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Abstract 
In this paper, we introduce a novel scheme for the separate training of deep 
learning-based autoencoders used for Channel State Information (CSI) feed-
back. Our distinct training approach caters to multiple users and base sta-
tions, enabling independent and individualized local training. This ensures 
the more secure processing of data and algorithms, different from the com-
monly adopted joint training method. To maintain comparable performance 
with joint training, we present two distinct training methods: separate train-
ing decoder and separate training encoder. It’s noteworthy that conducting 
separate training for the encoder can pose additional challenges, due to its 
responsibility in acquiring a compressed representation of underlying data 
features. This complexity makes accommodating multiple pre-trained decod-
ers for just one encoder a demanding task. To overcome this, we design an 
adaptation layer architecture that effectively minimizes performance losses. 
Moreover, the flexible training strategy empowers users and base stations to 
seamlessly incorporate distinct encoder and decoder structures into the sys-
tem, significantly amplifying the system’s scalability. 
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1. Introduction 

Deep learning techniques have gained immense popularity in various fields, in-
cluding wireless communication physical layer [1]. Generative-based models like 
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Autoencoders [2] have emerged and demonstrated its remarkable ability in data 
compression and reconstruction. CSI feedback is a crucial communication indi-
cator used to measure channel state information, especially in the frequency di-
vision duplexing (FDD) MIMO system [3]. Previous models, such as CsiNet [4], 
DCGAN [5], and TransNet [6] etc. have achieved significant performance in 
DL-Based CSI feedback task. However, these papers mainly focus on models of 
achieving high compression and reconstruction performance, which involves joint 
training of a single encoder-decoder pair. During joint training, the encoder and 
decoder collaborate and share information, which can potentially result in pri-
vacy leakage and leave the system more vulnerable to adversarial attacks [7]. 
Moreover, whether in a multi-user or multi-base station system, joint training 
requires encoders of all users and decoders of all base stations to be trained si-
multaneously. This results in the need to retrain all models when new users (or 
new base stations) join (or leave) the system. This not only demands a signifi-
cant amount of computational resources but also makes it difficult to apply and 
deploy joint training in large-scale Multi-user Multi-base station system. 

Separate training is a novel approach to solve these issues. With separate train-
ing, the encoder and decoder of multiple users receive independent and indivi-
dualized local training and then apply our separate training strategy, the opti-
mization between encoder and decoder is separated. This technique ensures that 
the encoder cannot learn any specific details related to the decoder, and vice 
versa. As a result, the privacy of the algorithm and model is better protected. 
Moreover, separate training is more flexible and allows for easier addition or re-
moval of users or base stations from the system. It also permits greater persona-
lization and customization of different model structures, making system more 
compatible and scalable. 

Our system utilizes separate training in two different scenarios. In the first 
scenario, multiple User Equipment (UEs) simultaneously transmit CSI to a sin-
gle Base Station (BS) in what is known as the 1N ×  case. For this scenario, we 
employ a separate training decoder that works in conjunction with multiple pre-
trained encoders of UEs. In the second scenario, a single UE transmits CSI to 
multiple BSs in what is known as the 1 N×  case. For this scenario, our system 
employs a separate training encoder that works in conjunction with multiple pre-
trained decoders of BSs. These pretrained models have been obtained through 
independent one-to-one local joint training. They can provide prior information 
to facilitate separate training, while ensuring the confidentiality and privacy of 
the algorithmic models used. 

Notation: The channel matrix is denoted by H, and the channel eigenvec-
tors is represented by v , tN  and rN  represents the number of transmitting 
and receiving antennas, cN  is the number of subcarriers while S represents 
the number of subbands. The symbol [ ]⋅  denotes statistical expectation.  
feedback bits  refers to the number of feedback bits, while B suggests the use of 

B-bit quantization and dequantization. { }1, , , ,i n= � �l l l  denotes the latent 
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space vectors set while the split datasets of training is denoted by  
{ }1, , , ,i n= � �v v v . 

