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Abstract 
As the main food source for humans, the global movement of the three major 
grains significantly impacts human survival and development. To investigate 
the evolution of the world cereal trade network and its development trend, a 
weighted directed dynamic multiplexed network was established using his-
torical data on cereal trade, cereal import dependency ratio, and arable land 
per capita. Inspired by the MLP framework, we redefined the weight deter-
mination method for computing layer weights and edge weights of the target 
layer, modified the CN, RA, AA, and PA indicators, and proposed the node 
similarity indicator for weighted directed networks. The AUC metric, which 
measures the accuracy of the algorithm, has also been improved in order to 
finally obtain the link prediction results for the grain trading network. The 
prediction results were processed, such as web-based presentation and com-
munity partition. It was found that the number of generalized trade agree-
ments does not have a decisive impact on inter-country cereal trade. The 
former large grain exporters continue to play an important role in this trade 
network. In the future, the world trade in cereals will develop in the direction 
of more frequent intercontinental trade and gradually weaken the intraconti-
nental cereal trade. 
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1. Introduction 

With deepening global economic globalization and population growth, the world 
food market is highly integrated, and the food supply always affects the national 
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economy. As the staple food of the majority of the world’s population, grain is 
necessary for the survival and development of a country’s people, as well as an 
important strategic material in the face of crises [1] [2]. However, the cultivation 
of specific grains is often concentrated in some agricultural powers. In the con-
text of the relatively concentrated supply of agricultural products, any small 
trade behavior of these grain-producing or exporting powers will impact the 
world grain trade pattern, like the flapping wings of a butterfly [3] [4] [5]. For 
the sake of the food security of each country, it is a very meaningful topic to fore-
cast the global grain trade flow and its trend by combining various influencing 
factors. 

Considering inter-country grain trade and its influencing factors simultaneously 
to construct a multilayer network. This multilayer network is called a multiplexed 
network when it shares the same set of vertices, in this case, the same set of coun-
tries, in all layers [6] [7]. After adding the time term, the multiplexed network is 
regarded as a component at each time snapshot. All components formed through 
time series constitute the dynamic multiplexed network structure, see Figure 1. 
In this paper, the data on grain trade and its influencing factors over the years 
will be collected, and the complex network knowledge will be used to represent 
the data as a dynamic multiplexing network. The link prediction will be made to 
study the trend of the grain trade in the future. 

The research on link prediction of the static network has been quite mature 
[8] [9] [10] [11] [12], and there have also been some advancements in link pre-
diction in dynamic networks [13] [14] [15] [16]. However, the method that can 
satisfy the link prediction of a dynamic multiplexed network is sporadic. In dy-
namic multiplexed networks, a connection in one layer increases the likelihood 
of connecting the corresponding node pairs in other layers. Therefore, a holistic 
approach that considers all layers can be superior to one that performs link pre-
diction separately in each layer. Ref. [17] introduced a comprehensive frame-
work called MLP (Multiplex Link Prediction), which simultaneously combines  

 

 
Figure 1. Dynamic multiplexing network diagram. Each vertical box is a multiplexed network component. 
The horizontal box represents the evolution of the target layer over time. 
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information from all layers by building the target layer. The MLP framework 
uses a likelihood-based approach to learn cross-layer dependencies and a tem-
poral decay function to model network dynamics. The ranking aggregation is 
then used to gather information from multiple topology measures into a scoring 
matrix that is used to rank potential links. This framework applies to undirected 
multilayer networks, and we will extend it to weighted directed networks to adapt 
to the research topic. So, in this paper, the research idea of the MLP framework 
will be retained in general, and corresponding adjustments will be made in the 
selection of similarity measures, weight determination methods, and target layer 
structure to predict the world grain trade network. 

In the next section, the source of the data and the construction of a dynamic 
multiplexing network are described. The third section details the application of 
the improved MLP framework in grain trade and puts forward a new index to 
measure prediction accuracy. Sections 4 to 6 provide a description and perspec-
tive of the algorithm prediction results and summarize the paper. 

