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Abstract 

Diabetic Kidney Disease (DKD) is a common chronic complication of di-
abetes. Despite advancements in accurately identifying biomarkers for de-
tecting and diagnosing this harmful disease, there remains an urgent need for 
new biomarkers to enable early detection of DKD. In this study, we modeled 
publicly available transcriptome datasets as a graph problem and used 
GraphSAGE Neural Networks (GNNs) to identify potential biomarkers. The 
GraphSAGE model effectively learned representations that captured the in-
tricate interactions, dependencies among genes, and disease-specific gene ex-
pression patterns necessary to classify samples as DKD and Control. We fi-
nally extracted the features of importance; the identified set of genes exhibited 
an impressive ability to distinguish between healthy and unhealthy samples, 
even though these genes differ from previous research findings. The unex-
pected biomarker variations in this study suggest more exploration and vali-
dation studies for discovering biomarkers in DKD. In conclusion, our study 
showcases the effectiveness of modeling transcriptome data as a graph prob-
lem, demonstrates the use of GraphSAGE models for biomarker discovery in 
DKD, and advocates for integrating advanced machine-learning techniques 
in DKD biomarker research, emphasizing the need for a holistic approach to 
unravel the intricacies of biological systems. 
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1. Introduction 

Diabetic kidney disease (DKD), also known as Diabetic nephropathy, is one of 
the primary and leading causes of end-stage kidney disease (ESKD) worldwide 
and is a long-time cause of diabetes [1]. In the United States, about 1 in 3 people 
with diabetes have diabetic nephropathy (Mayo Clinic), and the prevalence is 
increasing daily. The pathogenesis of DKD is complex and involves multiple pa-
thophysiologic mechanisms, such as hyperglycemia, induced inflammation, 
oxidative stress, hypertension, and tubular damage [2]. These mechanisms inte-
ract and influence each other, creating a vicious cycle that promotes the progres-
sion of DKD. The current reliance on conventional diagnostic tests, such as the 
measurement of albuminuria and estimated glomerular filtration rate (eGFR), 
has profound limitations [1]. The effectiveness of the albuminuria test is affected 
by factors like exercise, infections, and hypertension, which can result in 
false-positive outcomes. Moreover, albuminuria becomes apparent only when 
the disease (DKD) has progressed. Similarly, the accuracy of eGFR is influenced 
by variations in muscle mass, diet, and certain medications, making it less relia-
ble in specific populations. Additionally, in the early stages of DKD, eGFR might 
not accurately detect subtle changes in renal function, resulting in reduced sen-
sitivity for early detection in both diagnostic approaches. 

While current diagnostic methods for Diabetic Kidney Disease (DKD) have 
significantly advanced the diagnosis of DKD, the challenge of early detection of 
DKD persists. Diabetic Kidney Disease often progresses silently, and symptoms 
may not manifest until the disease has advanced. Early detection and timely in-
tervention can help manage DKD and slow its progression to mitigate its dread-
ful consequences. However, the asymptomatic nature of DKD presents a com-
plex problem in the early diagnosis of DKD. The limitations of current diagnos-
tic tests highlight the urgent need for new biomarkers that can provide more 
accurate and sensitive detection of DKD. 

Recent advancements in high-throughput technologies, such as NGS, proteo-
mics, transcriptome profiling, metabolomics, and machine-learning algorithms, 
have significantly advanced the discovery of new biomarkers for DKD. In com-
parison, prior works have focused on using traditional machine learning models 
like XGBoost, Random Forest, or a combination of many as a non-graph prob-
lem. This paper seeks to model the interactions between genes as a graph-structured 
problem. By considering the co-expression relationships between genes, we con-
struct a gene expression graph that captures the intricate interactions and de-
pendencies among genes, essential for biomarker discovery underlying DKD. 
This graph-based representation enables us to leverage the power of GraphSAGE 
Neural Network, a deep learning architecture specifically designed to operate on 
graph-structured data. 

GraphSAGE has shown remarkable success in various applications, including 
social network analysis, recommendation systems, and drug discovery [3]. By 
adapting GraphSAGE to study the node representation of the graphical data, we 
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aim to extract meaningful features from graph data and capture the structural 
information and neighborhood interactions that can distinguish DKD patients 
from non-DKD individuals. These features could serve as valuable indicators for 
disease onset, progression, and response to treatment. 