2. System Model Design 
2.1. System Model 

We consider a 5G-NR massive MIMO transmission system with spatial-frequency 
CSI feedback [8]. We use 48 Resource Blocks (RBs) and divide them into S = 12 
subbands, each of which contains 4 RBs in the frequency domain. At the base 
station (BS), there are 32 transmitting antennas ( 32tN = ), while the User Equip-
ment (UE) is equipped with 4 receiving antennas ( 4rN = ). In UE side, the re-
ceived signal is denoted as:  

( ) ( )i iy f H f W s n= ⋅ ⋅ + . 

where ( ) r tN NH f ×∈�  denotes the UE’s downlink channel response matrix at 
the i-th subcarrier, 1, 2, , ci N= � . W is the precoding matrix, s is the bitstream 
signal, and n denotes the additive noise. We calculate the convariance matrix of 
s-th subband: 

( ) ( ) ( )
( )1 1

1 , 1, 2, ,
S

S

s N
H
i i

i s NS

R s H f H f s S
N

⋅

= − ⋅ +

= =∑ �            (1) 

where SN  denotes the number of subcarriers on each subband, which equals to 
/cN S . The ( )R s  reflects the average correlation of the channels across dif-

ferent subcarriers in s-th subband. For rank = 1, we obtain the eigenvector  
1tN

sv ×∈�  corresponding to the largest eigenvalue of this ( )R s . Traverse all 
subbands, we get the all the eigenvectors of S subbands. The dimensionality of 
the CSI eigenvectors v  is 2 32 12 2 768tN S× × = × × = , where the factor of 2 
represents the real and imaginary parts, respectively. In the UE uplink CSI feed-
back transmission, we employ uniform quantization with B bits of precision. 
The basic architecture of the autoencoder, which employs CSI eigenvectors for 
compression and reconstruction, is illustrated in Figure 1. Basic architecture of 
Autoencoder for CSI Eigenvectors compression and reconstruction where r and 
i denotes real and imaginary of eigenvectors, respectively. As CSI feature vectors 
serve as our data, we measure the similarity between the recovered vectors and 
the original vectors using the Square Cosine Similarity (SCS), which can be our 
metric of reconstruction. We employ a loss function, denoted as   in this pa-
per, where 1 SCS= − : ( ,r iv  denotes eigenvectors). Figure 2 presents the pro- 
cess of joint training and separate training (including separate training decoder  

 

 
Figure 1. Basic architecture of Autoencoder for CSI Eigenvectors compression and reconstruction 
where r and i denotes real and imaginary of eigenvectors, respectively. 
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Figure 2. Joint training, Separate training decoder and Separate training encoder. Quan and Dequan refer to quantization and 
dequantization, the ( )1, ,i i n∈ = �l   are latent space vectors for split datasets ( )1, ,i i n∈ = �v   respectively. 

 
and separate training encoder). We consider general of n-pairs of encoder-deco- 
der, firstly we divide our dataset to { }1, , , ,i n= � �v v v , of which are treated 
as independent encoder-decoder datasets to jointly train their respective encoder 
and decoder. We use 

Ei
EΘ  as the i-th encoder and 

Di
DΘ  as the i-th decoder, 

the encoder and decoder can be parameterized by EΘ  and DΘ , where refers 
to the weights and biases of neural network. And the { }1, , , ,i n= � �l l l  are 
latent space vectors for { }1, , , ,i n= � �v v v  respectively. 

Joint training involves optimizing n autoencoder models (encoder-decoder 
pairs) simultaneously on their respective datasets, that is an unsupervised learn-
ing approach which simultaneously trains encoder and decoder models. Con-
versely, separate training involves retraining a single decoder in 1N ×  case and 
with n pre-trained encoders and retraining a single encoder with n pre-trained 
decoders in 1 N×  case, as pre-trained encoders and decoders are from Equa-
tion (2) where ( )1, ,i i n∈ = �v  . 

� �{ } ( )( ), arg min ,i i D Ei i
E Di i

E D i iD EΘ Θ
Θ Θ

 Θ Θ =  iv v v              (2) 

2.2. Separate Training Decoder 

When separate training decoder, we should retrain a decoder (
rD

DΘ ) to minimize 

� ( )( )
1
arg min ,r i D Er i

Dr

n

D i i
i

D EΘ Θ
Θ=

 Θ =  ∑ v v v               (3) 

where ( )1, ,i i n∈ = �v  . Since 
1 i
, , , ,

E E En
E E EΘ Θ Θ� �  are pre-trained.  

{ }1, , , ,i n= � �l l l  can be obtained by feeding the corresponding split datasets 
{ }1, , , ,i n= � �v v v  to respective encoder networks. 