2. Data and Network Construction 

The three staple grains in the global grain trade are rice, wheat, and corn, which 
are this study’s subjects. The grain trade volume, also known as the grain trade 
flow, is the total trade quantities of the three different types of grains moving si-
multaneously in the same direction (unit: kg). The data on commodity trade flows 
are derived from the World Food and Agriculture Organization (FAO) [18]. 

Look for indicators that capture grain supply and demand. It was found that 
the area per capita cropland (ha/per) can partially reflect the extent to which a 
country’s grain supply is satisfied. Generally, a nation with less cropland per 
person typically has fewer grain supplies and must import grain to meet domes-
tic demand. In addition, the percentage of imported grain in a nation’s grain de-
mand can be calculated using the cereal import dependency ratio (%). That is, 
how reliant a nation’s food security is on the world grain market. The cereal im-
port dependency ratio is capped at 100%, meaning the country depends entirely 
on imports for its cereal demand. It could also be negative, suggesting that the 
nation’s cereals could be exported after domestic demand is met. All indicator 
data are from the indicator database of FAO. Also, the existence of a trade agree-
ment between nations may have an impact on how frequently commerce occurs. 
The WTO’s Regional Trade Agreement database provides information on trade 
agreements [18]. The above four metrics that we found to directly or indirectly 
reflect cereal trade volume, arable land area per capita, cereal import dependen-
cy ratio, and the number of trade agreements. For the consistency of data caliber, 
all data are taken from 2000 to 2020. In the following, the data of these metrics 
will be used as the basis for constructing the multiplexed network. 

Data cleansing was placed before the network creation. Countries with com-
pletely missing data were removed, and the remaining 176 trade-participating 
countries were used as the study population. The records containing a small 
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amount of missing data were filled in. For instance, cereal import dependency 
ratio data were taken from the average value of three years, and the missing records 
for 2019 and 2020 were defined as the same in 2018. Also, the grain trade flow 
data of less than 100 kg were eliminated for simplicity. After the data are col-
lated, it is ready for network construction. 

Different from single network modeling, a dynamic multiplexed network can 
be modeled as { }0 1, , , TG G G G=  , where, , 0, ,tG t T=  , represent the states 
of multiplexed network components at different time snapshots. Each compo-
nent is defined as 1, , , M

t t tG V E E=  . The node sets of all graphs are equally 
represented as V. m

tE  represents the connected edge set of layer m in the time t. 
On this basis, the multiplexed network we build consists of four layers: 1) 

Grain Trade Network. A network of trade flows consisting of the volume of 
grain imports and exports. This layer is a weighted directed network, which is 
also used to be the basis for constructing the target layer in the dynamic multip-
lex network prediction process. 2) Network of Trade Agreement Relationships. 
If there is a trade agreement between two countries, then there is a two-way 
connection between the pair of national nodes, and the edge weight is defined as 
the number of trade agreements between countries. 3) Cultivated Land Area Re-
lationship Network. FAO set the warning line of arable land per person at 0.975 
mus (converted to 0.053 hectares per person). According to the basic principles 
of economics, add the directed edge from the countries with higher per capita 
cultivated land area to those with lower, and the country with a value less than 
or equal to 0.053 does not have outdegrees. 4) Network of Dependency Rates on 
Cereals Imports. Similar to the Cultivated Land Area Network, with an import 
dependency rate of 5% as the basic self-sufficiency standard. All countries with a 
rate greater than 5% are regarded as grain-importing countries, and the proba-
bility of exporting large quantities of grain is considered as non-existent. Add 
the directed edge from low dependency to high to simplify the network. The 
points in the above four network layers are all represented as a country and cor-
respond one-to-one. The schematic diagram of a multiplexed network compo-
nent in a time snapshot is shown in Figure 2. 

As for the division of the training set and test set, due to the unique status of 
the grain trade network, only the grain trade data for each time snapshot are di-
vided into the training set and test set (the reasons stated in Section 3.1). The 
10% of the existing trade edges are taken as the test set P

tE , and the remaining 
edges are used as the training set T

tE . The edges that do not exist in the original 
trade network are classified as “non-existent edges”, denoted as N

tE . The Grain 
Trade Network in the dynamic multiplexed network is composed of the training 
set. The test set is used to test the accuracy of the prediction algorithm. 

