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Abstract 
The online 3D packing problem has received increasing attention in recent 
years due to its practical value. However, the problem itself possesses some 
peculiar properties, such as sequential decision-making and the large size of 
the state space, which have made the use of reinforcement learning with Mar-
kov decision processes a popular approach for solving this problem. In this 
paper, we focus on the problem of high variance in value estimation caused 
by reward uncertainty in the presence of highly uncertain dynamics. To ad-
dress this, proposed a solution based on auxiliary tasks and intrinsic rewards 
for the online 3D bin packing problem, guided by a binary-valued network, to 
assist the agent in learning the policy within the framework of actor-critic deep 
reinforcement learning. Specifically, the maintenance of two-valued networks 
and the utilization of multi-valued network estimates are employed to replace 
the original value estimates, aiming to provide better guidance for the learn-
ing of policy networks. Experimentally, it has been demonstrated that our 
model can achieve more robust learning and outperform previous works in 
terms of performance. 
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1. Introduction 

As one of the most classic combinatorial optimization problems, the Bin Packing 
Problem (BPP) can be traced back to Gauss’s research on layout problems in 
1831. In previous studies, most of them focused on 1D and 2D packing prob-
lems. With the accumulation of research results and the development of com-
puter technology, the three-dimensional packing problem has gradually become 
a popular academic topic [1]. As one of the variants of the 3D packing problem, 
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the online 3D packing problem has received additional attention in the engi-
neering community due to its inherent complexity and practicality. In particular, 
the combination of online three-dimensional packing and AI has gradually be-
come a popular solution with the development and generalization of AI tech-
nology. By applying point cloud techniques, deep reinforcement learning, and 
other methods, solutions to online 3D packing problems are becoming more 
complex and practical, and can achieve excellent performance when faced with 
complex practical constraints and large-scale packing problems. The online 
three-dimensional packing simulation solution can be widely applied in various 
industries and scenarios that require cargo loading, such as automated palletiz-
ing assembly lines, warehouse management, vehicle loading, etc. Excellent packing 
solutions can help businesses or individuals quickly select suitable vehicles or 
containers for different types and quantities of goods, and generate optimal 
packing solutions based on algorithms, helping to save transportation costs and 
time. Even in scenarios with low logistics volume, a 1% increase in loading effi-
ciency can result in millions of dollars in savings per year [2]. 

In general, the definition of the 3D-BPP problem is as follows: given a se-
quence of rectangular parallelepipeds I and a three-dimensional container, where 
the dimensions of the container are xS , yS  and zS , and each rectangular pa-
rallelepiped has dimensions x

is , y
is  and z

is  in the three directions, the objec-
tive is to pack all rectangular parallelepipeds in an axis-aligned manner into the 
container, subject to some realistic constraints, such as no overlapping or en-
suring physical stability, so as to maximize the container utilization or the num-
ber of placed rectangular parallelepipeds [3]. Given the availability of prior know-
ledge about the objects to be packed, 3D-BPP problems can be classified into of-
fline 3D-BPP and online 3D-BPP problems. Offline 3D-BPP refers to the scena-
rio where the agent has prior access to complete information about the packing 
sequence and follows a pre-determined plan to pack the items into the contain-
ers. On the other hand, online 3D-BPP involves the case where the agent has 
partial prior knowledge of the object sequence and needs to pack them into the 
container upon their arrival without any additional adjustments. In comparison, 
online 3D-BPP is more complex but also more practical. An illustration of the 
packing process is shown on the left of Figure 1, while the two images on the 
right represent the perspective from which the object information is obtained and 
the height map of the container, respectively. 

In solving the 3D-BPP problem, reward design is usually neglected. Typically, 
rewards are designed with the goal of solving the problem in mind. However, 
when using reinforcement learning to train an intelligent agent, exploration be-
comes challenging due to the scarcity of rewards. To address this issue, a com-
mon approach is to reshape rewards to aid exploration [4]. For example, the heu-
ristic experience can be leveraged to shape the reward as a dense reward related 
to the volume of the box and the container to aid the learning of an intelligent 
agent. A major drawback of this reward reshaping is that sometimes, an intelli-
gent agent may learn in the direction of the reshaped reward instead of the true  
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Figure 1. Palletizing schematic diagram. 

 
objective. In other words, the reshaped reward objective is included in the origi-
nal objective, resulting in a learning effect for the agent that does not satisfy the 
desired outcome. And, since reward design is closely related to value, problems 
with reward design can often affect an intelligent agent’s judgment of value, es-
pecially in the actor-critic framework, where both actor and critic networks rely 
on value estimates for their updates. When the estimation is inaccurate, the per-
formance of the network suffers, leading to poorer output policy solutions. To 
address this issue, we design an intrinsic reward-based dual-value guided net-
work that targets dual rewards and complements the problem of large value es-
timation variance caused by uncertainty in future rewards through multi-valued 
estimation. 