Our approach offers several advantages. Firstly, incorporating the co-expression 
relationships between genes into the analysis can capture subtle variations in 
gene expression patterns that traditional methods may miss. Secondly, Graph-
SAGE can learn representations encapsulating gene expression data’s hierarchic-
al and non-linear nature. This enables the extraction of meaningful features re-
levant to the underlying biology of DKD. Finally, by leveraging the power of 
deep learning, our approach can handle large-scale transcriptome datasets and 
uncover complex interactions among genes that contribute to DKD pathogene-
sis. 

2. Related Works 

With the invention of Machine learning tools and techniques, much research has 
been carried out in different fields of medical sciences, which has aided in the 
timely and stress-free diagnosis of patients. This paper reviewed several contri-
butions that helped healthcare practitioners predict the risk of Diabetes Kidney 
Disease (DKD) and identify key gene biomarkers in patients with Diabetes Mel-
litus (DM) using machine learning algorithms. 

The authors in [4] utilized artificial intelligence-based algorithms to predict 
the risk of developing end-stage renal disease (ESRD) in newly diagnosed type 2 
diabetes mellitus (T2DM) patients. They applied logistic regression (LR), ex-
treme tree classifier, random forest (RF), gradient-boosted decision tree (GBDT), 
extreme gradient boosting (XGB), and light gradient boosting machine (LGBM). 
Their model detected mean serum creatinine within one year before diagnosis of 
T2DM as an important biomarker of developing ESRD. 

The authors in [5] developed a realistic health management system (HMS) for 
T2DM disease based on machine learning techniques using only lifestyle data for 
its prediction. Seven different ML classifiers were employed: SVM, RF, NB, GB, 
KNN, LR, and DT. The gradient boosting model outperformed with an accuracy 
rate of 97.24% for training and 96.90% for testing. The authors proposed that 
large and real-time datasets with the same commonalities of data with Type 2 
Diabetes Mellitus could be used instead of only lifestyle data for future work.  

In [6], ML approaches were applied to identify novel diagnostic biomarkers 
for Diabetes Nephropathy (DN). Lasso and SVM-RFE were used to identify the 
core genes expressed in DN patients. Six hub secretory genes identified were 
APOC1, CCL21, INHBA, RNASE6, TGFBI, and VEGFC. The authors concluded 
that APOC1 was significantly elevated in renal tissues of the DN mouse model. 
APOC1 expression correlated with the severity of DN and was recognized as a 
novel diagnostic biomarker for DN.  

ML-based classification techniques such as DT, LR, KNN, RF, SVM, and other 
ensemble techniques were used by authors of [7] to predict diabetes. A semi- 
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supervised model with XGBoost was used to predict the insulin feature in the 
private data. SMOTE and ADASYN algorithms were employed to deal with class 
imbalance. The XGBoost classifier with the ADASYN achieved the best perfor-
mance with 81% accuracy, 0.81 F1 coefficient, and an AUC of 0.84. They ex-
plored combining the explainable AI approach with LIME and SHAP frame-
works to gain insights into how the model predicts the final results.  

In their work [8], they developed an ML model that identifies potential diag-
nostic markers of DN and explores the significance of immune cell infiltration in 
this pathology. LASSO regression model, SVM-RFE analysis, and RF analysis 
methods were deployed to identify the candidate biomarkers. CXCR2, DUSP1, 
and LPL were recognized as the diagnostic biomarkers of DN. The immune cell 
infiltration analysis indicated that DN patients had a higher ratio of memory B 
cells, gamma delta T cells, M1 macrophages, M2 macrophages, etc. cells, than 
normal people. 

In [9], machine learning algorithms were used to screen and verify diagnostic 
biomarkers for glomerular injury in DN patients. By using machine learning al-
gorithms (LASSO, RF, and SVM-RFE) and the Venn diagram, two overlapping 
genes (PRKAR2B and TGFBI) were finally determined as potential biomarkers, 
which were further validated in external testing datasets, and the HFD/STZ-induced 
mouse models. The identified biomarkers demonstrated a meaningful correla-
tion between the immune cells’ infiltration and renal function. 

Also, another study by [10] used bioinformatics analysis to find key diagnostic 
markers that could be possible therapeutic targets for DKD. Overexpression 
enrichment analysis (ORA) was used to explore the underlying biological 
processes in DKD. Algorithms such as WGCNA, LASSO, RF, and SVM_RFE 
were used to screen DKD diagnostic markers. Four potential diagnostic markers 
for DKD, such as tenascin C, Peroxidasin, tissue inhibitor metalloproteinases 1, 
and tropomyosin (TNC, PXDN, TIMP1, and TPM1, respectively), were identi-
fied using multiple bioinformatics analyses. 