3. Method Introduction 
3.1. Weight Assignment for Layers and Edges 

In a dynamic multiplexing network, each network layer is coevolutionary. That  
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Figure 2. Diagram of a multiplexed network on a snapshot in time. 

 
is, one layer may produce or delete the edge due to the structural changes of 
other layers [19]. This adds to the difficulty of link prediction for such networks. 
A target layer can be created, and the network information of each layer on each 
time snapshot is compressed into the target layer. The link prediction for the 
target layer uses the information from all layers and achieves the goal of predicting 
the future simultaneously. 

Our objective is to explore the impact of three indicators—trade agreements, 
arable land per capita and Import dependency ratio—on cereal trade, and to use 
the level of impact as a basis for calculating and predicting a comprehensive 
network of relationships for future world cereal trade. This integrated relational 
network as the target layer to be constructed and it is logical to use layer (a) as 
the basis of the target layer. The initial state of the target layer inherits exactly 
the way the points and edges are connected in layer (a), while the weights of the 
edges need to be redefined. Since there are different levels of correlations among 
the various network layers, we can quantify such correlations as layer weights 
that play a role in the calculation of the weights of the target layer edges. iL  and 

iw  represent layer i and its layer weight respectively. *L  is the target layer. The 
Algorithm 1 is the precise building procedure for layer weights and edge weights. 

( )iΓ  is the set of neighbors of i. ( ),w i j  is the weight of the link between i 
and j. ( ) ( )

( )
,out

j i
s i w i j

∈Γ

= ∑  denotes the sum of the out-weights of i, and 

( ) ( )
( )

,in
i j

s j w i j
∈Γ

= ∑  denotes the sum of the in-weights of j, In the equation for the 

edge weights ew  of the target layer, the first half rate represents the contribution  
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Algorithm 1. Construction algorithm of layer weight and edge weight. 

Input: { }1, , ME E . 

Output: The edge weight matrix of the target layer. 

Calculate the weights of each layer: 

For { }, ,m b c d∈ . 

The ratio of overlapping edges between each layer and the initial state of the target layer 
is taken as the weight of each layer. 

( )  |   a m
mw likelihood Link in L Link in L=  

Calculate the edge weights of the target layer: 

For ae E∈ , ei j→ , indicates e is the edge from i to j. 

( )
[ ], ,

e m
m b c d

w rate w linkexist e
∈

= + ×∑  ( )
1,    exists in layer ,
0,  does not exist in layer .

e m
linkexist e

e m


= 
  

 

The rate part indicates the impact of layer (a), the formula is 

( )( ) ( )( )100 100log logout inrate s i s j= +  

 
of layer (a), and the second half indicates the effect of layers except (a) on the 
edge weights. 

3.2. Similarity Indices 

The most popular method of link prediction is based on similarity calculation. 
The similarity index represents the similarity or proximity between nodes. A 
score index

xyS  is assigned to each pair of nodes x and y, called the similarity score 
[20] [21]. The higher the similarity score, the more likely the link exists. Indices 
are defined in various ways, which mainly depend on calculating the basic to-
pology features of nodes. In this paper, the target network for link prediction is a 
directed weighted network, and we have not found some similarity indices ap-
plicable to this type of network. We make reasonable modifications to some tra-
ditional similarity indices for adapting this network. Four similarity indices based 
on local information are collected in this paper. The new definition and its mod-
ification process are shown below. 
• Common Neighbor Index (CN) 

( ) ( )CN
xyS x y= Γ ∩Γ                       (1) 

This index is defined as the number of common neighbors of nodes x and y 
[22]. ( )xΓ  denotes the set of neighbors of node x. In a weighted directed net-
work, when x is the start vertex, its neighbor set is represented as ( )out xΓ , and 
when x is the end vertex, it is denoted as ( )in xΓ . ( ),w x y  denotes the weight 
of the edge from x to y. The index is redefined as: 

( ) ( )
( ) ( )

CN , ,
out in

xy
z x y

S w x z w z y
∈Γ ∩Γ

= +∑                 (2) 

• Resource Allocation index (RA) 
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( )( ) ( )

RA 1
xy

z x y
S

k z∈Γ ∩Γ

= ∑                       (3) 

where RA is a process based on resource allocation [23]. ( )k x  is the degree 
of vertex x, which can be divided into the indegree ( )ink x  and outdegree 

