties of the 
equilibrium. On the other hand, the indirect Lyapunov method explores the sta-
bility properties from the linearisation of a dynamical system described by 
non-linear differential equations in order to deduce the stability properties of the 
equilibrium [3]. 
• The direct Lyapunov method for stability 

The direct Lyapunov method is the most essential approach for the design and 
analysis of linear and non-linear dynamic systems. It can be used directly for a 
non-linear system without linearisation to analyse the overall stability. The fun-
damental concept of the direct Lyapunov method is based on the notion that if 
the total energy of a system is continuously dissipating, the system will optimally 
reach an equilibrium and eventually remain there. The method aims to trans-
form the problem of stability analysis into an analysis of the characteristics of a 
few specific Lyapunov functions, with the assumption that this analysis could be 
done without the need to integrate the original system. The first step consists of 
the formulation of an appropriate scalar function i.e. the Lyapunov function 
while the second step consists of evaluating the first order time derivative of the 
Lyapunov function along the trajectory of the system. The system will become 
stable if its energy dissipates and the derivative of the Lyapunov function de-
creases as time increases [3]. 
• The indirect Lyapunov method for stability 

The indirect Lyapunov method explores the stability properties from the li-
nearisation of a dynamical system described by non-linear differential equations 
in order to deduce the stability properties of the equilibrium. This approach as-
sumes strong constraints that greatly limit the study of the stability of the said 
system. 
 Fundamental principles of Lyapunov stability theory 

Assume V(x, t) is a non-negative function and its derivative lies along the tra-
jectory of the system [3]. 
• The origin of the system is locally stable (in the Lyapunov sense) if V(x, t) is 

locally positive definite and locally at x and for all t. 
• The origin of the system is uniformly locally stable (in the Lyapunov sense) if 

V(x, t) is locally positive and decreasing, and locally at x and for all t. 
• The origin of the system is uniformly locally asymptotically stable (in the 

Lyapunov sense) if ( ), 0V x t ≤  is locally positive definite and decreasing, 
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and is locally positive definite. 
The origin of the system is globally uniformly asymptotically stable (in the Lya-

punov sense) if ( ), 0V x t ≤  is positive definite and decreasing, and ( ), 0V x t− ≤  
is positive definite. 

4) MIMO in 4G networks 
The architecture of a 4G network can be presented as follows (Figure 4): 
MIMO is used between the UE (User Equipment) and the E-UTRAN. It is one 

of the major technological breakthroughs of the 1990s in the field of signal 
processing. MIMO relies on the presence of multiple antennas at the transmitter 
and receiver to allow the transmission of multiple independent data streams over 
the same time-frequency resources. This is known as spatial multiplexing, where 
the spatial dimension is created by the multiple antennas. The most effective way 
to improve capacity (throughput) is to use multi-antenna technologies when the 
signal to noise ratio is high. Multi-antenna technology can make better use of 
space resources, it can improve the transmission capacity of a wireless commu-
nication system without increasing the transmitted power and bandwidth. 
MIMO advantages are presented below: 
• Array gain: It increases the transmit power and can be used for beamforming. 
• Diversity gain: It weakens the interference caused by channel fading. 
• Spatial multiplexing gain: It doubles the rate within the same bandwidth after 

spatial orthogonal channels are constructed. 
Figure 5 illustrates a MIMO system: 

 Classification of multi-antenna technologies 
On distingue quatre grandes techniques permises par la présence d’antennes 

multiples: 
There are four main techniques enabled by the presence of multiple antennas: 

• Transmission diversity consists of transmitting the same information from 
several antennas, possibly according to a specific coding of the information 
for each antenna; 

• beamforming concentrates the signal energy in the direction of the receiver 
and thus increases the transmission rate; 

• Single User MIMO (SU-MIMO) transmits several independent streams of 
 

 
Figure 4. 4G network architecture. 

https://doi.org/10.4236/jcc.2023.1111006


J. G. K. Wamba et al. 
 

 

DOI: 10.4236/jcc.2023.1111006 93 Journal of Computer and Communications 
 

information on the same time-frequency resources, separated in space; 
• Multi-User MIMO (MU-MIMO) transmits spatially multiplexed streams to 

different receivers, which improves the overall system throughput. 
 Types of MIMO scenarios in LTE 

In LTE, we distinguish two main MIMO scenarios (illustrated in Figure 6) in-
cluding: 
• SU-MIMO (Single User MIMO): which aims to increase the throughput of a 

single user, which would also improve the capacity of the cell. It can be used 
in both downlink and uplink channels; 

• MU-MIMO (Multi User MIMO): this is just implemented in the uplink no-
wadays. It improves the capacity gain of the cell. 

