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Abstract 
Artificial general intelligence (AGI) is the ability of an artificial intelligence 
(AI) agent to solve somewhat-arbitrary tasks in somewhat-arbitrary environ-
ments. Despite being a long-standing goal in the field of AI, achieving AGI 
remains elusive. In this study, we empirically assessed the generalizability of 
AI agents by applying a deep reinforcement learning (DRL) approach to the 
medical domain. Our investigation involved examining how modifying the 
agent’s structure, task, and environment impacts its generality. Sample: An 
NIH chest X-ray dataset with 112,120 images and 15 medical conditions. We 
evaluated the agent’s performance on binary and multiclass classification tasks 
through a baseline model, a convolutional neural network model, a deep Q 
network model, and a proximal policy optimization model. Results: Our re-
sults suggest that DRL agents with the algorithmic flexibility to autonomously 
vary their macro/microstructures can generalize better across given tasks and 
environments. 
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1. Introduction 

Artificial general intelligence (AGI) has been posited as one of the keys to ad-
dressing complex real-world challenges in many domains such as personalized 
healthcare, business decision making, education, among others. However, AGI 
remains out of the reach of today’s tools and understanding [1]. 

With the generality of human intelligence as the ground truth for AGI, Ka-
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dam and Vaidya [2] attributed the generality of human intelligence to the ability 
of the human brain to adapt to new tasks and environmental challenges and to 
transfer its knowledge across multiple domains. Similarly, while the key perfor-
mance metrics for assessing true AGI remain the subject of much debate, the 
broad standard for describing AGI was often encapsulated in the words of Mu-
ehlhauser of the Machine Intelligence Research Institute as an AI agent with “the 
capacity to solve somewhat-arbitrary problems in somewhat-arbitrary environ-
ments” [3]. Expressed differently, the concept of AI generality, known as AGI, is 
the ability of an AI agent to demonstrate human-level reasoning and proficiency 
at performing different tasks in different environments and to transfer its learn-
ing across multiple domains [2] [3]. Based on this premise that most real-world 
applications occur in environments that necessitate AI agents to engage in ex-
ploration, competition, and coordination activities with other intelligent agents, 
it follows that deep reinforcement learning (DRL)-based approaches should pro-
vide a pathway toward AGI [4]. Hence, we empirically investigated AI generali-
zability by applying the DRL-based general-purpose learning agent approach to 
the real-world problem domain of medicine using a quantitative method with an 
experimental design. 

1.1. The Two Main Approaches to Building AGI Systems:  
Rule-Based vs. Learning Systems 

Pei et al. [5] identified two broad conceptual approaches to AGI development: 
the neuroscience-based (emergentist) approach and the computer science-based 
approach. Historically, these approaches have manifested in either rule-based 
systems, such as expert systems, or learning-based systems, such as neural net-
works, ML, and RL systems [1] [6]. Rule-based systems are inspired by logic and 
symbolic reasoning, they rely on human-encoded knowledge and are inherently 
limited in their ability to generalize to novel situations [1] [6]. In contrast, learn-
ing-based systems are grounded in cognitive psychology and neuroscience, they 
exhibit greater adaptability and generalization capabilities [6]. 

1.1.1. Research Questions and Hypotheses 
From the overarching research question, the scientific research is tasked with 
providing theories that answer one of the three research subquestions of the 
same basic form below, and then go beyond descriptions to explanations for the 
research problem by seeking evaluative answers for why the DRL-based gener-
al-purpose learning agent approach may be more generalizable across real-world 
problem domains and tasks. 

RQ1. How can the general-purpose learning agent approach lead to more ge-
neralizable artificial agents? 

H10. The general-purpose learning agent approach cannot lead to a more ge-
neralizable AI agent as measured by the agent’s performance on how well it pre-
dicts an unknown entry. 

H1a. The general-purpose learning agent approach can lead to a more genera-
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lizable AI agent as measured by the agent’s performance on how well it predicts 
an unknown entry. 

The research subquestions: 
RQ2. How will varying the agent’s macro/microstructure affect its generality 

behavior while holding its task and environment constant? 
H20. Varying the agent’s macro/microstructure will have no significant effect 

on its generality behavior as measured by the agent’s performance on how well it 
predicts an unknown entry. 

H2a. Varying the agent’s macro/microstructure will have a significant effect 
on its generality behavior as measured by the agent’s performance on how well it 
predicts an unknown entry. 

RQ3. How will varying the agent’s task affect its generality behavior while 
holding its environment and structure constant? 

H30. Varying the agent’s task will have no significant effect on its generality 
behavior as measured by the agent’s performance on how well it predicts an un-
known entry. 

H3a. Varying the agent’s task will have a significant effect on its generality 
behavior as measured by the agent’s performance on how well it predicts an un-
known entry. 

RQ4. How will varying the agent’s environment affect its generality behavior 
while holding its task and structure constant? 

H40. Varying the agent’s environment will have no significant effect on its 
generality behavior as measured by the agent’s performance on how well it pre-
dicts an unknown entry. 

H4a. Varying the agent’s environment will have a significant effect on its ge-
nerality behavior as measured by the agent’s performance on how well it predicts 
an unknown entry. 

1.1.2. Relationships between Variables 
• Variable construct: general-purpose learning agent framework 
○ Underlying variable concepts: structure, task, and environment 
■ Independent variables: parameters, features, and environment 
• Dependent construct: generalizability 
○ Underlying dependent concept: performance 
■ Dependent variable: prediction accuracy. 

The empirical part of the study involved exploratory techniques for visualiz-
ing, summarizing, exploring, and making modeling decisions; the experimental 
part involved tests and confirmatory procedures for testing the hypotheses and 
answering the research questions based on inferences drawn from the predic-
tions using the testing batch [7]-[12]. The experimentation tests involved run-
ning the AI models several times on the test set, varying the independent va-
riables, and observing the predicted outcomes for performance. These perfor-
mances of the framework were then compared against a baseline to determine 
the generalizability (dependent variable) of the framework on the different tasks. 
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1.1.3. Theoretical Framework 
As Goertzel and Pennachin [13] noted, the theory on AGI is at best a patchwork 
of frameworks that overlap; concepts and hypotheses that are somewhat syner-
gistic, mutually contradictory, and oftentimes problematic. Hence, since this 
study investigated AGI from the context of learning systems and the application 
of the DRL-based general-purpose learning agent approach to medical use cases, 
it follows that DRL should form the basis of the conceptual framework [14]. 
DRL combines DL with RL, which results in a very powerful technique that har-
nesses the immense approximation power and the ability of DNNs to represent 
and comprehend the real world with the ability of RL to act upon that represen-
tation [15] [16]. This relies on the representation work done by neural networks, 
and by learning through a combination of estimating the quality of the envi-
ronment states and probability to balance exploration with exploitation, and ul-
timately to find the optimal policy. As such, the DRL-based general-purpose 
learning agent architecture and the MDP form the foundation of the study [16]. 
Hence, these theoretical underpinnings include the following hierarchical struc-
ture: 
• Learning systems 
○ DL (DNNs) 
○ RL 
■ L 
• General-purpose learning agent architecture 
○ MDP 
○ Convolutional neural network (CNN). 

1) Deep Neural Networks 
Figure 1 illustrates a multilayer perceptron (MLP) in the context of a DNN. 

 

 
Figure 1. Multilayer perceptron (deep neural network). 
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The DNN uses back propagation to satisfy the constraint imposed by our data. 
Back propagation = small circuit search (in MLP in Figure 1). 

Constraint: yi = f(xi; θ). 
The constraint tells us that the output yi must be the same whenever the input 

xi is the same, and that if the function f is a continuous function, then similar 
values of the input xi must lead to similar values of the output yi. Assuming f is 
known, then the likelihood is a function of θ, which can be estimated by max-
imizing the likelihood. 

a) SGD: 
( )R w Lossw w
w w

η α
 ∂ ∂

← − + 
∂ ∂ 

 

b) MLP: j j
j

a w x bφ
 

= + 
 
∑  

where, the xj are the inputs to the unit, wj is the weight, b is the bias, φ is the 
nonlinear activation function, and a is the unit’s activation. 

Thus, constraints are imposed on the neural network circuits with our data, 
the neural network uses stochastic gradient descent to push information from 
our data with these equations into the network parameters, and uses back prop-
agation to make small changes to its weights iteratively until its predictions sa-
tisfy the ground truth data established by our constraint. Hence, the neural net-
work training may be viewed as a constraint satisfaction problem in which the 
neural network performs non-linear function approximations through a form of 
powerful parallel computation in the neurons of the deep neural network as 
shown in Figure 1 with the MLP equation above. 

2) Reinforcement Learning Theory 
Apart from the agent-environment pair, the four main subelements of an RL 

framework system are the reward signal, value function, policy, and the model of 
the environment [16]. The reward signal is the single scaler number that the en-
vironment sends as feedback to an RL agent on each time step based on the 
agent’s action. The goal of an RL problem and the immediate intrinsic desirabil-
ity of environmental states (observations) in terms of the defining features of the 
problem the agent is facing are defined by a reward signal. Hence, the sole objec-
tive of the agent is to maximize the total cumulative reward. The reward signal is 
the main ground for changing the policy if an action selected by the policy re-
sults in a low reward. In contrast to a reward signal, the long-term desirability of 
an environmental state is specified by a value function. The value of a state can 
be viewed as the total amount of future expected rewards that an agent can amass, 
beginning from that state. The policy is a set of associations or stimulus-response 
rules that is core to an RL learning agent, and it is a mapping from perceived 
states that defines the agent’s behavioral actions at any time in those environ-
ment states as shown in Equations (1) to (4) [16] [17]. 