A comprehensive analysis was carried out in [11] based on detecting chronic 
kidney disease (CKD) by employing different machine learning algorithms to 
assess and compare their accuracies and other performance parameters using a 
dataset from UCI machine learning. Machine learning models (LR, SVM, KNN, 
DT, RF, NB, MLP, and QDA) were developed to detect the disease. Performance 
parameters like accuracy, precision, sensitivity, F1 score, and ROC-AUC were 
used to measure the models’ performances. Among the models, Random Forest 
displayed the highest accuracy of 99.75%. 

In another study [12], a comparative study of different machine learning 
techniques was proposed to identify a suitable classification technique for pre-
dicting DKD and comparing their performance using WEKA machine learning 
software. The classification techniques include RF, J$8, NB, REP tree, RF, Multi-
layer Perceptron, AdaBoostM1, Hoefflin Tree, and IBK. The result shows that 
IBK and random forest were the best-performing techniques, with an accuracy 
score of 93.65%.  
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DUSP1 and PRKAR2B were identified as potential biomarker genes [13]. 
They developed an algorithm that identifies potential diagnostic biomarkers for 
DKD, illustrates the biological processes related to the biomarkers, and investi-
gates the relationship between them and immune cell infiltration. LASSO, 
SVM-RFE, and RF were deployed to identify potential diagnostic biomarkers. 

In their work, [14] developed a machine learning algorithm (MLA) that can 
predict stages of DKD within five years of diagnosis of T2DM. Two MLAs (XGB 
and RF) were trained to predict stages of DKD severity and compared with the 
Centers for Disease Control and Prevention (CDC) risk score to evaluate per-
formance. The study shows that an MLA can provide timely predictions of DKD 
among patients with recently diagnosed T2DM.  

Supervised learning predicting techniques such as Logistic regression, KNN, 
SVM, GNB, SGD, DT, GB, RF, XGB, and LGBM were applied [15] to evaluate 
the performance of the models that can quickly predict CKD in patients with 
T1DM using easily available routine checkup data. Three data imputation tech-
niques (RF, KNN, and MICE) and the SMOTETomek resampling technique 
were used to preprocess the primary dataset. The RF classifier model exhibited 
the best performance with 0.96 (0.01) accuracy, 0.98 (0.01) sensitivity, and 0.93 
(0.02) specificity. 

We concluded from the reviewed articles that researchers have successfully 
combined several machine learning models to automatically predict DKD and 
identify the critical gene biomarkers in patients with diabetes mellitus (DM). 
Most works reviewed used traditional machine-learning models, such as deci-
sion trees, random forests, ensemble models, or combinations of traditional ML 
models. These methods are limited since they cannot capture complex relation-
ships in gene expression data as effectively as GNN would. Also, GNN, such as 
GraphSAGE, can work efficiently in the case of data imbalance. This study aims 
to identify key biomarkers in Diabetes Kidney disease using GraphSAGE Neural 
Networks. We utilized a dataset from the Gene Expression Omnibus (GEO) da-
tabase (https://www.ncbi.nlm.nih.gov/geo/), including 29 samples of expression 
profiling by high throughput sequencing.  

3. Methodology 
3.1. Data Collection 

In this study, we used the high-throughput mRNA-seq dataset obtained from the 
study on the angiogenic activity of Mesenchymal Stromal Cells (MSC) in DKD. 
The transcriptome of adipose tissue-derived MSC was obtained from DKD and 
Control subjects publicly available on NCBI. The Supplementary file containing 
the genes’ raw expression read counts was downloaded [16]. It consisted of 29 
DKD participants and nine (9) control participants who had their adipose tissue 
taken. 

3.2. Data Preprocessing 

Before conducting the differential enrichment analysis, pathway analysis, and train-
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ing of the GraphSAGE model, we executed a data cleansing procedure on the col-
lected dataset. We aimed to ensure that the data fed into our graph neural network 
pipeline was clean. The cleaning procedure encompassed several steps. Firstly, 
we eliminated genes with consistently low expression across samples. Addition-
ally, we addressed duplicate entries, managed missing values, and rectified or 
eliminated outliers during the data cleansing phase. We also made decisions re-
garding the imbalanced nature of our dataset. 