Table 1 provides a summary comparison between SU-MIMO and MU-MIMO: 
 

 
Figure 5. MIMO system. 

 

 
Figure 6. SU-MIMO and MU-MIMO. 

 
Table 1. Comparison between SU-MIMO and MU-MIMO. 

Characteristic MU-MIMO SU-MIMO 

Main aspect The cell communicates with several users The cell communicates with a single user. 

Objective MIMO capacity gain Increased user throughput for one user 

Benefits Multiplexing gain No interference 

Flow rate Higher onset with high signal to noise ratio Higher throughput with low signal to noise ratio 
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5) Radial basis function neural networks 
Radial Basis Function Neural Networks (RBFNN) are neural networks that 

use radial basis functions as their activation function. A radial basis function is a 
real-valued function whose value depends only on the distance from its input 
parameter x to another given point, commonly called the origin or centre of the 
function. Any function Φ that satisfies the equality ( ) ( )x xϕΦ =  is a radial 
basis function. The norm ⋅  used corresponds to the Euclidean distance. 
• Architecture of a neural network with radial basis function 

Figure 7 shows a neural network with a radial basis function: 
Based on this architecture, we can say that RBFNs are typically composed of 

three layers, namely 
• The input layer: it simply transmits input features to the hidden layers. 

Therefore, the input layer and the data are of the same size. No calculations 
are performed in the input layers. As in the case of feed-forward networks, 
the input units are fully connected to the hidden units and transmit their da-
ta upstream; 

• The hidden layer: the power of an RBFNN is based on the structure and 
calculations performed at this level. Indeed, the hidden layer performs a cal-
culation on a comparison with a prototype vector. Each hidden unit contains 
a prototype vector of dimension d of the input data. Let the prototype vector 
of the i-th hidden unit be denoted by iµ . In addition, the ith hidden unit 
contains a bandwidth denoted by iσ . Although prototype vectors are always 
specific to particular units, the bandwidths of different units iσ  are often 
set to the same value σ . The prototype vectors and bandwidth(s) are usual-
ly learned either unsupervised or using a learning algorithm. Thus, for any  

training point the activation function ( )
2

2exp
2

i
i i

i

h X
X µ

σ

 − = Φ = −
 ⋅
 

  

 

 
Figure 7. Basic architecture of a neural network with radial basis function. 

https://doi.org/10.4236/jcc.2023.1111006


J. G. K. Wamba et al. 
 

 

DOI: 10.4236/jcc.2023.1111006 95 Journal of Computer and Communications 
 

{ }1, ,i m∀ ∈  . The total number of hidden units is denoted m. 

• the output layer: for any learning point X , ih , is the output of the i-th 
hidden unit as defined by equation (). The weights of the connections be-
tween the hidden nodes and the output nodes are set by. The prediction of 
the RBF network in the output layer is defined as follows: 

( )
2

2
1 1 1

ˆ exp
2

m m m
i

i i i i i
i i i i

X
Xy w h w w

µ

σ= = =

 − = = Φ = −
 ⋅
 

∑ ∑ ∑
 

 Applications of RBFNs 
A key point is that the hidden layer of an RBFNN is created in an unsuper-

vised manner, which tends to make it robust to all types of noise. [6] 
RBFNNs can be used in a number of areas including 

• classification and regression problems; 
• universal approximation of functions (linear and non-linear). 

2.2. Literature Review 

M.S. Ahmed and S.H. Riyaz in “Dynamic observer—a neural net approach” [7] 
work on a general nonlinear multiple-input multiple-output (MIMO) system 
that has been linearized and an extended Kalman filter has been used to estimate 
the system states. The gain of the proposed observer was computed by a multi-
layer feedforward neural network. 

A.S. Poznyak, E.N. Sanchez et al. in “output trajectory tracking using dynamic 
neural networks” [8] consider a general nonlinear model. It was stated that any 
general nonlinear model can be described by an affine model plus a bounded 
unmodeled dynamic term. Therefore, this affine model was used for the design 
of the observer. No clear method was suggested to decrease the amount of error 
in an arbitrary way. 