The policy (π) maps states (s) to actions (a): π(s) = a                   (1) 

The action-value function Q gives the expected total reward from a state-action 
from some policy 

https://doi.org/10.4236/jcc.2023.119006


D. S. W. Nguyen, R. Odigie 
 

 

DOI: 10.4236/jcc.2023.119006 89 Journal of Computer and Communications 
 

( ) 2
1 2 3, | ,t t t t tQ s a E r r r s s a aπ γ γ+ + + = + + + = = �            (2) 

The optimal action-value function *Q  gives the best value possible from any 
policy 

( )* 2
1 2 3, max | , ,t t t t tQ s a E r r r s s a aπ γ γ π+ + + = + + + = = �       (3) 

( )*max , | ,s aE r Q s a s aγ′ ′ ′ ′= +                      (4) 

The policy involves extensive computational search processes that use deep 
CNNs for their function approximation [16] (see Figure 2). 

Figure 2 shows that when assigned a task, the agent interacts with an envi-
ronment through a sequence of observations, actions, and rewards. The agent’s 
goal is to select actions in a fashion that maximizes its cumulative future reward. 
With the DQN model, we used a deep convolutional neural network to approx-
imate the optimal action-value function. With the PPO model, we used the deep 
convolutional neural network to approximate the optimal policy directly. We 
used transfer learning to speed up training and effectively to relax the IID hypo-
thesis [18] [19] . 

1.1.4. Hypothesized Research Model 
The RL framework learns action sequences through an optimal policy that re-
sults in the maximum expected reward. In DRL mode (Figure 3), however, the 
huge approximation capability of DNN augments and enhances the RL frame-
work [10] [14] [20]. The DNN learns the model as the set of actions that the  
 

 
Figure 2. Agent-environment interaction in a Markov decision process [16]. 

 

 
Figure 3. DRL-based general-purpose learning agent. 
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agent could take in the environment, it determines the choice of what decision is 
good to explore or what action to take, and the search degree increases or de-
creases at every step depending on the structure of the task [10] [15]. The model 
learns the quality of the environment and the most likely actions that will result 
in success, and therefore the most fruitful to explore to arrive at a successful en-
vironment state [10]. 

2. Materials and Methods 
2.1. Methodology 

A quantitative empirical research methodology is the optimal approach for this 
study since the study focuses on the scientific development aspect of AI, requires 
exploration and experimentation to answer the research questions, requires sta-
tistical analysis and numerical quantification of the data collection, and seeks 
facts and causal relationships [21] [22]. Adopting a quantitative empirical me-
thodology for this study is in line with the tradition of empirical AI studies in-
volved in the technological development aspects of AI where agents perform tasks 
in environments, with experimental research design being the de facto research 
design [10] [11] [21]. The choice of methodology in AI research is influenced by 
the objectives of the study—as studies focused on the scientific developmental 
aspect of AI traditionally employ the quantitative methodology, and conversely, 
studies focused on the social/societal aspects of AI such as the ethical issues, 
public perceptions, and impacts of AI, employ the qualitative methodology [21]. 
As such, an empirical quantitative research methodology is most suited to this 
study since it focuses on the technological development aspect of AI, and ans-
wering the research questions requires exploration and experimentation, quan-
tifying of the data collection and analysis, and seeking facts and relationships 
[22]. This is in line with the findings of Kamiri and Mariga [21] whose analysis 
of 100 AI/ML articles published in IEEE journals since 2019 revealed that the 
quantitative research method with experimental research design was the de facto 
research approach for AI/ML research. 

Neither a qualitative nor a mixed methodological inquiry is practical for this 
study since they both require people’s lived experiences from the people’s pers-
pectives, whereas this study does not involve or interact with human subjects, 
but rather, uses existing datasets to generate results directly from the experi-
mental process [22]. Also, a qualitative methodological inquiry is not suitable for 
this study because the research focus of this study is on the scientific develop-
mental aspect of AI, and not on the social or societal aspects that require human 
interaction to generate rich descriptive data through structured interviews, cul-
tural immersion, case studies, or observations. Further, since AGI is an aspira-
tional goal that the general society does not yet access or understand, only AGI 
researchers within the broader AI field have some requisite lived experience to 
be useful human subjects in a qualitative study. In terms of furthering AGI de-
velopment, however, it is doubtful that gathering data from AGI researchers 
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through such human participant interactions would be of any benefit to AGI 
development or any real-world problem domain. However, experimenting with 
different solutions can provide us with the data to study the problem scientifi-
cally, along with providing some insight. Also, surveyed scientific developmental 
studies on AI/AGI use the quantitative empirical approach with experimental 
designs and generate results directly from the experimental process [21]. Only 
studies dealing with the social or societal aspects of AI utilize the qualitative me-
thod to gather data from human subjects [22]. 

2.2. Methodological Framework 

This quantitative empirical study follows the tradition of empirical research me-
thods for studying AI programs that perform tasks in environments. We em-
ployed quantitative data analysis and experimentation by running the DRL agent 
several times for convergence and observing the prediction outcome [7]-[12]. 
Each experimental test was a different run of the model on the test set [10] [11]. 
The test results are the predictions made by the AI model based on its predic-
tion/classification of medical conditions from the medical image test set. These 
test results were then compared for the performance of the AI predictions against 
a baseline [23]. The generality of the model was then evaluated based on the test 
results to determine how general the model was at the different tasks. In this de-
sign, we built a DRL-based AI model with the RL approach at the top level for 
decision making through its policy-value network and reward function, and the 
lower level ran a CNN for computer vision to process medical images [7] [8] 
[11] [24]. Medical image data were collected from the NIH open access dataset 
libraries comprising thousands of already cataloged medical images [25] [26] 
[27] [28]. The images were randomly partitioned into a training set, validation 
set, and test set [20]. Hence, the study sample was the medical image test set, and 
the sample size was the number of images accessed in the test set.  

2.3. Design of the Study 

This study used an experimental design. The empirical AI research design clus-
tered on the one hand into exploratory data analysis for visualizing, summariz-
ing, exploring, and modeling; and on the other hand, into experimental confir-
matory procedures for testing the research hypotheses, where empirical = ex-
ploratory + experiments [3] [17] [19] [24] [29] [30]. The agent performed a 
task according to the experimental protocol of medical image classification. In 
the exploratory part, the macro/microstructure of the agent’s behavior was 
observed and analyzed. In the experiment part, its parameters were tuned or va-
ried. 

The six important components of the empirical AI research design were the 
protocol, agent, environment, task, data collection, and analysis [31]. The agent, 
task, and environment components belong to the theories of the agent’s behavior 
domain, while the protocol, data collection, and analysis components belong to 
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the domain of empirical method [31]. The behavior domain component (the in-
teraction of these influences) was then observed and measured as the agent per-
formed a task in an environment [31]. Medical image data were collected from 
the NIH open-access medical image dataset libraries available free online for ML 
research (see Appendix A for samples of medical images from the datasets and 
the download links). The open-access datasets library is comprised of thousands 
of already cataloged medical images [14] [31] [32] [33]. The images were ran-
domly partitioned into a training set, validation set, and test set [29] . Hence, the 
study sample was the medical image test set, and the sample size was the number 
of images accessed in the test set. The design of the study is illustrated in Figure 
4. 

2.3.1. Population 
The population was the anonymized dataset from the NIH open-access medical 
image dataset libraries available free online for ML research (see Appendix A 
for sample of medical images from the datasets and the download links). Medi-
cal imaging accounts for 90% of healthcare data and consists of different classes 
of medical conditions [9] [34] . These medical image data were randomly ac-
cessed from the open-access dataset library comprising thousands of deidenti-
fied and cataloged medical images [25] [26] [27] [28]. 

1) Datasets 
Annotated high-quality datasets are necessary to enhance the ability of DL- 

based models to draw useful hierarchical relationships [35]. The dataset is com-
prised of completely anonymized high-quality medical images that have been 
stripped of all identifying information before being made publicly available for 
free on the NIH open-access medical image dataset libraries. The images are 
generated from X-ray medical imaging technology for diagnoses of various medi-
cal conditions. In this study, these different image categories were run indivi-
dually as medical tasks.  

2) Data Preprocessing 
Real-world data are messy [36]. This requires that the data be first prepro-

cessed and cleaned up to enable ML algorithms to process them correctly. Hence, 
the data were preprocessed to clean up missing values, quality, noise, and so 
on . Similarly, some data features were re-engineered for heterogeneity, one- 
hot encoding of annotations was carried out to ensure proper processing, and 
all images were normalized by 1/255 to ensure pixel values ranged between 0 
and 1. 

2.3.2. Sample 
The sample comprised of 112,000 already anonymized and deidentified medical 
images from the NIH open-access medical image dataset libraries, and it was 
randomly partitioned into a training set, validation set, and test set [29]. The da-
ta were partitioned with 70% in the training set, 15% in the validation set, and 
the remaining 15% in the test set. Hence the medical image test set was 1500 
images. 
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Figure 4. Study design. 
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2.3.3. Instruments 
This was computer-based research conducted on a computer using software 
agents (model/program) to perform classification tasks on already anonymized 
and deidentified publicly available image data downloaded from the NIH. The 
experimental tasks were conducted in a software environment on a computer. 
The development packages were: 
• Python 3.8, 
• TensorFlow and Keras for DNN development, 
• Sequential model API from Keras library, and, 
• PyTorch for the RL framework. 

2.3.4. Exploratory 
The exploratory data analysis included data preprocessing or cleaning and fea-
ture engineering. These included dealing with missing values, noise, normality 
of data, and outliers. Similarly, some data features were re-engineered for hete-
rogeneity, and one-hot encoding of annotations were performed. Exploratory data 
analysis included frequencies, skewness, standard deviation, and Pearson’s cor-
relation analysis. 