2. Related Work 
2.1. 3D Bin Packing Problem 

The bin packing problem holds a prominent place among the well-known chal-
lenges within the domain of combinatorial optimization. It is typically solved 
using heuristic-based algorithms or learning-based methods. Heuristic methods 
typically rely on existing empirical knowledge and involve manually designing a 
large number of rules to guide the solution process. However, these approaches 
heavily rely on substantial prior knowledge to support their design. In the past 
few years, there has been a growing trend to integrate heuristic algorithms with 
various techniques to enhance the effectiveness of problem-solving approaches. 
For example, Huang et al. [5] combined a Differential Evolution (DE) algorithm 
with a ternary search tree model. They used a ternary tree model to generate a 
set of suboptimal solutions as the initial population for DE, with the goal of 
solving the 3D bin packing problem. Ntanjana [6] combined the fi-heuristic al-
gorithm with the genetic algorithm. They divided the packing process into two 
stages: the first stage employs a fi-heuristic algorithm supplemented with other 
techniques, while the second stage employs a genetic algorithm. This approach 
aims to optimize the initial permutation of a limited set of frames or the entire 
set of sequences without compromising the original pattern (elite strategy). In 
another study, Zhao et al. [7] solved the problem of three-dimensional irregular 
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stacking by introducing a three-grid approximation technique to approximate 
irregular objects. They use a hybrid heuristic to place and compress individual 
objects, where chaos search is embedded into the Firefly algorithm to enhance 
algorithmic diversity. 

In contrast to heuristic methods, learning-based methods utilize an end-to-end 
neural network to solve the packing problem. These methods generally exhibit 
stronger generalization and robustness, especially under complex real-world 
constraints and large state spaces. Zhu et al. [2] designed a data-driven tree search 
algorithm for 3D-BPP problems in large-scale scenes, aiming at faster computa-
tion. They use tree search to explore the solution space with complex constraints, 
and a convolutional neural network trained on historical data to guide tree prun-
ing. Zhang et al. [8] focuses on BPPs in different contexts and draws inspiration 
from how the human brain solves similar decision-making problems. They pro-
posed a brain-inspired model called BERM that leverages empirical information 
and learning paradigms to make decisions in different environments, thereby 
providing an optimal decision process for BPP tasks across multiple environ-
ments. Zhao et al. [9] introduced a different tree-based representation called 
the Packed Configuration Tree (PCT). PCT completely describes the packed state 
and action spaces in a tree structure and uses deep reinforcement learning algo-
rithms for policy learning. PCT includes relations among all spatially configured 
nodes, which are enhanced during training based on heuristic rules, they achieve 
the solution in the continuous action space for the first time. In the context of 
DACC [10], the packaging problem is assumed to be solved in an approximately 
predictable dynamic environment, given the characteristics of datasets in in-
dustrial settings. They first discussed the high variance of the value estimates 
in the bin packing problem, and based on the effect of the two-stage MDP par-
tition on the value estimates, designed a two-stage evaluation framework to 
amortize the uncertainty and reduce the variance of the value estimates. In 
Attend2Pack, Zhang et al. [11] proposed an end-to-end learning model based 
on a self-attention mechanism. They use a decomposable combinatorial action 
space and a preferential oversampling training technique to speed up policy 
learning. For an arbitrary number and size of boxes, Verma et al. [12] de-
signed the RT-3D-BPP algorithm, dividing the decision-making process into 
two steps: using ground rules to select feasible position/orientation combina-
tions, and employing a value-based RL algorithm for selection. The CQL [13] 
model utilizes conditional query learning to handle 2D and 3D packing problems. 
Conditional queries are embedded into the attention model and trained using 
a reinforcement learning approach, they claim to reduce the bin gap ratio by 
more than 10% in almost every case when compared to the contemporaneous 
method. 