J.A.R Vargas, E.M. Hemerly in “Robust neural adaptive observer for MIMO 
nonlinear systems” [9] propose an observer for a general nonlinear MIMO sys-
tem using a neural network linear in its parameters. The strict real positive as-
sumption has been relaxed. However, according to the authors, it is extremely 
difficult to choose appropriate values of design parameters such as the different 
gains and functional links of the neural networks. Moreover, the observer has an 
open-loop structure. 

N. Hovakimyan, A.J Calise and V.K Madyastha in “An adaptive observer de-
sign methodology for bounded nonlinear networks” [5] propose a nonlinear ob-
server based on a nonlinear neural network. However, a linear approximation 
was used using a Taylor series expansion to facilitate stability analysis. 

A. Alessandri, C. Cervellera, F. Grassia et al. in “Design of observers for con-
tinuous-time nonlinear systems using neural networks” [10] propose a neural 
network based observer for a general nonlinear MIMO system. The weight up-
dating mechanism is performed using the gradient descent method. The observ-
er has been shown to be experimentally stable but no mathematical proof has 
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been provided. 
H.A. Talebi, R.V. Patel et al. in “A neural network based observer for flexible 

joint manipulators ”[11] propose a state observer based on a general model of 
nonlinear MIMO systems and was found to be experimentally stable, but no 
mathematical evidence was given to support the experiments. 

F. Abdollahi, H.A. Talebi, R.V. Patel et al. in “A stable neural network observ-
er with application to flexible-joint manipulators” [12] propose a recurrent 
neural network based observer has been used for general nonlinear MIMO sys-
tems. The strict positive real assumption was also relaxed. The weights of the 
neural network are updated by the backpropagation algorithm. Although the 
stability of the observer has been demonstrated by the Lyapunov method. How-
ever, like most neural network based observers, it has been linearly paramete-
rised. This assumption greatly simplifies the analysis, but it is a strong con-
straint, as not all non-linear functions can be represented by such equations. 

F. Abdollahi, H.A Talebi, R.V. Patel. in “A stable neural network-based ob-
server with application to flexible joint manipulators” [2] propose an adaptive 
observer based on a recurrent neural network for a general model of nonlinear 
MIMO systems. The neural network is non-linear. The weight updating me-
chanism is a modified version of the backpropagation algorithm with a simple 
structure and an e-modification term added for robustness. The strict positive 
real assumption has been relaxed. The stability of the observer was done using 
the direct Lyapunov method. 

In this work, we propose a new approach for non-linear MIMO systems. We 
propose a state observer based on a neural network with radial basis function. No 
strict real positive assumption is imposed on the output error equation. We use the 
direct Lyapunov method to prove the stability of the observer and the neural net-
work. The weight updating mechanism follows the results established in [2]. 

3. Method 
3.1. The Proposed Neuro-Adaptive Observer 

We would like to remind you that this methodology is based on the work of [2]. 
Consider the general model of a non-linear MIMO system: 

( ) ( )
( ) ( )

,x t f x u

y t Cx t

=

=



                         (2) 

where umu∈  is the input, ymy∈  is the output, nx∈  is the state vector 
of the system and f is a vector-valued non-linear function. It is assumed that the 
non-linear system () is observable. Another assumption made here is that the 
open loop system is stable. In other words, the states of the system are bounded 
in L∞ . This is a common assumption in identification schemes [2]. 

Now, by adding and subtracting x, (2) becomes: 

( ) ( )
( ) ( )

,x t Ax g x u

y t Cx t

= +

=



                       (3) 
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where A is a Hurwitz matrix, the pair (C, A) is observable and ( ) ( ),g x u f x Ax= −  
Now the observer model can be chosen: 

( ) ( ) ( )
( ) ( )