( )outk x . Each common neighbor is considered as a resource emitter, but the re-
sources they contain are transformed from a unit to the “flow” through the path, 
denoted by ( ) ( ), ,w x z w z y+ . The average number of shares allocated is also 
changed to the sum of the out-weights. Redefined as: 

( ) ( )
( )( ) ( )

RA , ,

out in
xy

z x y out

w x z w z y
S

s z∈Γ ∩Γ

+
= ∑                 (4) 

• Adamic-Adar index (AA) 

( )( ) ( )

AA 1
logxy

z x y
S

k z∈Γ ∩Γ

= ∑                      (5) 

This index assigns greater importance to a common neighbor node with fewer 
neighbors to measure how closely it is related to the node pair [24]. Similar to 
the idea of improving RA, improved it to: 

( ) ( )
( )( )( ) ( )

AA , ,
log 1out in

xy
z x y out

w x z w z y
S

s z∈Γ ∩Γ

+
=

+
∑                 (6) 

• Preferential Attachment Index (PA) 

( ) ( )PA
xyS k x k y= ×                        (7) 

The principle of PA is that the more links one already has, the greater the like-
lihood of new links being generated between that node pair [25]. Redefined as: 

( ) ( )PA
xy out inS k x k y= ×                       (8) 

The similarity calculation of node pairs in the weighted directed target layer 
will be performed later using the modified indexes. 

3.3. Temporal Dependencies Weighted Exponential Model 

Sections 3.1 and 3.2 construct a grain trade integrated relational network as the 
target layer. The information of the multiplexed network is compressed into the 
weighted directed target layer of each time snapshot separately, and the object of 
link prediction becomes the target layer. The Temporal dependencies of the 
network during co-evolution need to be considered in link prediction at the tar-
get layer. The similarity of a node pair in a temporal snapshot can be assessed 
using its similarity indices and those from earlier periods. This is due to the si-
milarity of point pairs in the target layer at the current time being correlated 
with past periods, and this correlation may weaken as the time span increases. 
The weighted exponentially decaying model can be used to integrate the similar-
ity of node pairs on each time snapshot for the comprehensiveness of the predic-
tion [17] [26]. 

Take the improved similarity index CN as an example. Let  
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( ){ }CN , , 1, 2, ,tS i j t T=   represent the score of the similarity index of the di-
rected edge from i to j at time t. The aggregate similarity score matrix, denoted 
as CN

0tSim , is established by the weighted exponential decay model. It integrates 
the information from ( 0t t− ∆ ) to t0, and the time span is t∆ . A larger time 
span indicates a wider information horizon for integration, but the information 
span is not proportional to the information accuracy. The matrix element 

( )CN
0 ,tsim i j  is expressed as: 

( ) ( )
0

CN 0 1 CN
0

0
, ,

t
t t

t t
t t t

sim i j S i jθ + −

= −∆

= ∑                  (9) 

where [ ]0,1θ ∈  is the smoothing weight of the previous time snapshot, the 
value of θ  determines the contribution level of the score of the previous time to 
the similarity score of the current. Therefore, t∆  and θ  will be subsequently 
used as parameters to be estimated. 

The aggregate similarity score matrix under the similarity index CNS  is as 
follows: 

( ) ( )

( )

( ) ( )

CN CN
0 0

CN CN
0 0

CN CN
0 0

1,1 1,

,

,1 ,

t t

t t

t t N N

sim sim N

sim sim i j

sim N sim N N
×

 
 
 
 =
 
 
 
 





 





    (10) 

The similarity matrices of the four similarity indices are calculated separately 
and denoted as { }0 , CN,AA,RA,PAindex

t indei xS m = . 

3.4. Ranking Methods 

The last step uses the rank aggregation method [27], where the input lists must 
contain each element’s ranked value. Four matrices containing different similar-
ity metric values were previously computed, which will be sorted based on the 
values from highest to lowest and transformed into four sorted lists. The lists are 
merged to obtain a final ranked list containing all node-pair elements. The final 
ranked list is the basis for link prediction to predict future time node potential 
and higher probability links. Of course, all this is done under the condition that 
variables 0t , t∆  and θ  have specific values. 