2.2. Dee Reinforcement Learning (DRL) 

Deep Reinforcement Learning (DRL) synergistically merges the perceptual prow-
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ess of deep learning with the decision-making aptitude of reinforcement learn-
ing, resulting in an interactive learning approach. Unlike supervised learning, 
it focuses on finding a balance between exploration and exploitation [14]. The 
development of DRL can be broadly categorized into the following phases: 
Value-based Deep Reinforcement Learning: This approach uses a neural net-
work to approximate the value function to estimate the long-term reward ob-
tained by taking actions in various states. It is suitable for dealing with large, 
high-dimensional state spaces and complex action spaces. However, it requires 
a large number of interactions to update the value function, and may still suffer 
from the curse of dimensionality in high-dimensional state spaces. Representa-
tive algorithms include Deep Q-Network (DQN) [15], Double DQN [16], etc. 
Policy-based Deep Reinforcement Learning: This approach trains neural net-
works using policy gradient methods to learn the optimal policy that maximizes 
the rewards. An example of such an approach is the actor-critic algorithm. Mod-
el-based Deep Reinforcement Learning: This approach involves using neural 
networks to approximate a dynamical model of the environment, and perform-
ing planning and control based on the learned model. Examples include Alpha-
Go [17] and Alpha Zero [18]. 

The optimization problem aims to find the optimal configuration or value 
among different possibilities. Depending on the nature of the configuration, these 
problems can be classified into two categories: problems with continuous varia-
ble configurations and problems with discrete variable configurations. Optimi-
zation problems in discrete spaces are commonly referred to as Combinatorial 
Optimization (CO) problems [19]. The defining feature of the CO problem is 
that the decision space is defined over a finite set of points, and the optimal solu-
tion to the problem can be intuitively obtained by exhaustive search. However, 
the number of solutions typically grows exponentially with the size of the prob-
lem, making it infeasible to exhaustively search for the optimal solution in po-
lynomial time [20]. Previously, most methods for solving CO problems were 
concentrated in two categories: exact methods and approximation methods. 
With the advancement of neural network research, the use of neural network 
models to solve CO problems has gained attention. Inspired by natural lan-
guage processing tasks, Vinyals et al. applied the Sequence-to-Sequence learning 
framework, a neural network model, to solve combinatorial optimization prob-
lems and introduced the Pointer Network (Ptr-Net) model [21]. In contrast to 
supervised learning methods such as Ptr-Net, which require the construction of 
a large number of labeled samples, reinforcement learning approaches can inte-
ractively make decisions in unknown and complex environments without prior 
knowledge of the full problem structure or the form of a feasible solution. Thus, 
reinforcement learning is more suitable for large-scale CO problems. Bello et al. 
built upon the Ptr-Net approach and combined neural networks with reinforce-
ment learning to propose the Neural Combinatorial Optimization (NCO) mod-
el, improving the generalization capability of network models when solving CO 
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problems [22]. When using reinforcement learning to solve the CO problem, the 
problem is typically defined as a Markov Decision Process, and the interaction 
between the agent and the environment is established by defining the state, ac-
tion, and reward functions. For example, in the context of a packing problem, 
the agent’s state can represent the items already placed in the container and the 
list of items to be placed, actions can correspond to the placement positions and 
orientations of the items in the container, and the reward can be defined as the 
packing utilization. Additionally, to address the issue of sparse rewards in com-
binatorial optimization problems, techniques such as hierarchical reinforcement 
learning or intrinsic rewards can be employed [23]. In hierarchical reinforcement 
learning, the agent learns a set of sub-tasks and utilizes intrinsic re-wards to faci-
litate learning during each sub-task. 

3. Method 

Within the realm of the online 3D bin packing problem, we establish its essence 
as a sequential decision procedure, where an agent is tasked with promptly as-
signing a set of items to a bounded 3D bin, armed with incomplete knowledge 
about the current or upcoming items. To satisfy constraints related to physical 
stability and sequential dependencies, we formulate this problem within a con-
strained Deep Reinforcement Learning (DRL) framework, utilizing the ACKTR 
algorithm [24] to design the network model. A hard constraint is imposed on the 
agent’s action space in the form of an action mask, ensuring that the agent sam-
ples actions only from the valid action space. Our aim is to optimize the utiliza-
tion of space within the container by maximizing the total volume of objects ac-
commodated while adhering to the imposed constraints. In a typical Bin Packing 
Problem (BPP), the problem can be defined as follows: the decision entities en-
compass fixed-sized containers represented by ( ), ,iB L W H=  and a set of items 
denoted as { }1 2 , ,, nN d d d=  . B and N denote the container and item entities, 
respectively, whereas L, W, and H denote the length, width, and height of the 
container. Each item, ( ), ,n n n nd l w h= , represents the length, width, and height 
of the respective item. On the optimization front, the exact formulation can be 
formulated as follows. 