2.3.5. Experimental 
All experiments were run on a 64-bit Windows-10 Dell Latitude with an Intel® 
Core™ i7-4810MQ CPU @ 2.80 GHz processor and 16 GB of RAM. The gener-
al-purpose agent was trained and evaluated with the open-access medical data, 
and summaries of the experiments are presented in tables and charts. The DNN 
training part was carried out on the Google Colab™ platform with 25 GB of 
RAM, 12 GB of GPU, and 64 GB of HBM. The development packages were Py-
thon 3.8, TensorFlow and Keras for DNN development, sequential model API 
from Keras library, and PyTorch for the RL framework. 

The collected data were partitioned with 70% in the training set, 15% in the 
validation set, and the remaining 15% in the test set [29]. The data were explored 
to enable modeling decisions. This included the following tasks. 
• We randomly initialized the model, 
• We trained the model on the training set, 
• We evaluated the model’s performance on the validation set, 
• We evaluated the model on the test set [37]. 

The test set was left untouched until the experimental testing stage of the project 
[37]. In the meantime, only the training set and the validation set were used for 
hyperparameter tuning and optimization. After training the DNN model on the 
training set, the validation set was used to guide all decisions regarding model 
architecture and hyperparameters. During the experimental procedure, we va-
ried the following to assess the agent’s generality behavior based on the research 
questions: 

1) We varied the structure of the agent while holding its task and environment 
constant. 

2) We varied the agent’s task while holding its environment and structure 
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constant. 
3) We varied the agent’s task environment while holding its task and structure 

constant. 

2.3.6. Varying the Structure of the Agent 
The micro/macrostructure of the agent was varied by tuning its hyperparame-
ters. In the AI/ML field, the optimization activity that enables the learning process 
of an ML model to be influenced by the value of a parameter is referred to as 
hyperparameter tuning [38] [39]. These hyperparameters are distinct from mod-
el parameters, such as weights, which are learned by the model during training. 
The hyperparameter tuning involved configuring parameters such as the learn-
ing rate, number of hidden layers, number of nodes, number of epochs, regula-
rization constant, kernels, momentum, and so on. The learning process of DNN- 
based models is extremely sensitive to the influence of hyperparameters [38] . For 
this study, we varied the following optimization settings for the different micro/ 
macrostructure of the agents: 
• We decided on the number of DNN layers (depth). 
• We decided on the number of neurons in each layer (width). 
• We decided on the shape/number of kernels at each layer of the CNN. 
• We decided on a pretrained feature extractor and fixed the weights. 
• We decided to use the ReLU and SoftMax activation functions. 
• We decided to use dropout rather than early stopping, decided not to com-

bine dropout with early-stopping, decided at which point in the model to use 
dropout, and decided on the dropout probability. 

• We decided on batch normalization. 
• We decided on which to use Stochastic Gradient Descent (SGD) loss opti-

mizer. 
• We decided on a learning rate. 
• We decided on a loss function to optimize classification models. 
• We decided on a batch size of 32 [37]. 

2.3.7. Varying the Task Assigned to the Agent 
The task assigned to the agent was varied while its structure and environment 
were held constant. The problem tasks assigned to the agent were image classifi-
cation and prediction problems. Its generality behavior was then observed, and 
its performance was compared against the baseline. 

2.3.8. Varying the Agent’s Environment 
The agent’s task environment was varied while its structure and task were held 
constant. During inference, images were varied between different dimensions in 
both binary and multiclass environments. Its generality behavior was then ob-
served, and its performance was compared against a baseline.  

2.4. Data Analysis Procedure 

The data were collected, analyzed, and evaluated with exploratory data analysis 
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and standard ML analysis procedures, and then interpreted. This exploratory 
first step in the ML approach helped us to develop the modeling process, under-
stand the data, and resolve preliminary questions. The exploratory data analysis 
included preprocessing or data cleaning and feature engineering. These included 
dealing with missing values and dealing with normality of data, and outliers 
[35]. Similarly, some data features were re-engineered to one-hot encoding of 
annotations. Exploratory data analysis of the textual components of the dataset 
included frequencies, skewness and kurtosis, standard deviation, and Pearson’s 
correlation analysis. 

2.4.1. Evaluation Metrics 
Classification evaluation metrics including the F1 weighted score, precision, and 
recall were the standard classification evaluation metrics. Accuracy, which is the 
percentage of classes that the model correctly predicts, was used to measure per-
formance. Also, the Softmax function enabled probability outputs. Other metrics 
included the following. 
• Softmax Cross-Entropy Loss: The loss function is the empirical loss (or the 

mean loss) across all our examples in the DNN. The Softmax cross-entropy 
loss for binary output classification was defined by the cross entropy between 
two probability distributions, and it measured how far apart the ground truth 
probability distribution was from the predicted probability distribution [15]. 

• Mean Squared Error (MSE): This is useful to predict the result as a real number 
rather than as a probability or percentage. This different output type is a con-
tinuous variable that requires a different loss called the mean squared error. 
This measures just the squared error, that is, the squared difference be-
tween our ground truth and our predictions averaged over the entire data set 
[15]. 

• Confusion Matrix: This is useful to evaluate the performance of classifiers in 
terms of Type 1 & Type 2 errors. 

• F1 Score: This is the harmonic mean between precision and recall (sensitivity 
analysis), and it is used to evaluate the quality and performance of our clas-
sifier agents. 

• Hypothesis Testing: This statistical testing based on the test data distribution. 
• Inference: Inferences were drawn on the predictions using the testing batch. 

2.4.2. Study Setup 
This study had both an exploratory component and an experimental compo-
nent. The exploratory part of this study involved an exploratory data analysis 
and evaluation of the dataset. The experimental part involved the training, test-
ing, and performance evaluation of four different network model architectures, 
during which the performance on assigned tasks were explored and observed 
[7]-[12]. The setup used a basic DNN model as the baseline architecture. We 
improved upon the baseline model with a deep CNN architecture incorporating 
transfer learning [18] [19] [30]. This was followed by a DRL-based DQN agent 
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architecture [17] [40], and a PPO agent architecture [41]. The results are as fol-
lows. 

3. Results and Discussion 
3.1. Results of the Exploratory Data Analysis 

The preprocessed dataset contained 112,000 chest X-ray images with disease la-
bels from 30,000 patients. Among the 15 labels observed in the dataset, one in-
dicated no finding, while the remaining 14 represented various medical disease 
conditions. To facilitate binary classification, we created a new column called 
pneumonia_class, distinguishing cases with and without pneumonia. We removed 
columns with null values (no records) and dropped skewed data. Most disease 
conditions presented comorbidities. The no finding label was the most frequent 
in the dataset, accounting for 60,361 out of 112,000 images, signifying class im-
balance. To address this imbalance, we down-sampled the majority class in the 
training set to achieve a 50-50 balance with the minority class. For the validation 
and test sets, we randomly sampled non-pneumonia cases at four times the size 
of the number of positive pneumonia cases to maintain the original real-world 
dataset proportions. We divided the 112,000 medical image datasets into a 70/15/ 
15 partition, allocating 70% to the training set, 15% to the validation set, and 
the remaining 15% to the test set. Data splits and sizes we used as shown in Ta-
ble 1. 

3.2. Results of Experimental Tests 
3.2.1. Baseline DNN Model 
A supervised learning DNN model served as a performance baseline. This model 
consisted of five hidden dense layers with ReLU activations, dropout layers, and 
an output layer with a Softmax activation function [42]. Employing a batch size 
of 32, the model yielded a mean accuracy of 50.3%, as shown in Table 2. Table 
in Appendix C presents a summary of the mean prediction accuracy perfor-
mance scores observed across all four models in twelve experimental trials be-
tween binary and multi-class classification tasks. 
 
Table 1. Data splits. 

Data Split Size 

Training set size 78,448 

Validation set size 16,810 

Test set size 16,811 

 
Table 2. Baseline DNN model results. 

Metric Score 

Test accuracy 0.503 
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3.2.2. Deep CNN Model with Transfer Learning 
A deep CNN model was constructed and trained on the training set to classify 
the medical disease conditions, and then validated on the validation set. The mod-
el incorporated transfer learning by integrating a pretrained VGG-16 layer. VGG- 
16 is a deep CNN with 16 layers and approximately 138.3 million parameters 
[43]. Additionally, 12 hidden layers were added, comprising 28.7 million traina-
ble parameters, ReLU activation, and dropout layers. A batch size of 32 was uti-
lized, resulting in a mean accuracy of 65%, as indicated in Table 3. 

3.2.3. DRL-Based DeepQ Network 
A DRL-based learning agent employing a DQN from OpenAI Baselines was im-
plemented [13]. As with the previous models, a batch size of 32 was used. The 
dueling component of the DQN introduced an architectural variation, enabling 
the final layer to be divided into two distinct 32-unit layers that separately con-
verged into a single final output for each action [40]. A mean accuracy of 68% 
was achieved, as shown in Table 4. 

3.2.4. DRL-Based Proximal Policy Optimization 
A DRL-based learning agent utilizing a PPO model was implemented. As with 
the prior models, a batch size of 32 was employed. The PPO model introduced 
an architectural variation wherein a value head was added after the final DNN 
layer, with a final output [41] [44]. A mean accuracy of 69% was obtained (see 
Table 5). 

3.3. Evaluation of Findings Pertaining the Research Questions 

1) How Can the General-Purpose Learning Agent Approach Lead to More 
Generalizable Artificial Agents? 

The findings suggest that the general-purpose learning agent approach can lead 
to more generalizable artificial agents by varying their macro/microstructures to 
solve their given task and environment. The findings further indicate that the  
 
Table 3. Results for the deep CNN Model with transfer learning. 

Metric Score 

Test accuracy 0.650 

 
Table 4. Results for the DeepQ network. 

Metric Score 

Test accuracy 0.680 

 
Table 5. Results for proximal policy optimization. 