Borda’s method is a type of rank aggregation method, originally proposed by 
Jean-Charles de Borda as a voting method. It is an absolute ranking method as it 
also requires the order of voters’ preferences to be given in the form of ranking 
during the voting process. On each time snapshot, the set of lists is denoted as

{ }CN RA AA PA, , ,L L L L L= , which consists of four sorting vectors due to four simi-
larity indices, and the length of each vector is the number of node pairs. It is 
known that there are N (N − 1) = 176*175 sets of node pairs in a network con-
sisting of 176 countries. The ranking of node pairs ( ),i j  in the sorting vector 

indexL  is expressed as ( ),indexL i j . According to Borda’s method, the score of an 
element in a ranking sequence is the number of sequence elements minus the 
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ranking value of the element, which is denoted as ( ) ( ), ,index indexb i j N L i j= − . 
The total Borda score of a node pair is determined by the sum of its scores in 
each ranking vector, denoted as: 

( ) ( )
{ }CN,RA,AA,PA

, ,index

index
B i j b i j

∈

= ∑                (11) 

A node pair with a higher Borda score indicates that it is potential or has a 
higher probability of appearing in the future, based on which link prediction is 
achieved. ( ),B i j  can also be written specifically as ( )0 ,tB i j  when the predic-
tion base period is taken as moment t0. 

3.5. Definition of Evaluation Metrics for Algorithms 

The available data allow us to use 2020 as the base period network to make a link 
prediction of the network in 2023. As a result, the link prediction’s accuracy over 
a three-year time horizon must be evaluated. Before that, the prediction result 
data needs to be converted into a prediction network. The process is relatively 
straightforward. In each time t0, node pairs are selected to create links based on 
the total Borda score from highest to lowest, and the number of node pairs cho-
sen is equal to the number of links in the original network at the moment (t0 + 
3). The network consisting of these selected links is the predicted network. The 
prediction accuracy of the predictions spanning three years can be obtained by 
comparing the predicted network built at the base period at the moment t0 with 
the original network at the moment (t0 + 3). The overall prediction accuracy of 
the algorithm is obtained by averaging the prediction accuracy with different 
moments as the prediction base period, and its calculation process is illustrated 
and explained in Figure 3. 

The accuracy of the link prediction algorithm is usually calculated using 
the AUC criterion, which can be interpreted as the probability that a ran-
domly selected edge in the test set has a higher score than a randomly selected 
non-existent edge. The prediction algorithm gives the score there, which in this 
paper is the total Borda score. However, links between pairs of nodes in trade 
networks may appear or disappear after a period of time as an indication of 
the occurrence and discontinuity of trade relationships. Considering this fac-
tor, a new index for algorithmic accuracy assessment is defined and named 

improvedAUC . 
Using the sampling comparison method, one edge 1e  is randomly selected 

from the test set 0
P
tE  at time t0, the edges 2e  and 3e  are randomly selected 

from the set of “non-existent edges” 0 3
N
tE +  and the complementary set of 0 3

N
tE +  

at time (t0 + 3). The total Borda scores of these three edges at time t0 are com-
pared, and the numerator is assigned according to the criteria in Table 1. 

If 1e  is present in the network at the moment (t0 + 3), then the algorithm 
should assign it a higher Borda value compared to 2e  to reflect the accuracy. In 
this case, when ( )0 1tB e  is greater than ( )0 2tB e , the numerator plus one; when 

( )0 1tB e  is equal to ( )0 2tB e , the numerator plus 0.5; when ( )0 1tB e  is greater  
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Figure 3. The overall accuracy calculation process of the algorithm. 

 
Table 1. The assignment criteria of the improved link prediction accuracy rubric. 