( ) ( ), 1, ,
Eii i iE i nΘ= ∈ = �l v v                   (4) 

Take Equation (4) to Equation (3), we get 
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� [ ]( )
1

arg min ,i
r Di r

Dr

n

D i i
i

DΘ
Θ =

Θ = ∑ l
v v l                  (5) 

where ( ), 1, ,i i i n∈ ∈ = �v l  . 
The optimized function in Equation (5) implies that by utilizing the generated 

labels from prior joint training, we can convert the previous unsupervised learning 
approach of joint training autoencoders into a supervised problem. In this new 
approach, multiple latent space vectors serve as inputs, and CSI eigenvectors 
serve as outputs for our retrained-decoder, as illustrated in Figure 2. During 
separate training, we concatenate 1, , , ,i n� �l l l  and 1, , , ,i n� �v v v . Thus, the 
objective of separate training decoder is to minimize the overall loss in Equation 
(6). 

� [ ]( )arg min ,r Dr
Dr

D DΘ
Θ

Θ = l
v v l                    (6) 

Equation (6) indicates the retrained-decoder 
Dr

DΘ  is to reconstruct the origi-
nal CSI from the latent space vectors which offer prior information about en-
coders and are generated by 

1 i
, , , ,

E E En
E E EΘ Θ Θ� � . As a result, the retrained- 

decoder has no idea about the specific weights and biases of each encoders, 
which can help further protect the privacy of the individual encoder models and 
algorithms. 

Figure 3 portrays the 1N ×  separate training decoder system ( )3N = , where 
three User Equipments (UEs) apply CSI feedback to one Base Station (BS). Our 
model is transformer-based and was inspired by [6] with positional encoding. 
Our design incorporates three distinct encoder architectures: The first encoder 
(encoder1) employs a 6-layer transformer block, the second encoder (encoder2) 
employs a 5-layer transformer block, while the third encoder (encoder3) uses a 
simple fully connected (FC) layer. The decoder consists of a 6-layer transfor-
mer-decoder block. 

2.3. Separate Training Encoder 

As for separate training encoder, we should retrain a encoder (
Er

EΘ ) to minim-
ize (where ( )1, ,i i n∈ = �v  .) 

� ( )( )
1

arg min ,r i D Ei r
Er

n

E i i
i

D EΘ Θ
Θ =

 Θ =  ∑ v v v               (7) 

However, in separate training encoder, we cannot use the same label genera-
tion method like separate training decoder because the pre-trained models are 

 

 
Figure 3. 1N ×  case for separate training decoder system ( )3N = . 
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1 i
, , , ,

D D Dn
DD DΘ Θ Θ� � . The unidirectional architecture of the encoder-decoder 

model hinders the direct transformation of information from the decoder into 
labels for separate training encoder. Moreover, since the encoder is tasked with 
learning a compressed representation of underlying data features, it poses chal-
lenging to fit multiple pre-trained decoders. To overcome this limitation, we 
have developed an adaptation layer architecture that adapts non-linear trans-
formations for multiple decoders as shown in Figure 1, which enables the re-
trained encoder to be compatible with multiple decoders. 

Figure 4 depicts the 1 N×  separate training encoder system ( )3N = , where 
one User Equipment (UE) apply CSI feedback to three Base Stations (BSs). Our 
design incorporates three distinct decoder architectures: the first decoder uses a 
6-layer transformer block, the second decoder uses a 5-layer transformer block 
while the thrid decoder is a residual block consisting of 27 layers of  

(128, (1,3))conv  and one layer of (2, (1,3))conv . ( , ( , ))i iconv c h w  represents 
the convolutional layer with c as the output channels of the CNN layer, and ih  
and iw  as the height and width of the kernel size, respectively. The encoder 
consists of a 6-layer transformer block. 

We have developed an adaptation layer based on multilayer perceptron (MLP) 
that utilizes mixed activation functions. As shown in Figure 5 MLP-Based Adap-
tion Layer architecture., our approach differs from previous encoders, as it is not 
directly connected to the quantization layer. Instead, the output of the last fully 
connected (FC) layer, which has a dimension of /feedback bits B    and is ac-
tivated by a sigmoid function, passes through two fully connected layers forming 
the adaptation layer. These layers are associated with the relu and tanh activa-
tion functions, respectively, providing distinct non-linear transformations. The 
shapes of these two output layers are denoted by ζ . Before connecting to the 
quantization layer, we also include another FC layer with an output shape of 

/feedback bits B    and a sigmoid activation function. 
Therefore, we propose a general separate training algorithm for the encoder 

with adaptation layer architecture, which is presented in Table 1 Algorithm of 
Separate training encoder with adaption layer. The adaptation layer, denoted by 

A
AΘ , is parameterized by AΘ , which includes n different weights and biases 

adaption layers, namely 
1 i
, , , ,

A A An
AA AΘ Θ Θ� � . 