Metric Score 

Test accuracy 0.690 
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macro/microstructure is most effective at making artificial agents more genera-
lizable. Previous studies have similarly discovered that hyperparameter optimi-
zation plays a significant role in achieving higher performance [45] [46] [47]. 
Although the findings also demonstrate that tasks and environments can be mod-
ified to enhance agent generalizability, this effect can be attributed to the under-
lying network [48] and the net effect of aligning an appropriate task and envi-
ronment with a suitable macro/microstructure, as the correct architecture should 
ultimately resolve any given task and environment. 

Further, the experimental test observations and findings indicate that varying 
the agent’s micro/macrostructure had the strongest influence on performance. 
This was followed by varying the type of assigned tasks in which higher accuracy 
was recorded for binary classification tasks. Varying the agent’s environment to 
higher dimensions had the least positive influence on performance. This is ac-
counted for by the high variance in the image pixel intensity distribution for the 
different class samples along with their respective mean and standard deviations. 
The higher dimensions present a significant challenge as the model tries to ad-
just its internal parameters to get each feature tensor in the diverse range of pixel 
values in the target as close as possible to the feature tensors in the test set [49]. 

2) Statistical Inference and Hypotheses Tests 
To statistically test our hypotheses, we made inferences from statistics as 

functions on our samples to parameters as functions on the population to infer 
that the general-purpose learning agent approach will generalize well on a pop-
ulation of unknown entries. We defined the terms as follows: 
• Level of significance α of 0.05 = 5%. 
• μBaseline: The mean population performance of the baseline model obtained by 

the combined means for the baseline Keras and CNN models from twelve 
trials each = 58%. 

• μGeneral-purpose agent: The mean population performance of the general-purpose 
learning agent approach obtained by the combined means for the PPO and 
DQN models from twelve trials each = 68.4%. 

Thus, for the hypotheses H1 of the main research question, we assumed that 
the mean population performance of the baseline and that of the general-purpose 
learning agent approach were equal. Then we assessed the probability of the 
sample result to see whether this probability was small enough to reject the as-
sumption that the entities are equal. We formulated the expressions for the null 
and alternate hypotheses as follows: 

H10.μBaseline = μGeneral-purpose agent 

H1a.μBaseline ≠ μGeneral-purpose agent 

To decide whether to reject or not reject the null hypothesis, we looked at 
three specific output values, namely the t Stat or test statistic, the t Critical two- 
tail, and the P (T ≤ t) two-tail or the two-tail p-value (see Table 6 and Figure 5). 
First, we compared our test statistic to the critical value by putting half (2.5%) of 
our level of significance, α, of 5% in each tail of the two-tail test, resulting  
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Table 6. Unpaired t-test for H1. 

Unpaired t-test   

Alpha 0.05  

Hypothesized  
Mean Difference 

0  

 Baseline Models 
General-purpose agent 

approach 

Mean 57.58 68.39 

Variance 73.72605042 29.6 

Observations 36 36 

Observed Mean Difference −10.81  

standard error of difference 1.677  

df 70  

t Stat −6.507  

P (T ≤ t) one-tail 0.0000000334  

t Critical one-tail 1.67202883  

P (T ≤ t) two-tail 0.0001  

t Critical two-tail 2.002465403  

 

 
Figure 5. Unpaired t-test plot. 
 
in two critical values of −3.25 and +3.25 on the left and right side respectively. 
The result showed that our test statistic of −6.507 fell in the rejection area on the 
left as it was less than −3.25. Thus, indicating that we must reject the Null. Next, 
we compared the P (T ≤ t) two-tail or the two-tail p-value against our level of 
significance α, of 5%. The result showed that our p-value of 0.0001% or 0.01% is 
smaller than our level of significance, α, of 5%. Thus, we conclude that there is a 
very statistically significant difference between the mean baseline model’s gene-
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ralizability and the mean generalizability of the general-purpose learning agent 
approach. Hence, we reject the Null hypothesis in favor of the alternative. 

3) How Will Varying the Macro/Microstructure of the Agent Affect its 
Generality Behavior While Holding its Task and Environment Constant? 

We varied the macrostructure of the artificial agent through different model 
architectures. Similarly, we varied the microstructure of the artificial agent 
through hyperparameter tuning. Varying the agent’s micro/macrostructure had 
the strongest influence on performance for the different model architectures 
ranging from 54% for the base DNN model, 69.3% for the deep CNN model, and 
72.3% for the DQN model to 75.2% for the PPO model. This is in line with pre-
vious studies, which found that hyperparameter optimization was significantly 
responsible for higher performance [45] [46] [47]. 

For the hypotheses H2 of research question RQ2, we assumed that the mean 
population for the performance observed when the agent’s macro/microstructure 
was varied and that of the general-purpose learning agent approach were equal. 
We formulated the expressions for the null and alternate hypotheses as fol-
lows: 

H20.μMacro/microstructure = μAgent’s Performance 

H2a.μMacro/microstructure < μAgent’s Performance 

We conducted a one-sample t-test (see Table 7) and compared the mean 
score of 73.6% obtained from varying the agent’s macro/microstructure with the  
 
Table 7. One-sample t-test for H2. 

One sample t test results  

P value and statistical  
significance: 

 

 The two-tailed P value equals 0.1365 

 
By conventional criteria, this difference is  
considered to be not statistically significant. 

Confidence interval:  

 The hypothetical mean is 75.00000 

 The actual mean is 73.600000 

 
The difference between these two values is 
−1.400000 

The 95% confidence interval of 
this difference: 

 

 From −3.3181050474 to 0.5181050474 

Intermediate values used in 
calculations: 

 

 t = −1.6065 

 df = 11 

 standard error of difference = 0.871 
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hypothetical mean value of = 75% obtained from the overall performance of the 
general-purpose learning agent approach to test whether the mean score from 
varying the agent’s macro/microstructure differs significantly from 75%. The 
results showed that our p-value of 0.1365 or 13% is larger than our level of signi-
ficance α, of 5%. Thus, we conclude that there is no statistically significant dif-
ference in the mean obtained from varying the agent’s macro/microstructure 
with the mean value of 75% obtained from the overall performance of the gen-
eral-purpose learning agent approach. Hence, we fail to reject the Null hypothe-
sis. 

4) How Will Varying the Agent’s Task Affect Its Generality Behavior While 
Holding its Environment and Structure Constant? 

We varied the artificial agent’s tasks between binary classification of a single 
condition (pneumonia), and multiclass classification of the 15 disease conditions 
shown in Figure C1 in Appendix C. The assigned task had a high influence on 
the performance of the different model architectures. However, since aligning a 
suitable task with a suitable macro/microstructure with the right architecture 
should ultimately solve any given task, the net positive effect on the model’s per-
formance can be attributed to the underlying network rather than the assigned 
task [48]. 

For the hypotheses H3 of research question RQ3, we assumed that the mean 
population for the performance observed when the agent’s task was varied and 
that of the general-purpose learning agent approach were equal. We formulated 
the expressions for the null and alternate hypotheses as follows: 

H30.μTask = μAgent’s Performance 

H3a.μTask < μAgent’s Performance 

We conducted a one-sample t-test (see Table 8) and compared the mean 
score of 68.4% obtained from varying the agent’s task with the hypothetical 
mean value of 75% obtained from the overall performance of the general-pur- 
pose learning agent approach to test whether the mean score from varying the 
agent’s task differs significantly from 75%. The results showed that our p-value 
of 0.00000118 is smaller than our level of significance α, of 5%. Thus, we con-
clude that there is a very statistically significant difference in the mean obtained 
from varying the agent’s task with the mean value of 75% obtained from the 
overall performance of the general-purpose learning agent approach. Hence, we 
reject the Null hypothesis in favor of the alternative. 

5) How Will Varying the Agent’s Task Environment Affect Its Generality 
Behavior While Holding Its Task and Structure Constant? 

We varied the artificial agent’s task environment between image environments 
with different input dimensions. On sizes greater than the standard 224 × 224 
input medical image with three channels, the DRL-based models trained poor-
ly showing little influence on performance improvement. This is a result of the 
significant number of computations involved in training the parameters [50]. 
Higher dimensions present a significant challenge for the model as it attempts to  
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Table 8. One-sample t-test for H3. 

One sample t test results  

P value and statistical  
significance: 

 

 The two-tailed P value equals 0.00000118 

 
By conventional criteria, this difference is  
considered to be very statistically significant. 

Confidence interval:  

 The hypothetical mean is 75.000000000 

 The actual mean is 68.416666700 

 
The difference between these two values is 
−6.583333300 

The 95% confidence interval of 
this difference: 

 

 From −8.102876501 to −5.063790099 

Intermediate values used in 
calculations: 

 

 t = −9.5356 

 df = 11 

 standard error of difference = 0.690 

 
adjust its internal parameters to get each feature tensor in the diverse range of 
pixel values in the target as close as possible to the feature tensors in the test set 
[49]. Hence, training improved with smaller input dimensions of one-dimen- 
sional feature vectors. 

For the hypotheses H4 of research question RQ4, we assumed that the mean 
population for the performance observed when the agent’s task was varied and 
that of the general-purpose learning agent approach were equal. We formulated 
the expressions for the null and alternate hypotheses as follows: 

H40.μEnvironment = μAgent’s Performance 

H4a.μEnvironment < μAgent’s Performance 

We conducted a one-sample t-test (see Table 9) and compared the mean 
score of 63% obtained from varying the agent’s environment with the hypothet-
ical mean value of 75% obtained from the overall performance of the gener-
al-purpose learning agent approach to test whether the mean score from varying 
the agent’s environment differs significantly from 75%. The results showed that 
our p-value of 0.00000022 is smaller than our level of significance α, of 5%. 
Thus, we conclude that there is an extreme statistically significant difference in 
the mean obtained from varying the agent’s environment with the mean value of 
75% obtained from the overall performance of the general-purpose learning 
agent approach. Hence, we reject the Null hypothesis in favor of the alternative. 
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Table 9. One-Sample t-test for H4. 