Condition 1 Condition 2 Molecular counting 

{ }1 0 3 1 0|N P
t te E e E+∉ ∈

 

( ) ( )0 1 0 2t tB e B e>  1sum +  

( ) ( )0 1 0 2t tB e B e<  0sum +  

( ) ( )0 1 0 2t tB e B e=  0.5sum +  

{ }1 0 3 1 0|N P
t te E e E+∈ ∈

 

( ) ( )0 1 0 3t tB e B e<  1sum +  

( ) ( )0 1 0 3t tB e B e>  0sum +  

( ) ( )0 1 0 3t tB e B e=  0.5sum +  

 
than ( )0 2tB e , the numerator is not added. Similarly, if 1e  does not exist in the 
network at the moment (t0 + 3), then the algorithm should assign it a lower 
Borda value compared to 3e  in order to reflect the accuracy. The denominator 
of the indicator is the number of repetitions of the sample comparison, denoted 
as n. The final expression of the indicator is obtained: improvedAUC sum n= . 

The overall prediction accuracy is obtained by taking different moments as 
the base period and finding the average of the improvedAUC . Compared with the 
usual link prediction AUC metric, the improved AUC metric applies similar 
concepts of “true positive” and “false negative”. It follows the principle of the 
ROC curve more closely. 
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4. Results 

Based on the methodology given in Section 3.1 of this article, the ratio of the 
overlapping edges between other networks and the network in layer (a) is used 
as the weight of each layer at each time snapshot. Figure 4 displays heat maps 
representing the layer weights at certain times. 

According to the research, there is a small increase with the year in the tight-
ness of the linkage between all three indicators and cereal trade in general. The 
cereal import dependence network is the strongest linkage with the cereal trade 
flow network among the layers, and performance is the largest layer weight. And 
the trade agreement network has little overlap with the cereal trade flow net-
work, even below 0.5. It follows that for an irreplaceable commodity like grains, 
the existence of generalized trade agreements between trading countries does not 
have a decisive impact on their grains’ trade behavior unless it is a targeted one. 
For the sake of simplicity and efficiency of the model, the Trade Agreement Re-
lationship Network is removed from the multiplexed network, and its influence 
is not added to the calculation of the connected edge weights of the target layer. 

After calculating the edge weights and measuring the similarity indexes based 
on the algorithm described in Section 3, the selection of parameters is performed 
in order to ensure the accuracy of the link prediction algorithm. As mentioned 
earlier, there are two parameters to be estimated in the model, namely θ  and 

t∆ , which represent the smoothing weight and the time span in the temporal 
dependencies weighted exponential model, respectively. Now change their val-
ues and calculate the overall accuracy for different scenarios. 

After fitting the surface, it is found that the algorithm has the highest accuracy 
for the time span of 10 years and the smoothing weight between 0 and 0.4. Based on 
this range, to further refine the selection of parameters. See Figure 5(c), the highest 
accuracy of the algorithm was obtained for the case of 10t∆ = , 0.26θ = , which 
was 0.885, and the values of this parameter were substituted into the model for 
link prediction. 

 

 
Figure 4. Heat maps were taken for each layer weight at 5-year intervals from 2000 to 
2020. 
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Figure 5. The improved AUC values for different parameters, (a) and (b) are the fitted thermograms, (c) is a discrete plot 
representing the actual optional parameter points. 
 

The predicted results are shown in Figure 6. The nodes of different colors in-
dicate the trade participating countries from different continents. The number 
indicates the country number, and the size of the points indicates the degree of 
increase and decrease. To distinguish more clearly, the red and blue edges represent 
the possible broken and generated links obtained from the link prediction, re-
spectively. The dark red and dark blue indicates the parts of them with a higher 
probability of occurrence. 

Most of the vanishing edges occur within continents, and most of the increas-
ing edges occur between continents. In 2023, intercontinental trade will increase 
relative to the previous grain trade network, and intra-continental grain trade 
transactions will decrease. However, projections suggest that trade in grain be-
tween European countries will grow closer. In particular, India’s cereal exports to 
Africa are likely to decline. In countries such as the United States and Australia,  
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Figure 6. The results of the link projection with the base period of 2020, based on 10t∆ = , 0.26θ = . The left panel shows the 
edges that have the probability of disappearing from the world grain trade network in 2023, and the right panel shows the new 
linked edges that may be created. 
 

 
Figure 7. Schematic diagram of the community partition results before (a) and after (b) 
the prediction. Points with different numbers in the figure denote different countries par-
ticipating in trade, and countries are numbered according to the FAO uniform standard. 
Points with different colors indicate that they are divided into different communities. 
Grey lines indicate cross-community trade, while red lines represent intra-community 
trade operations. 