ˆ ˆ ˆ,ˆ ˆ

ˆˆ
t Ax x u G y Cx

t Cx t

x g

y

= + + −

=



                 (4) 

where x̂  denotes the observer state, and the observer gain yn mG ×∈  is cho-
sen such that A GC−  is a Hurwitz matrix. The existence of such a gain is 
guaranteed since it can be chosen such that the pair (C, A) is observable. The key 
to designing a neuro-observer is to use a neural network to identify the 
non-linearity and a conventional observer to estimate the states. It is well known 
that a three-layer neural network is capable of approximating non-linear systems 
with any degree of non-linearity [2]. Indeed, it has been shown by several re-
searchers that for x restricted to a compact set of nx∈  and for a sufficiently 
large number of hidden layer neurons, there will exist weights and weighting 
coefficients such that any continuous function on this compact set S can be 
represented by: 

( ) ( ) ( ),g x u W V x xσ= +   

where W and V are the weighting matrices of the output and hidden layers re-
spectively, [ ]x xu= ; ( )x ; is the bounded approximation error of the neural 
network and ( ).σ  is the transfer function of the hidden neurons and is gener-
ally considered as a sigmoid function. 

( ) 2

2 1
1 exp ii i V xV xσ −= −
+

. 

where Vi is the i-th row of V, and is the i-th element of and ( )i iV xσ  is the est le 
ith element of ( )Vxσ . 

We assume that the upper bound on the fixed ideal weights W and V exists 
such that: 

MFW W≤                           (5) 

MFV V≤                           (6) 

We also assume that the sigmoidal function is bounded by: 

( ) mV xσ σ≤ .                        (7) 

Thus, the function g can be approximated by: 

( ) ( )ˆˆ ˆˆ, .ˆg Wx xVu σ=                       (8) 

The proposed observer is therefore given by: 

( ) ( ) ( )
( ) ( )

ˆ ˆˆ ˆ

ˆ ˆ

ˆˆ t Ax W x G y Cx

y

x V

t Cx t

σ= + + −

=



                 (9) 

Let us define the state estimation error as ˆx x x= −  and using Equations (3), 
(7) and (8), we can express the dynamics of the error as follows: 
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( ) ( ) ( ) ( ) ( )
( ) ( )

ˆ ˆˆ ˆ ˆx x x W Vt Ax W V A x G Cx Cx x

y t Cx t

σ σ= + − − − − +

=





 
      (10) 

By adding and subtracting ( )ˆ ˆ ˆW xVσ  from (10), we can write: 

( ) ( ) ( )
( ) ( )

ˆ ˆ
cx Vt A x W x w t

y t Cx t

σ= + +

=





 





                  (11) 

où ˆW W W= − , cA A GC= − , ( ) ( ) ( ) ( )ˆ ˆˆ Vw t W V x x xσ σ = − +    est un 
terme de perturbation i.e. ( )w t w≤  pour une certaine constante positive w  
due à la fonction sigmoïdale et le fait que les poids idéaux du réseau neuronal 
soit bornés. 

Where ˆW W W= − , cA A GC= − , ( ) ( ) ( ) ( )ˆ ˆˆ Vw t W V x x xσ σ = − +    is a 
disturbance term i.e. ( )w t w≤  for a certain positive constant w  due to the 
sigmoidal function and the fact that the ideal weights of the neural network are 
bounded. 

The structure of our observer is shown in Figure 8. 

3.2. Stability Analysis 

The stability of the observer is closely related to the stability of the proposed 
neural network. The stability of the neural network is evaluated here by the 
weight update mechanism. 

Recall the Theorem established in [2] Consider the model defined in (2) and 
the observer in (9). If the weights of the neural network are updated according to 
the following: 

( ) ( )( )TTT 1
1 1

ˆ ˆˆ ˆ
cW CA x yy WVη σ ρ−= − −

              (12) 

 

 
Figure 8. Structure of the state observer. 
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( )( )( ) ( )
T TT 1

2 2
ˆˆ ˆ ˆˆ ˆsgncV CA W xVI x yy Vη ρ−= − −Λ − 

         (13) 

where ( ) ( ){ }2 ˆˆ ˆΛ diag , 1,2, ,ˆ
i ix VV x i mσ= =   and ( )ˆsgn x  is the sign function 

defined by: 

( )
ˆ1 pour 0

ˆ ˆsgn 0 pour 0
ˆ1 pour 0

x

x x

x

 >
= =
− <  

then, , , ,x W V y L∞∈ 

   i.e. the estimation error, the weight error and the output 
error are bounded. In these equations, 1η  and 2η  represent the learning rates, 

( )T1
2

J y y=    is the objective function and 1ρ  and 2ρ  are small positive 

numbers. 
The first terms in (12) and (13) represent the back-propagation terms and the 

second terms are the modification terms to materialize the damping in the equa-
tions i.e.: 

1 1
ˆ ˆ

ˆ
JW y W
W

η ρ∂ = − − ∂ 


                    (14) 

2 2
ˆ ˆ

ˆ
JV y V
V

η ρ∂ = − − ∂ 


                     (15) 

This result was used to update the weights of the radial basis function neural 
network used. 