One sample t test results  

P value and statistical  
significance: 

 

 The two-tailed P value equals 0.00000022 

 
By conventional criteria, this difference is  
considered to be extremely statistically significant. 

Confidence interval:  

 The hypothetical mean is 75.0000 

 The actual mean is 63.0000 

 
The difference between these two values is 
−12.0000 

The 95% confidence interval of 
this difference: 

 

 From −14.3463 to −9.6537 

Intermediate values used in 
calculations: 

 

 t = −11.2570 

 df = 11 

 standard error of difference = 1.066 

3.4. Exploratory Data Analysis 

Exploratory data analysis and experiment results are presented in tables, graphs, 
and figures in this section and in the appendices. They include visualizations 
from the exploratory data analysis. The classes of disease conditions and their 
counts in the datasets, along with the top 15 disease co-morbidity and their 
counts are in Table 10. The percentage distribution of each disease occurrence 
in the dataset are presented in Figure C1 in Appendix C. Also, the comorbidity 
distribution of the top 30 disease conditions is presented in Figure 3, and the 
heatmap for the correlation of comorbidity of disease conditions is presented in 
Figure C2 in Appendix C. Similarly, the pixel intensity distributions of different 
class samples are analyzed and presented in Figures C3-C9 in Appendix C with 
their means and standard deviations. 

3.5. Deep Neural Network Model Building and Training, Testing,  
and Performance Evaluation 

The presented data from the experiments and analysis included visualizations 
and reported data. The receiver operating characteristic curve for the baseline 
CNN model, which is helpful for predicting the probability of binary outcomes 
for different potential threshold values is presented in Figure C6 in Appendix C, 
with optimal threshold values between 0.451 to 0.667. Figure C7 and Figure C8  

https://doi.org/10.4236/jcc.2023.119006


D. S. W. Nguyen, R. Odigie 
 

 

DOI: 10.4236/jcc.2023.119006 105 Journal of Computer and Communications 
 

Table 10. Classes of disease conditions in the dataset. 

 Disease Condition Class 
Count for Each 
Disease Class 

Top-15 Comorbidity  
Occurrences 

Comorbidity  
Count 

1. No Finding 60,361 Infiltration|Pneumonia 199 

2. Infiltration 19,894 Edema|Infiltration|Pneumonia 137 

3. Effusion 13,317 Atelectasis|Pneumonia 108 

4. Atelectasis 11,559 Edema|Pneumonia 83 

5. Nodule 6331 Effusion|Pneumonia 54 

6. Mass 5782 Effusion|Infiltration|Pneumonia 42 

7. Pneumothorax 5302 Consolidation|Pneumonia 36 

8. Consolidation 4667 Atelectasis|Infiltration|Pneumonia 34 

9. Pleural_Thickening 3385 Atelectasis|Effusion|Pneumonia 23 

10. Cardiomegaly 2776 Edema|Effusion|Infiltration|Pneumonia 21 

11. Emphysema 2516 Edema|Effusion|Pneumonia 19 

12. Edema 2303 Nodule|Pneumonia 19 

13. Fibrosis 1686 Atelectasis|Effusion|Infiltration|Pneumonia 18 

14. Pneumonia 1431 Atelectasis|Consolidation|Pneumonia 15 

15. Hernia 227 Consolidation|Infiltration|Pneumonia 13 

 
in Appendix C show that the maximum F1 score is 0.571, the threshold is 0.451, 
the precision is 0.400, and the recall is 1.000. Figure C9 in Appendix C presents 
the model’s training and validation loss vs. accuracy. 

4. Discussion of Findings and Theoretical Foundations 

DRL has been posited as a promising pathway toward general AI based on the 
premise that most real-world applications of AI occur in complex environments 
where artificial agents must engage in exploration, competition, and coordina-
tion activities with other intelligent agents [4] [10] [11]. Also, since DRL is the 
only subfield of AI that unbinds AI from fixed datasets to learn from the expe-
rience of interacting with its environment, DRL naturally lends itself toward be-
ing more generalizable than other current AI approaches [10] [35] [51]. A quan-
titative empirical research methodology was adopted for this study since the 
study required exploration and experimentation to answer the research ques-
tions, and it required statistical analysis and numerical quantification of the col-
lected data to determine facts and relationships [21] [22]. Thus, we investigated 
AI generalizability through the application of the DRL-based general-purpose- 
learning agent approach to different medical tasks and tested the framework on 
NIH medical image datasets comprising 112,000 chest x-ray images with disease 
labels from 30,000 patients. There were 15 classes in the dataset indicating the 
different medical disease conditions shown in Table 10. 

The study employed both an exploratory and an experimental component. 

https://doi.org/10.4236/jcc.2023.119006


D. S. W. Nguyen, R. Odigie 
 

 

DOI: 10.4236/jcc.2023.119006 106 Journal of Computer and Communications 
 

The exploratory component involved exploratory data analysis and evaluation of 
the dataset. The experimental part involved the training, testing, and perfor-
mance evaluation of four different network model architectures, and their per-
formance on assigned tasks was then observed and explored [7]-[12]. Specifical-
ly, we applied artificial agents to the classification of healthcare patients’ medical 
image data and varied the agent’s micro/macrostructure between different mod-
els and hyperparameters, we varied the agent’s tasks between binary and multic-
lass classification tasks, and we varied the agent’s task environment between im-
age environments with different dimensions during inference [52]. The setup 
used a basic DNN model as the naive baseline architecture. We improved upon 
the baseline model with a deep CNN architecture incorporating transfer learning 
[19] [30] [51]. This was followed by a DRL-based DQN agent architecture [17] 
[40] and a PPO agent architecture [41]. The DQN agent used Q-learning which 
is a value-based off-policy method that enables learning from the data to com-
pute the target without considering how the experience is generated, while the 
PPO is an on-policy actor-critic algorithm [16]. Both the DQN and PPO agents 
are model-free algorithms (see Appendix B for DQN and PPO algorithms). In 
defining the reward function for our RL models, greedy actions were preferred 
rather than taking actions that affect their long-term reward, the models focused 
on predicting each medical condition separately. Hence, we experimented with 
cumulative rewards per episode with discount factors between 0.1 and 0.9. Re-
gularisation of the neural networks was implemented with dropouts in the final 
MLP layer. Since the NIH image dataset is a hard classification problem even for 
human experts, we implemented transfer learning through a pretrained CNN as 
the feature extractor.  

On the main research question of how the general-purpose learning agent ap-
proach can lead to more generalizable artificialagents, our findings indicate that 
DRL-based AI agents can be more generalizable by varying their macro/micro- 
structures to suit their task and environment. However, we encountered two 
primary obstacles to generalizability: task-independent learning due to cata-
strophic forgetting of previous knowledge as the Deep Neural Network (DNN) 
attempted to learn multiple new tasks sequentially, and the necessity of prob-
lem-specific design and tuning, which required us to hand-craft problem-specific 
representations for different types of tasks [53] [54] [55]. Although several solu-
tions have been proposed to address these issues, none have been entirely satis-
factory [16]. Consequently, this study’s artificial agents were trained separately 
for each task, rather than achieving a single agent that could perform all tasks 
simultaneously. Regarding the challenge of problem-specific design and tuning, 
classification algorithms typically require classes or categories of items to be un-
iquely presented for clear distinction between them. However, the comorbidity 
disease conditions in the NIH dataset were presented as tuples, and this pre-
sented a special case implying that a condition could belong to multiple classes. 
While such logic is understandable to humans familiar with notions of shared 
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characteristics, it confounded the AI models, necessitating some hand-craft 
hand-crafting. Consequently, this study did not produce a single agent that si-
multaneously performed all its assigned tasks. Instead, we manually modified 
and trained different agents separately for each task.  

To overcome the limitations of problem-specific representations and the need 
for manual intervention, algorithmic flexibility could equip the agent with the 
versatility to explore different algorithmic options autonomously. This would 
require the agent to have internal autonomy to self-vary its macro/microstructure, 
thus eliminating the need for problem-specific design and tuning. This idea 
aligns with similar arguments presented in other studies [16] [56]. Ha [56] ar-
gued that instead of merely learning a policy to manipulate an agent with a fixed 
design, the agent’s physical structure should be optimized by learning a version 
of its design along with a policy that best suits its task. Sutton and Barto [16] 
stressed the importance of having Reinforcement Learning (RL) agents select 
their tasks and predictions rather than relying on manual human intervention. 
They further argued that even if this requires a general language for predictions, 
it will promote exploration as the agent would have to systematically explore 
large spaces of possible predictions to identify the most useful ones.  

On the subquestion of how varying the agent’s micro/macrostructure affects 
its generality behavior, varying the agent’s micro/macrostructure had the strongest 
influence on performance for the different model architectures with improve-
ments ranging from 54% for the base DNN model, 69.3% for the deep CNN 
model, and 72.3% for the DQN model to 75.2% for the PPO model. Previous 
studies have similarly found that hyperparameter optimization was significantly 
responsible for better model performance [45] [46] [47]. On the subquestions of 
how varying the agent’s task and environment affects its generality behavior, our 
findings indicate that while tasks and environments can be varied to make the 
agent more generalizable, this effect can be attributed to the underlying network 
[48] and the net effect of aligning a suitable task and environment with an ap-
propriate macro/microstructure since building the right architecture should ul-
timately solve any given task and environment. This further indicates that the 
macro/microstructure is the most effective factor in making artificial agents more 
generalizable. 