 

the frequency of trade with countries within their respective continents may de-
crease. The export of grain from Austria and Argentina is expected to increase 
substantially. On the other hand, Brazil, Canada, Russia, Ukraine, France, and 
other major grain-trading countries show a decline in intra-continental exports 
and an increase in intercontinental exports in their forecasting results. 

The results of the link prediction were used to build a new network and per-
form community partition, which was compared with the division results of the 
previous data (see Figure 7). It was found that the number of communities was 
reduced from five to four, and the modularity was reduced accordingly. The densi-
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ty of connected edges within communities’ increases, and the membership com-
position of the societies will also move from a biased division based on geogra-
phy to a more integrated direction. 

5. Discussion 

Research and prediction work on world trade networks has been widely carried 
out in various technical fields, whether it is the description of the static characte-
ristics of the network, the analysis of clustering effects, or the prediction of possi-
ble future links. Link prediction based on dynamic multiplexed networks has 
far-reaching implications, using a wider range of data and making the experimen-
tal results more interpretable, especially compared to “black box” neural net-
work-like methods. 

The algorithm in this paper is based on the MLP framework with several 
changes: 1) Extending the MLP framework to weighted directed networks and 
changing the weight calculation method based on it. 2) The superposition term 
of the weighted exponential decay model is fixed to reduce the time complexity 
of the computation. 3) Constructed the algorithm accuracy evaluation index 

improvedAUC  that better fits the principle of the ROC curve. 4) Improved the four 
similarity indexes CN, RA, AA, and PA to apply to the weighted directed net-
work, and these improvements are based on the respective construction prin-
ciples of the indexes. In order to illustrate the rationality and applicability of the 
metrics, several weighted directed open network datasets are applied to be tested 
in Table 2 [28] [29] [30] [31] [32]. 

The tests found that the improved similarity indices perform well overall on 
weighted directed open data networks, especially in denser networks where the 
number of edges is much larger than the number of points. 

Of course, there are some limitations to this paper. Subjective judgment plays 
a part in the choice of calculation methods for layer weights and edge weights. 
There may be more accurate and scientific computational formulae that have 
not been tried. Also, due to the data being in years and the time span being large, 
the data cannot be divided very finely, and the accuracy of the calculation is re-
duced. Similarly, link predictions might be more accurate if complete layers of 
network data were available for the most recent year. 

 
Table 2. Applicability test results of weighted directed network similarity index. 

Networks 
No. of 
nodes 

No. of 
edges 

Average 
weight 

AUC 

CN RA AA PA 

Subreddit hyperlink 
network 

6555 3879 1.246 0.5950 0.5705 0.5860 0.5830 

Trust network 3683 22650 1.996 0.8025 0.6501 0.7085 0.8045 

E-mail network 309 2728 20.912 0.9525 0.8035 0.8830 0.9495 

Messages network 1899 18267 2.951 0.739 0.5855 0.6845 0.7670 
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6. Conclusions and Future Work 

Ultimately, our model has a high prediction accuracy for grain trade networks 
and achieves some significant results. Overall, the results show that the number 
of generalized trade agreements has a small impact on grain trade across coun-
tries. Summarizing the reason may be that food-importing countries must im-
port food from some large exporting countries to meet their domestic demand 
even though there are no trade preference agreements between them. Unless the 
data specific to grain trade agreements are used, such data are difficult to obtain 
comprehensively. The impact of the per capita arable land indicator is relatively 
large and likely to increase for grain imports and exports. The once-major ce-
real-exporting countries still play an essential role in this trade network. The world 
cereal trade will develop in the direction of more frequent intercontinental trade 
and gradually weaken the intracontinental cereal trade. The results of the commu-
nity partition also show this trend, which is reflected in a smaller number of com-
munities compared to the previous ones. 

During the study, some exciting ideas arose that could serve as a prospect for 
future research. It may be useful to not only improve existing similarity indices 
based on them for weighted directed networks, but also to try to create new in-
dices. When indexes are too difficult to create, combinations of metrics with high-
er precision can be found by combining them. 
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