For Lyapunov stability, [2] uses the following Lyapunov function: 

( ) ( )T T T1 1 1
2 2 2

L x Px tr W W tr V V= + +   

 

 

where TP P=  where is a positive definite function satisfying the algebraic 
Lyapunov equation: 

T
c cA P PA Q+ = −  

for the Hurwitz matrix Ac and for a certain positive definite matrix Q. 
The time derivative of the Lyapunov function is defined by: 

( ) ( )T T T T1 1
2 2

L x Px x Px tr W W tr V V= + + + 

     

   



 

In fact, L  is defined negative outside the ball of radius described by: 
{ }|x x bχ = >  , and x  is uniformly bounded with: 

( ) ( )( )
( )

2 2 2
1 1 2 2 3

min

2 1P w C K K C K
b

Q

ρ ρ

λ

+ − + −
=

 

2
1 2

l
K =

 

( )
1 1

2 2
1 12

M m mW C l P
K

C K
ρ σ σ

ρ

+ +
=

−
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( )
2 2

3
22 1

M MV C W l
K

C
ρ

ρ
+

=
−

 
T T T T

1 1 2 2,c cl A C C l A C Cη η− −= =  

4. Results and Interpretations 
4.1. Presentation of the State Observer 

The state observer built using Simulink blocs is presented as follows (Figure 9): 
Since the overall scheme is quite large, we thought of using subsystems to de-

fine our observer. Indeed, according to Figure 9, we can see that our observer 
consists mainly of five (05) blocks or subsystems. 
• The MIMO system 

The MIMO system is presented as follows in Figure 10: 
 

 
Figure 9. Presentation of the state observer. 
 

 
Figure 10. MIMO system simulation using simulink. 
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The MIMO system models the differential system as defined in (2). In order to 
generalize our solution, we have chosen to model in Simulink both nonlinear 
and linear MIMO systems. However, it is the non-linear case that interests us. 
• The Observer neuro-adaptive 

Observer’s diagram is presented in Figure 11 as follows: 
We can see that our observer is indeed a neural network with a radial basis 

function. 
• The simulation 

This block allows us to carry out the simulation for the transmission of sig-
nals, Figure 12 shows the simulation block of the observer in SIMULINK. 
• Visualisation of estimated states 

Block allows us to check if our observer is able to perform a good estima-
tion/reconstruction of states. It is presented as follows: 

As can be seen in Figure 13 this block takes as input the real states and the es-
timated states in order to visualize if the observer has been able to estimate the 
real states well. 
• Viewing the error 

This block allows us to visualise the output error in order to appreciate not 
only the performance but also the experimental stability of our observer. It is 
presented in Figure 14. 

4.2. Tests and Interpretations 

In order to perform our tests, we set the parameters of our neural network as 
presented in Table 2. 

We have performed some simulations to test our observer. The simulations  
 

 
Figure 11. Structure of our observer in SIMULINK. 
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Figure 12. Simulation block for our observer in SIMULINK. 
 

 
Figure 13. SIMULINK block for displaying estimated states. 

 
are done for signals. We have obtained the following simulations: 

According to Figure 15 we can see that there is almost no difference between 
the actual states and the states estimated by our observer. Our observer is there-
fore able to estimate the states for the aggregate signals 0.1sin(t), 0.2sin(2t) and 
0.05sin(4t) quite efficiently. 

Figure 16 also shows that the error for the different states tends to cancel  
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Figure 14. SIMULINK error display block. 

 
Table 2. Simulation parameters for the neural network. 