Intuitively, this suggests that internal autonomy to implement algorithmic flex-
ibility is necessary for a truly versatile AGI agent. For any assigned task, we can 
manually vary the macro/microstructure of the artificial agent to solve the task. 
Similarly, for any environment in which an agent’s task is assigned, the agent’s 
structure can be altered to suit that environment. Hence, indicating that the 
agent’s autonomy to self-vary its macro/microstructure (algorithmic flexibility) 
is essential for a true AGI agent. This idea is analogous to the generality of hu-
man intelligence, where, for example, humans never truly stop learning, and 
humans can autonomously choose how to adapt their knowledge to any task or 
situation [57] [58].  
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The RL theory has deep normative roots in the psychological and neuroscien-
tific perspectives of animal behavior and how such biological agents can poten-
tially optimize the control of their environment [17]. With the generality of hu-
man intelligence as the ground truth for the AGI theoretical concept [2] [3], stu-
dies show that through the cognitive process known as algorithmic flexibility, 
humans appear not to solve tasks with a single algorithm, but rather opportunis-
tically switch their search procedures when faced with predicaments [57] [58]. 
This implies that humans accumulate various algorithms for solving a variety of 
simple and complex tasks that lead to some expected reward, and that they au-
tonomously choose which algorithm to implement based on experience, by 
transferring prior knowledge from other domains, or through trial and error 
[58]. Hence, much like their human intelligence ground truth [34] [52], AI agents 
in the RL-based theory also attempt to maximize their expected reward by learning 
what actions to take and how to map their environment’s states to their actions 
based on the environment’s feedback. This is achieved through self-learning from 
experience, trial and error, and transfer learning when implemented [16]. 

However, in terms of applying its knowledge across multiple domains to ad-
dress a diverse collection of challenging tasks, current model architectures equip 
the agent with a single algorithm rather than a suite of algorithms like its human 
ground truth [34] [52], and possibly with some prior knowledge through trans-
fer learning. We, therefore, argue that AI generality can be enhanced with inter-
nal autonomy and ensemble methods that provide agents with a suite of algo-
rithms and the internal autonomy to perform model selection among candidate 
models, akin to human intelligence. Hence, it stands to reason that the generali-
zability of AGI agents can be enhanced with access to a suite of algorithms and 
internal autonomy. This may be described as an AI agent with the capability to 
alter its structure optimally through algorithmic flexibility [57] [58]. While the 
subfield of Automated Machine Learning (AutoML) can provide tools that 
create high-level abstractions to help practitioners develop pipelines that stream-
line ML algorithms to different applications, such as setting hyperparameters 
and automating data preprocessing to expose the underlying structure of the 
task to the learning model, this current automatic ML effort is directed external-
ly toward reducing human workflows and not internally toward the model’s ge-
nerality [31]. Additionally, the automatic ML effort primarily addresses classical 
ML and not the area of RL models. 

Finally, our study highlights the importance of algorithmic flexibility and in-
ternal autonomy in achieving truly generalizable AGI agents. By incorporating a 
suite of algorithms and allowing agents to autonomously adapt their macro/micro- 
structures to suit their tasks and environments, we can move closer to the gene-
rality exhibited by humans. This would entail creating a more comprehensive 
and dynamic framework for AI agents that allows them to self-learn and adapt, 
similar to human intelligence. Such an approach would promote the develop-
ment of more generalizable AI agents capable of addressing a wide array of 
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complex tasks across various domains. 

5. Conclusions 

On the main research question of how the general-purpose learning agent ap-
proach can lead to more generalizable artificialagents, our findings indicate that 
DRL-based AI agents can be made more generalizable by varying their macro/ 
microstructures to suit their task and environment. This suggests that an intelli-
gent agent’s internalautonomy to self-alter its macro/microstructure through algo-
rithmic flexibility is an essential component for a true AGI agent. Hence, more 
studies are required to understand how the general-purpose learning agent can 
autonomously vary its macro/microstructure through internal autonomy and 
ensemble learning using a suite of algorithms for model selection, and how this 
approach can lead to more generalizable artificialagents irrespective of the as-
signed task or environment. 

On the subquestion of how varying the agent’s micro/macrostructure affects 
its generality behavior, varying the agent’s macrostructure had the strongest in-
fluence on performance for all the model architectures. Similarly, varying the 
microstructure of the models resulted in prediction accuracy improvement. Thus, 
varying the micro/macrostructure of the DRL-based models resulted in overall 
prediction accuracy improvement. This is in line with previous studies, which 
similarly found that hyperparameter optimization was significantly responsible 
for better model performance. On the sub questions of how varying the agent’s 
task and environment affects its generality behavior, while the findings also 
show that the tasks and environment can be varied to make the agent more ge-
neralizable, this effect can be attributed to the underlying network [48] and the net 
effect of aligning a suitable task and environment with a suitable macro/micro- 
structure since building the right architecture should ultimately solve any given 
task and environment. This further indicates that the macro/micro-structure is 
most effective at making artificial agents more generalizable. 

In light of the theories, previous studies, and our findings, artificial agents 
should, in principle, be capable of addressing any given task and environment 
provided they possess an appropriate macro/microstructure. Although our agents 
solved their task and environments through manual adaptation or modification 
of their macro/microstructure, our observations suggest that for any arbitrary 
task and environment, an agent should be able to solve it if its macro/micro- 
structure aligns with that task and environment. Consequently, instead of rely-
ing on human intervention to manually adjust the macro/microstructure through 
problem-specific design and tuning, internal autonomy emerges as a crucial 
component for truly versatile AGI agents to demonstrate algorithmic flexibility 
and autonomously modify their macro/microstructure. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this paper. 

https://doi.org/10.4236/jcc.2023.119006


D. S. W. Nguyen, R. Odigie 
 

 

DOI: 10.4236/jcc.2023.119006 110 Journal of Computer and Communications 
 

References 
[1] Aamodt, A. and Plaza, E. (2017) Case-Based Reasoning and the Upswing of AI.  

https://www.iiia.csic.es/~enric/papers/Keynote-AamodtPlaza.pdf  

[2] Kadam, S. and Vaidya, V. (2021) Cognitive Evaluation of Machine Learning Agents. 
Cognitive Systems Research, 66, 100-121.  
https://doi.org/10.1016/j.cogsys.2020.11.003 

[3] Gobble, M.A.M. (2019) The Road to Artificial General Intelligence. Research Tech-
nology Management, 62, 55-59. https://doi.org/10.1080/08956308.2019.1587336 

[4] Vinyals, O., Babuschkin, I., Czarnecki, W.M., Mathieu, M., Dudzik, A., Chung, J., 
Choi, D.H., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Da-
nihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J.P., Jaderberg, M., Silver, D., et al. 
(2019) Grandmaster Level in StarCraft II Using Multi-Agent Reinforcement Learn-
ing. Nature, 575, 350-354. https://doi.org/10.1038/s41586-019-1724-z 

[5] Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., Wang, G., Zou, Z., Wu, Z., 
He, W., Chen, F., Deng, N., Wu, S., Wang, Y., Wu, Y., Yang, Z., Ma, C., Li, G., Han, 
W., Shi, L., et al. (2019) Towards Artificial General Intelligence with Hybrid Tianjic 
Chip Architecture. Nature, 572, 106-111.  
https://doi.org/10.1038/s41586-019-1424-8 

[6] Hassabis, D. (2018) DeepMind-Learning from First Principles-Artificial Intelligence 
NIPS. 
https://www.youtube.com/watch?v=DXNqYSNvnjA&list=RDCMUC5g-f-g4EVRkq
L8Xs888BLA&index=6  

[7] Dalgaard, M., Motzoi, F., Sørensen, J.J. and Sherson, J. (2020) Global Optimization 
of Quantum Dynamics with αZero Deep Exploration. NPJ Quantum Information, 
6, Article No. 6. https://doi.org/10.1038/s41534-019-0241-0 

[8] Hsueh, C.H., Wu, I.C., Chen, J.C. and Hsu, T.S. (2018) αZero for a Non-Determi- 
nistic Game. 2018 Conference on Technologies and Applications of Artificial Intel-
ligence (TAAI), Taichung, 30 November-2 December 2018, 116-121.  
https://doi.org/10.1109/TAAI.2018.00034 

[9] Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunya-
suvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, 
S.A.A., Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., 
Hassabis, D., et al. (2021) Highly Accurate Protein Structure Prediction with αFold. 
Nature, 596, 583-589. https://doi.org/10.1038/s41586-021-03819-2 

[10] Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., 
Guez, A., Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T. and Silver, D. (2020) 
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model. Nature, 
588, 604-609. https://doi.org/10.1038/s41586-020-03051-4 

[11] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, 
M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K. and Hassabis, D. 
(2018) A General Reinforcement Learning Algorithm That Masters Chess, Shogi, 
and Go through Self-Play. Science, 362, 1140-1144.  
https://doi.org/10.1126/science.aar6404 

[12] Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Žídek, A., et al. 
(2021) Highly Accurate Protein Structure Prediction for the Human Proteome. Na-
ture, 596, 590-596. https://doi.org/10.1038/s41586-021-03828-1 

[13] Goertzel, B. and Pennachin, C. (2014) Artificial General Intelligence: Concept, State 
of the Art, and Future Prospects. Journal of Artificial General Intelligence, 5, 1-48.  
https://doi.org/10.2478/jagi-2014-0001 

https://doi.org/10.4236/jcc.2023.119006
https://www.iiia.csic.es/%7Eenric/papers/Keynote-AamodtPlaza.pdf
https://doi.org/10.1016/j.cogsys.2020.11.003
https://doi.org/10.1080/08956308.2019.1587336
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1424-8
https://www.youtube.com/watch?v=DXNqYSNvnjA&list=RDCMUC5g-f-g4EVRkqL8Xs888BLA&index=6
https://www.youtube.com/watch?v=DXNqYSNvnjA&list=RDCMUC5g-f-g4EVRkqL8Xs888BLA&index=6
https://doi.org/10.1038/s41534-019-0241-0
https://doi.org/10.1109/TAAI.2018.00034
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1038/s41586-021-03828-1
https://doi.org/10.2478/jagi-2014-0001


D. S. W. Nguyen, R. Odigie 
 

 

DOI: 10.4236/jcc.2023.119006 111 Journal of Computer and Communications 
 

[14] Jonsson, A. (2019) Deep Reinforcement Learning in Medicine. Kidney Diseases, 5, 
18-22. https://doi.org/10.1159/000492670 

[15] Fridman, L. (2019) MIT 6.S091: Introduction to Deep Reinforcement Learning (Deep 
RL).  
https://www.youtube.com/watch?v=zR11FLZ-O9M&list=RDLV5tvmMX8r_OM&i
ndex=27  

[16] Sutton, R. and Barto, A. (2018) Reinforcement Learning: An Introduction. 2nd Edi-
tion, MIT Press, Cambridge. 