 

 
Figure 4. 1 N×  case for separate training encoder system ( )3N = . 

https://doi.org/10.4236/jcc.2023.119009


L. S. Xi et al. 
 

 

DOI: 10.4236/jcc.2023.119009 149 Journal of Computer and Communications 
 

 
Figure 5. MLP-Based Adaption Layer architecture. 

 
Table 1. Algorithm of Separate training encoder with adaption layer. 

1: Initialize the encoder parameters 
rEΘ , weights and biases of n adaption layers:  

{ }( ), 1, ,
A i ii A AA w b i nΘ = = � . Freeze all parameters of 

1
, ,

D Dn
D DΘ Θ� . 

2: for each epoch do 

3: Sample ( )1, ,i id i n∈ = �v  

4: Traverse { }1
, , , , , 

r i nE A A Aθ ∈ Θ Θ Θ Θ� �  

5: Apply Backpropagation to update θ  for all adaption layers and encoder. 

( )( )( )
1

,
i D A Ei i r

n

i i
i

D A Eθθ θ η Θ Θ Θ
=

  ← − ∇    
∑ v v v                (8) 

where { }( )1, , , , 1, ,i i n i n∈ =� � �v v v v  

 
By Equation (8), we can observe that the separate training of 

Er
EΘ  involves 

feed forwarding and gradient receiving from 
1
, , , ,

D D Di n
D D DΘ Θ Θ� � , while 

keeping the decoders’ weights and biases private. The adaptation layer architec-
ture is designed to minimize the performance loss when adapting an encoder to 
multiple pre-trained decoders, ensuring that the system can maintain high per-
formance levels while preserving the privacy of the decoder models. By doing so, 
the method offers greater flexibility and security compared to joint training. 
Moreover, Equation (8) also reveals that the whole data   is to optimize 

Er
EΘ  

while 
1 i
, , , ,

A A An
AA AΘ Θ Θ� �  is updated by their respective split datasets  

{ }1, , , ,i n= � �v v v , which proves that the design of adaption layer  

1 i
, , , ,

A A An
AA AΘ Θ Θ� �  is to help the encoder 

Er
EΘ  learn the common underly-

ing features of the data while adaption layer coordinates the compatibility be-
tween the 

Er
EΘ  and 

1
, , , ,

D D Di n
D D DΘ Θ Θ� � . 

3. Results and Analysis 
3.1. Dataset and Hyperparameters Configuration 

Our dataset was generated based on the Clustered Delay Line (CDL) channel at 
Urban Macro(UMa) scenario with a carrier frequency of 2 GHz, bandwidth of 
10 MHz, and carrier spacing of 15 KHz, as per the Scenarios and Requirements 
for AI-enhanced CSI from 3GPP Release 16 discussion. The UE receiver settings 
included 80% indoor (3 km/h) and 20% outdoor (30 km/h). The CSI eigenvec-
tors are acquired as described in Section 2.1. Each dataset ( { }1 2 3, ,= v v v ) 
consists of 100,000 training and 12,000 validation samples, and 60,000 testing 
samples are used to evaluate the performance of models from both joint training 
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and separate training. The transformer’s linear embedding dimension was set to  
384dime = , the shapes of these two output adaption layers are 4 1536dimeζ = = . 

Moreover, we set the number of attention heads for multi-head attention to be 8. 
We trained our models using 2-bit uniform quantization ( 2B = ) and Adam op-
timization algorithm. The initial learning rate was set to 1e−4 and decreased by 
half every 40 epochs. We trained our models on a single NVIDIA 2080 Ti GPU 
with a batch size of 64 and up to a maximum of 200 epochs. We utilized the loss 
function $1−SCS$, as specified in Section 2.1. The more detailed data descrip-
tion and open source codes are available at  
https://github.com/xls318027/CSI-Separate-training. 

We consider 4 different CSI feedback payload bits of 49, 87, 130 and 242. The 
output shape of encoder before quantization layer is /feedback bits B   , which 
implies the compression ratio η  of our model is 24/768, 43/768, 65/768 and 
121/768, respectively. Our performance metric is Square Generalized Cosine Si-
milarity (SGCS) where denotes the average square cosine similarity of S sub-
bands: ( ,r i  for real and imaginary parts of eigenvectors while s denotes s-th 
subbands.) 