Hyperparameters Values 

1η  5000 

2η  5000 

1ρ  0.5 

2ρ  1.5 

Hidden Layer 5 (pour la première simulation) puis 10 

Output layer 4 

Input layer 1 

 

 
Figure 15. Estimated states for the aggregate signals 0.1sin(t), 0.2sin(2t) and 0.05sin(4t). 
 

out. The differences are not significant. 
Figure 17 also shows us that for the signal 0.075sin(3t), our observer manages 

to reproduce the estimated states. The small peaks observed are due to the 
processing by the hidden layers. 

Figure 18 shows us that the error for the 0.075sin(3t) signal tends to cancel 
out after a certain time (about 50 s). 
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Figure 16. Visualisation of the error for the aggregated signals 0.1sint, 0.2sin(2t) and 0.05sin(4t). 
 

 
Figure 17. Visualisation of the estimated states for the 0.075sin(3t) signal. 
 

Figure 19 further demonstrates that our observer reconstructs the states al-
most perfectly. 

Figure 20 shows us that the observed deviations are quite close to zero. 
We can therefore state after the various simulations carried out that our ob-

server is not sensitive to variations in the pulsation and amplitude of the 
transmitted signals. Indeed, the observer manages to estimate the states of our 
signals quite accurately by minimising the error in an optimal way. Subse-
quently, we simulated for a noisy signal with a non-zero phase. Figure 21 
shows the results. 
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Figure 18. Errors for the 0.075sin(3t) signal. 
 

 
Figure 19. Visualisation of the estimated states for signal sint. 
 

We see that the observer is able to reproduce the states but at some levels we 
see quite large spikes. This is due to the number of hidden layers in our neural 
network. Indeed, the current number of hidden layers in our neural network is 
not sufficient to reconstruct the signal “perfectly”. 

We note that although the error is quite close to zero, Figure 22 shows some 
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Figure 20. Error visualisation for the sin(t) signal. 
 

 
Figure 21. Visualization of the estimated states for sin(t + π/3) + 0.5. 
 

rather large peaks. Subsequently, we have seen that by increasing the number of 
hidden layers, the error has dropped considerably and the signal reconstruction 
is almost perfect. 

Indeed, after increasing the number of hidden layers we got the results pre-
sented in Figure 23 and Figure 24. We notice that the estimated states no longer 
show considerable peaks. Indeed, this allows us to state that our observer can 
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Figure 22. Visualization of the error for the signal sin(t + π/3) + 0.5. 
 

 
Figure 23. Visualization of the estimated states for the signal sin(t + π/3) + 0.5 after adjustment of the number of hidden layers. 
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Figure 24. Visualization of the estimated errors for the signal sin(t + π/3) + 0.5 after adjustment of the number of hidden layers. 
 

also be used for noisy signals. The most important thing is to adjust the hidden 
layers of our neural network. The approximation of non-linearities is better 
when the number of hidden layers increases. Indeed, it is these layers that are 
responsible for the approximation. We also see that the error is reduced and 
converges to 0. 

5. Conclusions 

This work proposes a new approach for the design of state observers for MIMO 
systems. In this work we focus on the nature of the neural network used. The 
stability of our observer is also demonstrated experimentally. The key to the de-
sign of our observer lies in the radial basis function neural network used. Abdol-
lahi et al. in [2] proposed a neuro-adaptive observer based on recurrent neural 
networks which have the following limitations: 
• Recurrent neural networks are difficult to train and are most often subject to 

gradient fading and explosion; 
• The computation time of the hidden layers is long. 

On the other hand, the RBFNNs we use to design our observer are very good 
universal approximators, they are easy to implement and train, and the compu-
tational time of the hidden layers is relatively small compared to the RNNs used 
by Abdollahi et al. [2]. We have face some difficulties when doing the present 
work and we can cite: 
• The performance of the machine used: neural networks are quite resource 
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intensive and the machine we had was not powerful enough to perform the 
approximation once we increased the number of hidden layers; 

• In this work, we have not explicitly modelled the uncertainties associated 
with a MIMO system mathematically, we have assumed that such a system is 
subject to uncertainties. 

For Future steps we can include 
• Make a comparative study of state observers using other types of neural net-

works such as CNNs (Convolutional Neural Networks), auto-encoders and 
GANs (Generative Adversarial Netwoks); 

• Explore other stability study techniques such as LMI (Linear Matrix Inequa-
lity); 

• Mathematically model the dynamics of MIMO uncertainty; 
• Explore alternative learning methods for neural networks such as genetic al-

gorithms; 
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