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Abstract 
By analyzing the internal features of counting sorting algorithm. Two improve-
ments of counting sorting algorithms are proposed, which have a wide range 
of applications and better efficiency than the original counting sort while 
maintaining the original stability. Compared with the original counting sort, 
it has a wider scope of application and better time and space efficiency. In ad-
dition, the accuracy of the above conclusions can be proved by a large amount 
of experimental data. 
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1. Introduction 

Counting sort is a linear time complexity sorting algorithm, first proposed by 
Harold H. Seward in 1954. Prior to this, several sorting algorithms such as bub-
ble sort, insertion sort, and selection sort had been proposed, but their time 
complexity was quadratic, making them inefficient for handling large-scale data. 
Therefore, there was a need for more efficient sorting algorithms. 

Before counting sort was proposed, several similar algorithms had been stu-
died. For example, bucket sort is a similar linear time complexity sorting algo-
rithm. It works by dividing the data to be sorted into several buckets, sorting the 
data in each bucket, and finally merging the data in the buckets. The idea behind 
bucket sort is similar to that of counting sort, but bucket sort needs to sort the 
data in each bucket while counting sort only needs to count the number of oc-
currences of each element. Therefore, counting sort has a lower time complexity. 
Counting sort avoids these problems by counting the number of occurrences of 
each element, but it is only suitable for small ranges of element values. Other-
wise, a large counting array is required, which will waste a lot of space. 

A sorting algorithm is a common algorithm in computer science, which aims 
to arrange a set of data in a particular order. Sorting algorithms are typically 
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used in data processing, data analysis, database operations, and other fields, and 
are also one of the fundamental concepts in computer science. Sorting algo-
rithms can be classified according to multiple criteria, such as time complexity, 
space complexity, and stability. Here are some common classification criteria: 
Time complexity-based classification. Sorting algorithms can be classified into 
three categories based on their time complexity: O(n^2) sorting algorithms: 
These algorithms have a time complexity of O(n^2), where n represents the 
number of data to be sorted. Examples include bubble sort, selection sort, inser-
tion sort, etc. O(nlogn) sorting algorithms: These algorithms have a time com-
plexity of O(nlogn), where n represents the number of data to be sorted. Exam-
ples include quicksort, merge sort, heap sort, etc. Linear time complexity sorting 
algorithm: These algorithms have a time complexity of O(n), where n represents 
the number of data to be sorted. Examples include counting sort, radix sort, etc. 
Stability-based classification Sorting algorithms can be classified into two cate-
gories based on their stability: Stable sorting algorithms: If two elements in the 
data to be sorted have the same value, the relative position of the elements after 
sorting remains unchanged, and the sorting algorithm is considered stable. Ex-
amples include insertion sort, merge sort, etc. Unstable sorting algorithms: If 
two elements in the data to be sorted have the same value, the relative position of 
the elements after sorting may change, and the sorting algorithm is considered 
unstable. Examples include quicksort, heap sort, etc. Space complexity-based 
classification. Sorting algorithms can be classified into two categories based on 
their space complexity: In-place sorting algorithms: These algorithms do not 
require additional storage space during sorting and can directly operate on the 
original storage space of the data to be sorted. Examples include bubble sort, 
quicksort, etc. 

Non-in-place sorting algorithms: These algorithms require additional storage 
space during sorting. Examples include merge sort, heap sort, etc. These are the 
basic concepts and classification criteria of sorting algorithms. In practice, sort-
ing algorithms also have many details to be aware of, such as how to handle the 
sorting of identical elements and how to handle the boundary cases of data. In 
actual applications, the appropriate sorting algorithm should be selected based 
on specific circumstances. Counting sort is a linear time complexity sorting al-
gorithm that is suitable for cases where the input data has a relatively small 
range of values, but a large number of items. The basic idea behind counting sort 
is to count the occurrences of each input element, thus determining the position 
of each element in the output sequence. It should be noted that the elements in 
the input sequence must be non-negative integers, and the maximum value in 
the input sequence cannot be too large, otherwise, too much space will be re-
quired to allocate the counting array, resulting in high space complexity. The 
time complexity of counting sort is O(n + k), where n is the number of elements 
in the input sequence and k is the difference between the maximum and mini-
mum values in the input sequence plus one. The space complexity of counting 
sort is O(k). Since counting sort is a stable sorting algorithm, it performs better 
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than other sorting algorithms in certain scenarios. For example, when sorting a 
small range of integers, counting sort is a good choice. Here I will introduce the 
improvement of counting sorting algorithm. Counting sort is a simple, stable 
and efficient sorting algorithm with linear running time, which is a fundamental 
building block for many applications [1]. Counting sort is one, which lies in this 
domain [2]. 