3.3. Differential Enrichment Analysis and Pathway Analysis 

We performed differential enrichment analysis using the Server-T-bio platform 
to identify genes differentially expressed between the DKD and control samples. 
Following identifying differentially expressed genes, pathway analysis was con-
ducted to determine the biological processes and pathways enriched with these 
genes, as shown in Figure 1. The Pathway analysis utilizes databases such as 
Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
to assign biological functions and pathway associations to genes. 

The differential enrichment analysis revealed distinctive discrimination be-
tween DKD and control samples, identifying 444 genes significantly differential-
ly expressed between the DKD and control samples. Among these genes, 295  
 

 

Figure 1. Volcano plot of differentially expressed genes (DEGs) between DKD and con-
trol samples. 
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were upregulated, and 149 were downregulated. The pathway analysis revealed 
several biological processes and pathways significantly enriched with the diffe-
rentially expressed genes, as illustrated in Figure 2. Genes with adjusted p-values 
below a threshold of 0.05 and log2FC between >2 or <−2 were selected as diffe-
rentially expressed and pathway-enriched genes. Notable pathways included 
SHROOM3, FBN2, and ACT2, which are known to be associated with DKD de-
velopment and progression. 

3.4. GraphSAGE Model 

In this study, we investigated the effectiveness of the GraphSAGE model in 
finding biomarkers required for diagnosing DKD (Diabetic Kidney Disease). We 
viewed the problem as a node classification problem, intending to predict if a 
node is Class 1 or DKD, Class 0 or Control. To achieve this, we formulated this 
problem as a graph problem, where the nodes represent sample IDs, and the ad-
jacency matrix represents the edges, indicating connections between the nodes, 
which serve as inputs together with the class labels for our model. 

GraphSAGE model, unlike traditional Graph models, focuses on training ag-
gregator functions instead of individual embedding vectors for each node. These 
aggregator functions collect information from neighboring nodes within the 
gene expression graph, enabling the model to comprehensively understand the 
graph’s context [3]. The model can capture intricate relationships like gene-gene 
interactions or patient-patient similarities by considering nodes at various dis-
tances from the target node. This capability is precious in identifying potential 
biomarkers for DKD. Once the model gets a broader understanding of the con-
text of the graph, during the inference phase, the trained GraphSAGE model can 
generate embeddings for completely unseen nodes by utilizing the learned ag-
gregation functions. The algorithm below outlines the steps of the GraphSAGE 
model [3] (Algorithm 1). 
 
Algorithm 1. GraphSAGE embedding generation (i.e., forward propagation) algorithm [3]. 
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Figure 2. Pathway gene enrichment analysis. 

3.5. Experimentation Setting 

To implement the GraphSAGE model, we utilized the Stellagraph, Networkx, 
and Tensorflow Libraries. Our approach involved creating a two-layered Graph-
SAGE model with 32 units each, ReLU activation, bias, dropout rate, and kernel 
regularizer. A dense layer with a sigmoid activation function was used to obtain 
the prediction/classification of the node. This layer produces a single value in the 
range [0, 1] as the model’s prediction. The Adam optimizer was used for train-
ing, and the learning rate was tuned through experimentation. We opted for a 
max-pooling aggregation strategy to capture neighborhood information effi-
ciently since it outperformed the other aggregation strategies during experimen-
tation.  

We used the 444 differentially expressed and path-way enriched genes to con-
struct the graph, resulting in 38 nodes and 94 edges. We also used the adjacency 
matrix to define the edge connections between the nodes. The adjacency matrix 
is a binary matrix, where 1 indicates an edge between two nodes, and 0 indicates 
no edge. For training and testing the model, we split the dataset into 80% for 
training and 20% for testing. Due to the relatively small size of our dataset, we 
used a training batch size of 5. To address the imbalance nature of our dataset, 
we evaluated the effects of various data imbalance techniques on model perfor-
mance. We trained the GraphSAGE model with the original dataset and the 
SMOTETomek technique, which combines SMOTE and Tomek links un-
der-sampling techniques to balance the dataset [17]. 

The model was first introduced on the training subset using the node features 
and class labels and later evaluated on the testing subset (Figure 3). We achieved 
exceptional performance results by experimenting with various hyperparameters 
during training. 

4. Results and Discussions 
4.1. Results 

To evaluate the performance of the GraphSAGE model used in this work, we  
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Figure 3. Schematic representation of our proposed model. 
 
used precision, recall, F1 score, and classification accuracy to achieve this. The 
metrics were calculated on the held-out dataset (test set) to measure how well 
the model will generalize to new data, as shown in Table 1 below.  