( )
1

max

s.t.

,
,
,

x
N

i i
i

i

i

i

u

v d L W H

l L i N
w W i N
h H i N

=
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≤ ∈

≤ ∈

∑
                    (1) 

The optimization objective is represented by the formula:  
( ) ( )1 100%i i ii

Nu s v d v B
=

= ∗∑  where u represents the optimization objective, 
v(.) is the size measure function, and N is the set of items. The primary objective 
is to optimize the overall utilization of a pre-determined container B. However, 

https://doi.org/10.4236/jcc.2023.117010


M. K. Qi, L. Y. Zhang 
 

 

DOI: 10.4236/jcc.2023.117010 162 Journal of Computer and Communications 
 

this problem is subject to several constraints. These include ensuring that items 
are not placed in such a way that they cause overlap or extend beyond the boun-
daries of the container. In addition, the placement of items must adhere to spe-
cific stability rules, which are outlined as follows in the paper: a) At least 60% of 
the bottom area of item n should be supported by existing items at all four cor-
ners. b) At least 80% of the bottom area of item n should be supported, and three 
out of the four corners should have support. c) At least 95% of the bottom area 
of item n should have support. These stability rules ensure that items do not 
overlap or are placed outside the boundaries of the container, and that the place-
ment of items is stable. The specific stability description is illustrated in Figure 
2. 

3.1. Problem Statement and Formulation 

Our approach is described in the form of a Markov Decision Process (MDP), 
which can be represented as ( ), , , ,S A P R γ . The set of states S is utilized to de-
scribe the current environment by means of signals. The action set A consists of 
feasible actions that can be taken at the current state. The transition probability 

[ ]: 0,1P S A S× × →  determines the likelihood of transitioning from one state to 
another when action a is taken. Since our approach is based on model-free rein-
forcement learning, there is no need to explicitly represent the transition proba-
bility P. The reward set :R S A× →   provides the reward signal from the en-
vironment. The discount factor γ adjusts the impact of future rewards on the 
present value. It influences the extent to which the agent considers future re-
wards, with values closer to 0 emphasizing immediate rewards and values closer to 
1 giving more weight to long-term rewards. In our task, γ is set to 1, allowing us to 
fully utilize future reward information. The policy : S Aπ →  represents the 
mapping from states to action probabilities, where ( )|a sπ  denotes the probabil-
ity of taking action a in state s. In Deep Reinforcement Learning (DRL), our objec-
tive is to find a policy π that maximizes the cumulative discounted reward, de-
noted as ( ) ( )~ 0 ,t

t ttJ x E R s aτ π γ∞

=
 =  ∑ . Here, ( )0 0 1, , ,s a sτ =   represents a 

trajectory sampled according to policy π. 
• Environment State: In the context of the online 3D Bin Packing Problem 

(3D-BPP), a comprehensive state encompasses both the current information 
regarding the items that need to be packed and the configuration of the con-
tainer. It captures a complete snapshot of the problem, including features of 
the items and permutations within the bins. For tractability, the bottom space  

 

 
Figure 2. Box physical stability rules. 
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of the container is discretized into a grid of gated cells, where each cell con-
tains a numerical value representing the current stacking height of the item. 
To represent the stacking height map in the online 3D bin packing problem, 
we employ a 2D matrix denoted as Hn, which has dimensions L × W. Here, L 
denotes the length of the container and W denotes its width. The matrix Hn 
serves as a visual characterization of the height at each location within the 
container, illustrating the stacked items and their respective heights. Further-
more, the item currently being placed is represented as a three-dimensional 
vector [ ]T 3, ,n n n nd l w h= ∈ , where nl , nw , and nh  denote the length, 
width, and height of item n, respectively. Consequently, the current state can 
be represented as { }1 1, , , ,n n n n n ks H d d d+ + −=  , where k indicates the number 
of items that still need to be placed in the current state. 