2. The Description and Analysis of Counting Sorting  
Algorithm 

2.1. Algorithm Description 

Sorting is an important algorithmic task used in many applications [3]. The code 
implements a counting sort algorithm with a time complexity of O(n^2). Let’s 
break down the code showing in Figure 1. 

The function definition takes an array to be sorted and its length as input. The 
function definition takes an array to be sorted and its length as input. Create a 
count array of size n to keep track of the count of each element in the input ar-
ray, and initialize all elements of the count array to zero. The nested loop iterates 
over the entire input array, calculates the count of each element in the input ar-
ray, and stores it in the count array. Specifically, the outer loop iterates over each 
element of the input array, and the inner loop iterates over the input array again. 
If the j-th element of the input array is less than the i-th element of the input ar-
ray, increment the count of the i-th element in the count array. Create an output 
array of size n, and place each element of the input array in the correct position 
of the output array based on the count of that element. Specifically, iterate over 
the input array and place the i-th element of the input array into the count[i]-th 
position in the output array. Copy the sorted output array back into the input 
array. 

2.2. Algorithm Analysis 

The time complexity of this algorithm is O(n^2) because it uses two nested 
loops, each of which iterates over the entire array. For larger input arrays, this 
algorithm’s efficiency may be low. 
 

 

Figure 1. Traditional counting sort 
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The following is the calculation formula. 
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The space complexity of the given counting sort algorithm is O(n), where n is 
the length of the input array. 

In the code, we create three arrays—arr, count, and output. The arr array is 
the input array, which takes n units of space. The count array is used to keep 
track of the count of each element in the input array, and thus takes up n units 
of space. The output array is used to store the sorted output, which also takes n 
units of space. 

Therefore, the total space required by the algorithm is 3n, or O(n). This means 
that the space required by the algorithm increases linearly with the size of the 
input array. 

3. Two Improvements of Counting Sorting Algorithms 
3.1. Improved Counting Sort Algorithm 

Counting sort is basically a linear time sorting algorithm [4]. The basic idea of 
counting sort is to determine the number of elements in the given input se-
quence that are less than x for each element x (this is not a comparison of the 
size of each element, but rather determining it by counting the elements and ac-
cumulating the count values). Once this information is available, x can be di-
rectly placed in the correct position in the final output sequence. For example, if 
there are only 17 elements in the input sequence that are less than the value of x, 
x can be directly placed in the 18th position of the output sequence. Of course, if 
multiple elements have the same value, we cannot place these elements in the 
same position in the output sequence, so the above plan needs to be modified 
accordingly. 

Allocate additional space based on the range of the difference between the 
maximum and minimum elements in the collection to be sorted. 

Traverse the collection to be sorted and record the number of times each ele-
ment appears in the additional space corresponding to the element value. 

Perform calculations on the data in the additional space to determine the cor-
rect position of each element. 

Move each element in the collection to be sorted to its calculated correct posi-
tion. 

To generate the dataset, we first created a random integer array with a length 
of 20, to accomplish this, we used Python’s random number generation function 
and specified that the generated random numbers fall within this range. Specifi-
cally, we used the rand function from the random library to generate integers, 
and then stored these integers in the array to construct the dataset we needed. So 
as to form the simple dataset we need for demonstration. Randomly select 20 
numbers within 10, let’s assume we have an array of 20 numbers: {9, 3, 5, 4, 9, 1, 
2, 7, 8, 1, 3, 6, 5, 3, 4, 0, 10, 9, 7, 9}. 
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Let’s first traverse this unordered random array and find the maximum value 
of 10 and the minimum value of 0. This way our corresponding counting range 
will be 0 - 10. Then, each integer is assigned to its corresponding array index 
based on its value, and the element of the corresponding array index is incre-
mented by 1. 

For example, if the first integer is 9, then the element at array index 9 is in-
cremented by 1, as shown in the diagram below. Showing in Figure 2. 

The second integer is 3, so the element at array index 3 is incremented by 1, as 
shown in the diagram below. Showing in Figure 3. 

We continue to traverse the array and modify the array… Finally, when the 
array is completely traversed, the state of the array is as shown in the diagram 
below. Showing in Figure 4. 

Each value in the array represents the number of times the corresponding in-
teger appears in the array. 