4.1.1. Performance Comparison of GraphSAGE Models with Different  
Aggregators 

Overall, the performance evaluation results shown in the table above suggest the 
effectiveness of the GraphSAGE model in capturing and predicting gene expres-
sion patterns. The clustering of nodes with the same color in the GraphSAGE 
model’s embedding space suggests similarity in how DKD and Control samples 
are represented, as shown in Figure 4. The model achieved a high accuracy 
score, indicating its ability to classify gene expression levels correctly. We ob-
serve that the model with the MaxPooling Aggregator performed significantly 
better than the other aggregators. Precision, recall, and F1-score scores further 
emphasized the model’s ability to balance accurate positive and false optimistic 
predictions.  

The outcome of data imbalance experimentation did not lead to performance 
improvements in the developed model. Instead, these techniques seemed detri-
mental to model performance, reducing the precision, recall, and F1-score for 
the minority class. This suggests that GraphSAGE has the capabilities to handle 
imbalanced data. 

4.1.2. Feature Importance Analysis 
We performed a feature importance analysis to identify the most influential 
genes in the context of DKD biomarker identification. In our approach, we used 
permutation feature importance to measure the importance of each feature in 
our model. This technique works by randomly shuffling the values of each fea-
ture one at a time and then measuring the decrease in the model’s accuracy. The  
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Figure 4. Visualizing node embedding space generated by the GraphSAGE model. 
 
Table 1. Presents the performance metrics for the different aggregators. 

Aggregators Class Precision Recall F1 Score 

Max Pooling Aggregator 

0 1 0.67 0.8 

1 0.93 1 0.96 

Accuracy   0.94 

w 0.94 0.94 0.93 

Attention Aggregator 

0 0.5 0.67 0.57 

1 0.92 0.85 0.88 

Accuracy   0.81 

w 0.84 0.81 0.82 

Mean Aggregator 

0 0.67 0.67 0.67 

1 0.92 0.92 0.92 

Accuracy   0.88 

w 0.88 0.88 0.88 

 
more a feature’s values affect the model’s accuracy, the more important that fea-
ture is in our node classification task. Our analysis of the most relevant features 
that drive node classification showed that CADPS, NRXN2, CLIC3, CDH6, 
COL11A1, EXTL1, SULF1, and GJB2GJB2 were the most important features for 
our model. 

4.2. Discussion 

The discovery of biomarkers for complex diseases like DKD holds the utmost 
significance in managing, detecting, and predicting disease outcomes. Although 
many methods have been proposed to identify biomarkers, a few employ Graphi-
cal Neural Approaches. In our study, we showcased the efficacy of the Graph-
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SAGE model in node classification using gene expression data to identify bio-
markers. The findings from our model show a commendable 94% accuracy in 
distinguishing DKD and Control samples, which aligns with the performance of 
models employed in previous studies on biomarkers for DKD detection. 

Also, the biological pathways associated with DKD from the past works re-
viewed in this study were not consistent with the feature importance analysis of 
this study. Hence, more investigation is necessary to verify these biomarkers. 

Overall, the model shows great promise in improving the sensitivity and spe-
cificity of DKD detection, resulting in earlier diagnoses and better patient treat-
ment outcomes. Nevertheless, additional studies are required to validate its ef-
fectiveness in a larger and more diverse group of patients. 

5. Conclusions 

We demonstrate the efficacy of the GraphSAGE model in extracting meaningful 
information from gene expression data and effectively addressing the node clas-
sification challenge of identifying and detecting potential biomarkers associated 
with Diabetic Kidney Disease (DKD). Our method demonstrated strong perfor-
mance, and the feature importance analysis highlighted biologically relevant 
genes that may contribute to detecting and diagnosing Diabetic Kidney Disease 
(DKD). This can help to facilitate the discovery of biomarkers that can aid in 
diagnosing and treating other complex diseases such as cancer. 

Despite the promising results, our study has certain limitations. First, the da-
taset used for this study was relatively small and imbalanced, with more DKD 
samples than control samples. This may have impacted our model’s ability to 
learn accurate representations of the nodes, which can lead to poor performance 
on downstream tasks. Furthermore, we relied on the quality and diversity of the 
dataset downloaded from NCBI, which may introduce some biases or noise. In 
the future, we plan to conduct further validation studies using larger and more 
diverse datasets to confirm the generalizability of our findings. We also aim to 
compare this model with other Graphical neural networks.  
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