[17] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., 
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., 
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S. and Hassa-
bis, D. (2015) Human-Level Control through Deep Reinforcement Learning. Na-
ture, 518, 529-533. https://doi.org/10.1038/nature14236 

[18] Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C. and Liu, C. (2018) A Survey on 
Deep Transfer Learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L. 
and Maglogiannis, I., Eds., ICANN 2018: Artificial Neural Networks and Machine 
Learning—ICANN 2018, Springer, Cham, 270-279.  
https://doi.org/10.1007/978-3-030-01424-7_27 

[19] Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H. and He, Q. (2021) A 
Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109, 43-76.  
https://doi.org/10.1109/JPROC.2020.3004555 

[20] Zhou, S.K., Le, H.N., Luu, K., Nguyen, H.V. and Ayache, N. (2021) Deep Rein-
forcement Learning in Medical Imaging: A Literature Review. Medical Image Anal-
ysis, 73, Article ID: 102193. 
https://deepai.org/publication/deep-reinforcement-learning-in-medical-imaging-a-l
iterature-review  
https://doi.org/10.1016/j.media.2021.102193 

[21] Kamiri, J. and Mariga, G. (2021) Research Methods in Machine Learning: A Con-
tent Analysis. International Journal of Computer and Information Technology, 10.  
https://doi.org/10.24203/ijcit.v10i2.79 

[22] Roberts, C. and Hyatt, L. (2018) A Practical and Comprehensive Guide to Planning, 
Writing, and Defending Your Dissertation. 3rd Edition, Corwin Press, Thousand 
Oaks.  

[23] Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, 
C., Corrado, G., Thrun, S. and Dean, J. (2019) A Guide to Deep Learning in Health-
care. Nature Medicine, 25, 24-29. https://doi.org/10.1038/s41591-018-0316-z 

[24] Mousavi, S., Schukat, M. and Howley, E. (2018) Deep Reinforcement Learning: An 
Overview. In: Bi, Y., Kapoor, S. and Bhatia, R., Eds., IntelliSys 2016: Proceedings of 
SAI Intelligent Systems Conference (IntelliSys) 2016, Springer, Cham, 426-440.  
https://doi.org/10.1007/978-3-319-56991-8_32 

[25] Dai, Y., Wang, G., Muhammad, K. and Liu, S. (2020) A Closed-Loop Healthcare 
Processing Approach Based on Deep Reinforcement Learning. Multimedia Tools 
and Applications, 81, 3107-3129.  

[26] Ker, J., Wang, L., Rao, J. and Lim, T. (2017) Deep Learning Applications in Medical 
Image Analysis. IEEE Access, 6, 9375-9379.  
https://doi.org/10.1109/ACCESS.2017.2788044 

[27] Kohli, M.D., Summers, R.M. and Geis, J.R. (2017) Medical Image Data and Datasets 
in the Era of Machine Learning—Whitepaper from the 2016 C-MIMI Meeting Da-
taset Session. Journal of Digital Imaging, 30, 392-399.  

https://doi.org/10.4236/jcc.2023.119006
https://doi.org/10.1159/000492670
https://www.youtube.com/watch?v=zR11FLZ-O9M&list=RDLV5tvmMX8r_OM&index=27
https://www.youtube.com/watch?v=zR11FLZ-O9M&list=RDLV5tvmMX8r_OM&index=27
https://doi.org/10.1038/nature14236
https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.1109/JPROC.2020.3004555
https://deepai.org/publication/deep-reinforcement-learning-in-medical-imaging-a-literature-review
https://deepai.org/publication/deep-reinforcement-learning-in-medical-imaging-a-literature-review
https://doi.org/10.1016/j.media.2021.102193
https://doi.org/10.24203/ijcit.v10i2.79
https://doi.org/10.1038/s41591-018-0316-z
https://doi.org/10.1007/978-3-319-56991-8_32
https://doi.org/10.1109/ACCESS.2017.2788044


D. S. W. Nguyen, R. Odigie 
 

 

DOI: 10.4236/jcc.2023.119006 112 Journal of Computer and Communications 
 

https://doi.org/10.1007/s10278-017-9976-3 

[28] Oakden-Rayner, L. (2020) Exploring Large-Scale Public Medical Image Datasets. 
Academic Radiology, 27, 106-112. https://doi.org/10.1016/j.acra.2019.10.006 

[29] Xu, Y. and Goodacre, R. (2018) On Splitting Training and Validation Set: A Com-
parative Study of Cross-Validation, Bootstrap and Systematic Sampling for Esti-
mating the Generalization Performance of Supervised Learning. Journal of Analysis 
and Testing, 2, 249-262. https://doi.org/10.1007/s41664-018-0068-2 

[30] Zhang, W., Panum, T.K., Jha, S., Chalasani, P. and Page, D. (2020) Transfer Learn-
ing via Learning to Transfer. Proceedings of the 37th International Conference on 
Machine Learning, 13-18 July 2020, 11171-11181. 

[31] Xin, D., Wu, E.Y., Lee, D.J.L., Salehi, N. and Parameswaran, A. (2021) Whither Au-
toML? Understanding the Role of Automation in Machine Learning Workflows. 
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 
Yokohama, 8-13 May 2021, 1-16. https://doi.org/10.1145/3411764.3445306 

[32] GE Healthcare (2018) Beyond Imaging: The Paradox of AI and Medical Imaging 
Innovation. https://twitter.com/GEHealthCare/status/1063079423832842240  

[33] Ramamoorthy, A. and Yampolskiy, R. (2018) Beyond MAD: The Race for Artificial 
General Intelligence. ICT Discoveries, 1-8.  
https://www.semanticscholar.org/paper/BEYOND-MAD-%3A-THE-RACE-FOR-A
RTIFICIAL-GENERAL-Ramamoorthy-Yampolskiy/7371bb45f85d297fbad25dee15a
6b7f089cd60df  

[34] Lake, B.M., Ullman, T.D., Tenenbaum, J.B. and Gershman, S.J. (2017) Building 
Machines That Learn and Think Like People. Behavioral and Brain Sciences, 40, 
E253. https://doi.org/10.1017/S0140525X16001837 

[35] Saripalli, V.R. (2019) Scalable and Data Efficient Deep Reinforcement Learning Me-
thods for Healthcare Applications. Master’s Thesis, Colorado State University, Fort 
Collins.  
https://aspenuniversity.idm.oclc.org/login?url=https://www.proquest.com/dissertati
ons-theses/scalable-data-efficient-deep-reinforcement/docview/2349665414/se-2?ac
countid=34574  

[36] Brink, H., Richards, J. and Fetherolf, M. (2016) Real-World Machine Learning. 
Manning Publications, New York. 

[37] Draelos, R. (2019) Best Use of Train/Val/Test Splits, with Tips for Medical Data.  
https://glassboxmedicine.com/2019/09/15/best-use-of-train-val-test-splits-with-tips
-for-medical-data/  

[38] Cho, H., Kim, Y., Lee, E., Choi, D., Lee, Y. and Rhee, W. (2020) Basic Enhancement 
Strategies When Using Bayesian Optimization for Hyperparameter Tuning of Deep 
Neural Networks. IEEE Access, 8, 52588-52608.  
https://doi.org/10.1109/ACCESS.2020.2981072 

[39] Claesen, M., Simm, J., Popovic, D. and De Moor, B.L.R. (2014) Hyperparameter 
Tuning in Python Using Optunity. Proceedings of the International Workshop on 
Technical Computing for Machine Learning and Mathematical Engineering, 6-7.  
https://homes.esat.kuleuven.be/~claesenm/optunity/varia/abstract-tcmm2014.pdf  

[40] Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M. and de Freitas, N. 
(2015) Dueling Network Architectures for Deep Reinforcement Learning. arXiv: 
1511.06581. http://arxiv.org/abs/1511.06581  

[41] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O. (2017) Proximal 
Policy Optimization Algorithms. arXiv: 1707.06347.  
http://arxiv.org/abs/1707.06347  

https://doi.org/10.4236/jcc.2023.119006
https://doi.org/10.1007/s10278-017-9976-3
https://doi.org/10.1016/j.acra.2019.10.006
https://doi.org/10.1007/s41664-018-0068-2
https://doi.org/10.1145/3411764.3445306
https://twitter.com/GEHealthCare/status/1063079423832842240
https://www.semanticscholar.org/paper/BEYOND-MAD-%3A-THE-RACE-FOR-ARTIFICIAL-GENERAL-Ramamoorthy-Yampolskiy/7371bb45f85d297fbad25dee15a6b7f089cd60df
https://www.semanticscholar.org/paper/BEYOND-MAD-%3A-THE-RACE-FOR-ARTIFICIAL-GENERAL-Ramamoorthy-Yampolskiy/7371bb45f85d297fbad25dee15a6b7f089cd60df
https://www.semanticscholar.org/paper/BEYOND-MAD-%3A-THE-RACE-FOR-ARTIFICIAL-GENERAL-Ramamoorthy-Yampolskiy/7371bb45f85d297fbad25dee15a6b7f089cd60df
https://doi.org/10.1017/S0140525X16001837
https://aspenuniversity.idm.oclc.org/login?url=https://www.proquest.com/dissertations-theses/scalable-data-efficient-deep-reinforcement/docview/2349665414/se-2?accountid=34574
https://aspenuniversity.idm.oclc.org/login?url=https://www.proquest.com/dissertations-theses/scalable-data-efficient-deep-reinforcement/docview/2349665414/se-2?accountid=34574
https://aspenuniversity.idm.oclc.org/login?url=https://www.proquest.com/dissertations-theses/scalable-data-efficient-deep-reinforcement/docview/2349665414/se-2?accountid=34574
https://glassboxmedicine.com/2019/09/15/best-use-of-train-val-test-splits-with-tips-for-medical-data/
https://glassboxmedicine.com/2019/09/15/best-use-of-train-val-test-splits-with-tips-for-medical-data/
https://doi.org/10.1109/ACCESS.2020.2981072
https://homes.esat.kuleuven.be/%7Eclaesenm/optunity/varia/abstract-tcmm2014.pdf
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1707.06347


D. S. W. Nguyen, R. Odigie 
 

 

DOI: 10.4236/jcc.2023.119006 113 Journal of Computer and Communications 
 

[42] Keras (2021) Simple MNIST Convnet.  
https://keras.io/examples/vision/mnist_convnet/  

[43] Simonyan, K. and Zisserman, A. (2014) Very Deep Convolutional Networks for 
Large-Scale Image Recognition. arXiv: 1409.1556.  