With this counting result, sorting is straightforward. Simply traverse the array 
and output the index value of the array element. The value of the element is 
output as many times as it appears. For example, the value 1 in the counting re-
sult means there are two 1’s in the array. This way we get the final sorted result: 

0, 1, 1, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 9, 9, 9, 10. 
Showing in Figure 5, we first define a constant MAX_VALUE to represent the 

maximum input value. We then define a count array and an output array. In the 
counting Sort function, we first traverse the input array and increment the count 
of each element in the count array. We then compute the prefix sum of the 
count array to determine the position of each element in the output array. Final-
ly, we traverse the input array again and place each element in its correct posi-
tion in the output array. 

The time complexity of the Counting Sort algorithm implemented in the pro-
vided C code is O(n + k), where n is the number of elements in the input array 
and k is the range of input values. 

The space complexity of the Counting Sort algorithm implemented in the 
provided C code is O(n + k), where n is the number of elements in the input ar-
ray and k is the range of input values. 

Although counting sort seems powerful, it has two major limitations: 
When the difference between the maximum and minimum values in the se-

quence is too large, counting sort is not suitable. 
 

 

Figure 2. The first integer is 9 
 

 

Figure 3. The second integer is 3 
 

 

Figure 4. The state diagram of the array 
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Figure 5. Improved counting sort 
 

For example, if 20 random integers are given with a range between 0 and 10 
billion, using counting sort would require creating an array of length 10 billion, 
which not only wastes space, but also increases the time complexity. 

When the elements in the sequence are not integers, counting sort is not suit-
able. 

If the elements in the sequence are all decimals, such as 3.1415926 or 0.000000001, 
it is impossible to create a corresponding counting array, and counting sort cannot 
be performed. 

It is precise because of these two limitations that counting sort is not widely 
used like quicksort or merge sort. 

Therefore, the optimal solution is bucket sort. 

3.2. Bucket Sort Algorithm 

Bucket sort is a sorting algorithm that divides data into multiple buckets based 
on the range of the data values, and then sorts each bucket individually. The 
number of buckets should be sufficient to ensure that the range of data values in 
each bucket is as small as possible, which can make the sorting process faster. 
Finally, all the buckets are merged to obtain the sorted data. 

Bucket sort is an upgraded version of counting sort. It utilizes the mapping 
relationship of a function, and the key to its efficiency lies in the determination 
of this mapping function. The basic idea of bucket sort is to assume that the in-
put data follows a uniform distribution, and divide the data into a finite number 
of buckets. Each bucket is then sorted individually (either using another sorting 
algorithm or by recursively using bucket sort), and finally, the elements in the 
non-empty buckets are placed back into the original sequence one by one. In 
order to make bucket sort more efficient, we need to achieve two things: increase 
the number of buckets as much as possible when there is sufficient extra space, 
and use a mapping function that can distribute the N input data uniformly into 
K buckets. 
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The algorithmic process of bucket sort is as follows: 
1) Set a quantified array as an empty bucket. 
2) Traverse the input data and put each data item into the corresponding 

bucket. 
3) Sort each non-empty bucket. 
4) Concatenate the sorted data items from the non-empty buckets. 
Bucket sort and RADIX sort are two well-known integer sorting algorithms 

[5]. Bucket sort is a linear sorting algorithm that divides the input into several 
buckets and then sorts the elements in each bucket. The sorted elements from 
each bucket are then concatenated to form the final sorted sequence. 

Determine the number of buckets and the range of values for each bucket. For 
example, if the range of input elements is [0, 100] and there are 10 buckets, then 
the range of each bucket would be [0, 10), [10, 20)… [90, 100). 

Sort each bucket. Any sorting algorithm can be used for this step, such as in-
sertion sort or quicksort. Concatenate the sorted elements from each bucket to 
obtain the final sorted sequence. Bucket sort has a time complexity of O(n), 
where n is the number of elements to be sorted. Therefore, it has linear time 
complexity. However, bucket sort requires additional space to store the buckets, 
resulting in a space complexity of O(k), where k is the number of buckets. It is 
important to note that bucket sort is suitable for cases where the range of input 
values is relatively small. If the range is large, using a large number of buckets 
can increase the space and time overhead. The code is showing in Figure 6. 

The time complexity of the given bucket sort code is O(n + k), where n 
represents the number of elements to be sorted, and k represents the number of  
 

 

Figure 6. Bucket sort 
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buckets. This is because the code includes steps for iterating through the ele-
ments, placing them into the appropriate buckets, sorting the elements within 
each bucket, and concatenating the sorted elements from all buckets. The time 
complexity of iterating through the elements and concatenating the sorted ele-
ments is O(n), while the time complexity of sorting the elements within each 
bucket is O(klogk) (assuming quicksort is used), resulting in a total time com-
plexity of O(n + k). 