�( )
�

2

, ,

1 , ,

1

Hs s
r i r iS

s ss r i r i

SGCS
S =

    
  =   
      

∑
v v

v v
                 (9) 

3.2. Performance Comparison Result between Joint Training and 
Separate Training 

Figure 6 presents the results of comparing joint training and separate training 
decoder on different feedback bits. The retrained decoder rD  exhibits an aver-
age decrease in SGCS performance of 0.0131, 0.0146, and 0.0239 on 1E , 2E , 
and 3E , compared to the respective joint training decoders 1D , 2D , and 3D . 
This corresponds to a decrease of 1.90%, 2.15%, and 3.99% in terms of percen-
tage. The results illustrate that the method of separately training the decoder in  

 

 
(a) 1 1 1  rE D VS E D+ +                (b) 2 2 2  rE D VS E D+ +                  (c) 3 3 3  rE D VS E D+ +  

Figure 6. SGCS performance between joint training and separate training decoder. 
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Equation (6) provides a slight decrease in SGCS performance compared with 
joint training. This minor decrease shows that separate training decoder algo-
rithm makes different users independently and freely train their respective en-
coder models without having to retrain all models as in the case of joint training 
of 1N ×  system when new users join or leave. 

Figure 7 presents comparing joint training and separate training encoders on 
different feedback bits, with and without adaptation layer. The retrained encoder 

rE  with respective adaption layer 1A , 2A , 3A  exhibited an average decrease 
in SGCS performance of 0.0142, 0.0201, and 0.0212 on 1D , 2D  and 3D , com-
pared to the respective joint training encoders 1E , 2E , and 3E . This represents 
a decrease of 1.94%, 2.77%, and 3.17% in terms of percentage. 

In contrast, ablation experiment without adaptation layer indicates the per-
formance of ( ) ( )1, 2,3i iE without A D i+ =  decreased significantly by 0.3070, 
0.3290, and 0.3731, representing a decrease of 44.48%, 47.98%, and 56.72% re-
spectively. 

Our experimental results demonstrate that the use of the adaption layer design 
algorithm presented in Table 1. For separately training encoder models offers 
only a marginal reduction in SGCS compared to joint training. However, the non- 
adaption method leads significantly worse performance. Those results shows 
that not only the separate training encoder enables each user to selectively switch 
between communicating base stations without altering the decoders at individu-
al base stations but also our proposed algorithm with adaption layer could sig-
nificantly mitigates the performance loss of separate training. 

3.3. Influence of Feedback Bits, Compatibility of Different Models 

The performance of the separately training decoder shows a relatively small im-
pact with different feedback bits of 49, 87, 130, and 242, resulting in a perfor-
mance decrease of 0.0171, 0.0156, 0.0180, and 0.0178, respectively. This corres-
ponds to a percentage decrease of 2.92%, 2.48%, 2.77%, and 2.56%. 

These results suggest that the concatenation of latent space vectors for the  
 

 

(a) 
( )

1 1 1 1

1 1

rE D VS E A D
VS E without A D

+ + +

+
            (b) 

( )
22 2 2

2 2

rE D VS E A D
VS E without A D

+ + +

+
              (c) 

( )
3 3 3 3

3 3

rE D VS E A D
VS E without A D

+ + +

+
 

Figure 7. SGCS performance among joint training, separate training encoder with and without adaption layer. 
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separate training decoder is only slightly influenced by the feedback bits. In con-
trast, the separate training encoder is significantly impacted, exhibiting perfor-
mance decreases of 0.0095, 0.0113, 0.0143, and 0.0391, respectively, which cor-
respond to percentage decreases of 1.52%, 1.71%, 2.08%, and 5.19%. This de-
monstrates that as feedback bits increase, the output shape of our fixed adapta-
tion output shape ζ , with a size of 1536, also decreases in performance due to 
the increased value of /feedback bits B   . Thus, when considering 1 N×  adap-
tion layer, we should make set appropriate adaption layer settings for achieving 
considerable performance. 

Both separate training decoder and separately training encoder demonstrate 
that when the encoder and decoder have different architectures, it results in a 
more noticeable performance decrease, as observed in the cases of 3 rE D+  for 
separately training decoder and 3 3rE A D+ +  for separately training encoder. 
Therefore, there should be a consideration of the trade-off between model com-
patibility and complexity. 

4. Conclusion 

Our paper has introduced a new method for training DL-based CSI feedback 
autoencoders separately. We have proposed the use of concatenated latent space 
vectors for separate training decoder and a unique adaption layer for separate 
training encoder. Through a series of comprehensive comparative experiments, 
we have shown that separate training can achieve similar performance to joint 
training while providing additional benefits such as improving protection of mod-
el and algorithm privacy and enhancing system scalability due to its flexible me-
chanism of independently local training and sufficient separate training strate-
gies. 
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