[44] Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schul-
man, J., Sidor, S., Wu, Y. and Zhokhov, P. (2017) OpenAI Baselines. GitHub Repo-
sitory. https://github.com/openai/baselines  

[45] Elgeldawi, E., Sayed, A., Galal, A.R. and Zaki, A.M. (2021) Hyperparameter Tuning 
for Machine Learning Algorithms Used for Arabic Sentiment Analysis. Informatics, 
8, Article 79. https://doi.org/10.3390/informatics8040079 

[46] Hoque, K.E. and Aljamaan, H. (2021) Impact of Hyperparameter Tuning on Ma-
chine Learning Models in Stock Price Forecasting. IEEE Access, 9, 163815-163830.  
https://doi.org/10.1109/ACCESS.2021.3134138 

[47] Wong, J., Manderson, T., Abrahamowicz, M., Buckeridge, D.L. and Tamblyn, R. 
(2019) Can Hyperparameter Tuning Improve the Performance of a Super Learner? 
A Case Study. Epidemiology, 30, 521-531.  
https://doi.org/10.1097/EDE.0000000000001027 

[48] Thompson, J., Bengio, Y. and Schoenwiesner, M. (2019) The Effect of Task and 
Training on Intermediate Representations in Convolutional Neural Networks Re-
vealed with Modified RV Similarity Analysis. 2019 Conference on Cognitive Com-
putational Neuroscience, Berlin, 13-16 September 2019.  
https://doi.org/10.32470/CCN.2019.1300-0 

[49] Hashemi, M. (2019) Enlarging Smaller Images before Inputting into Convolutional 
Neural Network: Zero-Padding vs. Interpolation. Journal of Big Data, 6, Article No. 
98. https://doi.org/10.1186/s40537-019-0263-7 

[50] Weidele, D.K.I., Weisz, J.D., Oduor, E., Muller, M., Andres, J., Gray, A. and Wang, 
D. (2019) AutoAIViz: Opening the Blackbox of Automated Artificial Intelligence 
with Conditional Parallel Coordinates. Proceedings of the 25th International Con-
ference on Intelligent User Interfaces, Cagliari, 17-20 March 2020, 308-312.  
https://doi.org/10.1145/3377325.3377538 

[51] Callaway, E. (2020) “It Will Change Everything”: DeepMind’s AI Makes Gigantic 
Leap in Solving Protein Structures. Nature, 588, 203-204.  
https://doi.org/10.1038/d41586-020-03348-4 

[52] Li, J., Zhu, G., Hua, C., Feng, M., Basheer-Bennamoun, Li, P., Lu, X., Song, J., Shen, 
P., Xu, X., Mei, L., Zhang, L., Shah, S.A.A. and Bennamoun, M. (2021) A Systematic 
Collection of Medical Image Datasets for Deep Learning. arXiv: 2106.12864.  
http://arxiv.org/abs/2106.12864  

[53] Atkinson, C., McCane, B., Szymanski, L. and Robins, A. (2018) Pseudo-Rehearsal: 
Achieving Deep Reinforcement Learning without Catastrophic Forgetting. Neuro-
computing, 428, 291-307. https://doi.org/10.1016/j.neucom.2020.11.050 

[54] Kaushik, P., Gain, A., Kortylewski, A. and Yuille, A. (2021) Understanding Cata-
strophic Forgetting and Remembering in Continual Learning with Optimal Relev-
ance Mapping. arXiv: 2102.11343.  

[55] Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A., 
Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., 
Kumaran, D. and Hadsell, R. (2017) Overcoming Catastrophic Forgetting in Neural 
Networks. Proceedings of the National Academy of Sciences of the United States of 
America, 114, 3521-3526. https://doi.org/10.1073/pnas.1611835114 

[56] Ha, D. (2019) Reinforcement Learning for Improving Agent Design. Artificial Life, 

https://doi.org/10.4236/jcc.2023.119006
https://keras.io/examples/vision/mnist_convnet/
https://github.com/openai/baselines
https://doi.org/10.3390/informatics8040079
https://doi.org/10.1109/ACCESS.2021.3134138
https://doi.org/10.1097/EDE.0000000000001027
https://doi.org/10.32470/CCN.2019.1300-0
https://doi.org/10.1186/s40537-019-0263-7
https://doi.org/10.1145/3377325.3377538
https://doi.org/10.1038/d41586-020-03348-4
http://arxiv.org/abs/2106.12864
https://doi.org/10.1016/j.neucom.2020.11.050
https://doi.org/10.1073/pnas.1611835114


D. S. W. Nguyen, R. Odigie 
 

 

DOI: 10.4236/jcc.2023.119006 114 Journal of Computer and Communications 
 

25, 352-365. https://doi.org/10.1162/artl_a_00301 

[57] Murawski, C. and Bossaerts, P. (2016) How Humans Solve Complex Problems: The 
Case of the Knapsack Problem. Scientific Reports, 6, Article No. 34851.  
https://doi.org/10.1038/srep34851 

[58] Wang, Y. and Chiew, V. (2010). On the Cognitive Process of Human Problem Solv-
ing. Cognitive Systems Research, 11, 81-92.  
https://doi.org/10.1016/j.cogsys.2008.08.003 

 
 

https://doi.org/10.4236/jcc.2023.119006
https://doi.org/10.1162/artl_a_00301
https://doi.org/10.1038/srep34851
https://doi.org/10.1016/j.cogsys.2008.08.003


D. S. W. Nguyen, R. Odigie 
 

 

DOI: 10.4236/jcc.2023.119006 115 Journal of Computer and Communications 
 

Appendix A: Data Analysis 
Sample of Data 

An image from National Institute of Health dataset showing a human chest X-ray. 
 

 

Data Collection 

The medical image datasets were downloaded from the following links below at 
the National Institute of Health (NIH) open-access medical image dataset libra-
ries available free online for ML research at: 

https://nihcc.app.box.com/v/ChestXray-NIHCC  

Appendix B: Algorithms 

Deep Q-Network and Proximal Policy Optimization Algorithms. 
Algorithm 1: deep Q-learning with experience replay [36]. 
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Algorithm 2: PPO, Actor-Critic Style [47]. 

 
 

Summary of the PPO Algorithm 

 

Appendix C: Additional Figures 

 
Mean value: −1.0408340855860843e−16. 
Standard deviation: 1.0000000000000004. 

Figure C1. Sample pixel intensity distribution for Cardiomegaly, Effusion, and Pneumo-
nia comorbidity. 
 

 
Mean value: −1.1058862159352145e−16 
Standard deviation: 1.0000000000000013. 

Figure C2. Sample pixel intensity distribution for infiltration, nodule, and pneumonia. 
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Mean value: 6.938893903907228e−18 
Standard deviation: 0.9999999999999993. 

Figure C3. The pixel intensity distribution for a “No Finding” sample. 
 

 
Mean value: 6.5052130349130266e−18 
Standard deviation: 1.0000000000000004 

Figure C4. The pixel intensity distribution for a Nodule sample. 
 

 
Figure C5. The pixel intensity distribution for a Pneumonia sample. 
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Figure C6. Sample receiver operating characteristic curve showing the Area under the 
Curve (AUC). 
 

 
Figure C7. Sample precision and recall plotted against the threshold. 
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Figure C8. Sample F1 plotted against the threshold. 
 

 
Figure C9. Sample of model’s training and validation loss vs. accuracy. 
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Table C1. Summary of the means of prediction accuracy performance scores in twelve trials between binary and multi-class clas-
sification tasks. 

Trial 
Models under  

different 
settings 

Binary 
Task 

Binary 
Structure 

Binary 
Environment 

Multi-class 
Task 

Multi-class 
Structure 

Multi-class 
Environment 

1 Keras Model 52 56 47 47 52 41 

2 Keras Model 53 54 51 48 53 43 

9 Keras Model 53 56 49 50 53 47 

2 CNN Model 64 67 61 65 71 59 

6 CNN Model 67 69 64 62 68 56 

10 CNN Model 66 74 61 65 67 62 

3 PPO Model 68 78 57 66 74 57 

7 PPO Model 71 76 66 67 69 64 

11 PPO Model 74 78 69 69 76 61 

4 DQN Model 66 70 62 66 70 62 

8 DQN Model 70 73 67 68 73 62 

12 DQN Model 69 75 63 67 73 66 

For each trial, we experimented with three different settings for each model and took the mean scores. The model’s task perfor-
mance was obtained by the combined mean scores for the structure and environment in that trial. 
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