The space complexity of bucket sort is also O(n + k), where n represents the 
number of elements to be sorted and k represents the number of buckets. This is 
because additional space is required to store the buckets and to sort the elements 
within each bucket. Therefore, the space complexity of bucket sort is dependent 
on the data size and the number of buckets. If the data size is large, more buckets 
will be required, resulting in increased space complexity. 

The limitations of bucket sort include: 
Requires prior knowledge of the range of input data: Bucket sort assumes that 

the input data is uniformly distributed within a known range. If this assumption 
is not met, the buckets may not be able to effectively capture the distribution of 
the data, leading to suboptimal sorting performance. 

Extra space requirement: In order to store the buckets and their contents, 
bucket sort requires additional memory space. The number of buckets and the 
size of the buckets also need to be determined based on the range of input data, 
which can be challenging in some cases. 

Inefficient for small data sets: For very small data sets, the overhead of creat-
ing and managing the buckets can outweigh the benefits of the sorting algorithm 
itself, making bucket sort less efficient than other sorting algorithms. 

4. Experimental Demonstration 
4.1. Dataset Selection 

In the experimental section, to generate the dataset, we first created a random 
integer array with a length of 1000. This means that the array contains 1000 in-
tegers. The values of the data were limited to the range of 100 to 1000. To ac-
complish this, we used Python’s random number generation function and speci-
fied that the generated random numbers fall within this range. Specifically, we 
used the rand function from the random library to generate integers, and then 
stored these integers in the array to construct the dataset we needed. 

We conducted three experiments with increasing data sizes of 500, 700, 1000, 
and 5000, respectively. The number of comparisons performed in each experi-
ment were 5, 50, 500, and 1000, respectively. The number of buckets used in 
each experiment were 500, 700, 700, and 5000, respectively. The experimental 
code is showing in Figure 7. 

4.2. Experimental Result 

See Table 1. 
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Figure 7. Algorithm comparison 
 
Table 1. Comparison of experimental results 

Data 
scale 

Comparison 
number 

Range 
Original 

Counting sort 
Improved 

Counting sort 
Bucket 
sorting 

Barrels 

500 5 [100, 1000] 0.00680 0.00040 0.00001 500 

700 50 [100, 1000] 0.01443 0.00240 0.00166 700 

1000 500 [100, 1000] 0.03500 0.03038 0.02550 700 

5000 1000 [100, 1000] 0.80284 0.36080 0.00109 5000 

4.3. Result Analysis 

By analyzing the results in Table 1, it can be seen that the improved counting 
sort algorithm always outperforms the original counting sort for any given input 
size, especially when the input data size is small. As the data size and the number 
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of comparisons increase, the efficiency of bucket sort is highest when the num-
ber of buckets is equal to the data size. 

5. Conclusion 

Algorithms have a vital and key role in solving the computational problems, in-
formally an algorithm is a well defined computational procedure that takes input 
and produces output [6]. Improved bucket sort is suitable for cases where the 
range of values of the elements to be sorted is relatively small. However, in cases 
where the range of values is relatively small, bucket sort has excellent efficiency 
and stability. Bucket sort is a sorting algorithm based on the divide and conquer 
strategy. The core idea is to divide the input elements into multiple ordered 
buckets, sort the elements in each bucket, and then merge all the buckets into a 
sorted sequence. The advantages of bucket sort are as follows: Easy to imple-
ment: The implementation of bucket sort is straightforward, and it is easy to 
understand and implement. We just need to allocate the elements into buckets 
and sort them, then merge the elements in the buckets. Excellent time complex-
ity: When the input elements are uniformly distributed among the buckets, the 
time complexity of bucket sort can reach linear level O(n), which is quite fast. 
Good stability: Bucket sort is a stable sorting algorithm, which can ensure that 
the order of equal elements will not be changed. Wide applicability: Bucket sort 
is suitable for situations where the input elements are relatively evenly distri-
buted, especially for data sets with small ranges and concentrated values. In 
summary, bucket sort is a simple and efficient sorting algorithm with a wide 
range of applications. Although log-linear algorithms have attracted the bulk of 
research attention in the past [7]. For some specific sorting problems, bucket 
sort is a good choice. If the range of values of the elements to be sorted is too 
large, the number of buckets will be large, which increases the space complexity 
and is not conducive to improving sorting efficiency.  
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