• Action Space: Based on the extensive conventions in previous literature, 
we define the packing action as the process in which the agent places the 
Front-Left-Bottom (FLB) corner of the item to be packed onto a discretized 
grid point at the bottom of the container. Therefore, for item n, the action an 
is defined as n n na Lx y= + , where L represents the length of the container, 
and xn and yn denote the coordinates of the target grid point. The action 
space A is defined as { }0,1, , 1A L W= × − , encompassing all the possible 
grid points in the container’s bottom. 

• Reward: We employ a binary reward system in our reinforcement learning 
approach to facilitate the agent’s learning. Based on prior literature [3], we 
define an extrinsic reward as the volume of the packed item, while an intrin-
sic reward complements the extrinsic reward and is designed based on the 
evaluation of the packing strategy. Hence, our reward function is defined as 

1 10 n n nR l w h L W H= × × × × × ., where 1R  represents the incremental re-
ward. At each step of the packing process, the agent is rewarded based on the 
volume of the item that is packed, with the reward being equivalent to the 
item’s volume. If the agent fails to successfully place the item, it receives zero 
reward and the packing attempt ends immediately. In addition, we introduce 
a final-step reward, 2 10ratioR B= × , where ratioB  denotes the utilization rate 
of the container. After successfully placing all items into the container, the 
agent receives a reward proportional to the utilization rate, whereas during 
incremental item placement, no reward is provided. With this reward design, 
we provide the agent with a dual perspective for solving the online 3D bin 
packing problem: a terminal perspective that evaluates the final result, and an 
incremental perspective that measures the packing process. This approach is 
designed to prevent the agent from getting trapped in the search for the black 
hole during the problem-solving process, ensuring that the packet planning 
remains on track. 

3.2. Dual-Value Stratification Objectives 

Commonly, the packing task can be divided into two stages: first, the generation 
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of new states where box sizes and container height maps are determined, and 
second, the execution of strategies by the agent on the new states while satisfying 
real-world constraints [11]. The estimation of the value is affected differently in 
the two phases. In the first stage, object generation is stochastic, which intro-
duces uncertainty into the volume-oriented reward design. This uncertainty in-
creases the variability in the estimation of values for the same state or action, and 
as a result. In the second stage, practical considerations lead us to adopt hard 
constraints (based on a few simple rules) to ensure the legality of agent actions. 
However, these hard constraints often affect the agent’s policy, further exacer-
bating the inaccuracy of the value estimates. Thus, the two stages of binning in-
troduce different levels of variance in the value estimation. 

Based on the heuristic reward configuration, we formulate our problem, where 
the reward of the agent depends primarily on the size of the current object. Ad-
ditionally, the lower bound of rewards that the agent can obtain is determined by 
the arrangement of boxes within the container (as a failed packing attempt re-
sults in a reward of 0 and immediate termination of the current packing round). 
According to the general definition of reinforcement learning, the value, as ex-
pressed in Equation (2), represents the sum of discounted rewards that may be 
obtained in the future. In our problem, the discount factor γ is set to one to bet-
ter take into account the long-term reward information. Due to the specific na-
ture of the reward design, the prediction of the value is transformed into pre-
dicting the volume of future generated objects. Given the inherent uncertainty in 
the object generation process in online 3D binning, the estimation of the value is 
subject to variance in the value prediction. This variance has a significant impact 
on the value prediction, resulting in significant fluctuations in the predicted value 
of the value network for the same state or action. As a result, policy optimization 
becomes more challenging. Therefore, it is necessary to reduce the variance in the 
value estimate to improve the accuracy of the value prediction. 

To improve the effectiveness of policy optimization and reduce the variance in 
value estimation due to reward uncertainty, we design an intrinsic value network 
based on bagged policy evaluation. The intrinsic value network and the original 
value network estimate the value based on the rewards r2 and r1 respectively, and 
the value is re-evaluated by a weighted sum of the two. The intrinsic reward r2 
primarily addresses the problem of non-computable future rewards under re-
ward r1. In order to make the long-term reward stable and controllable, it is de-
signed as an evaluation of the current arrangement of boxes within the contain-
er. When the reward r1 exhibits high variance in future estimations, the deter-
minism of the intrinsic reward r2 compensates for the variance in the current 
value estimate. Ultimately, the weighted sum of the intrinsic value estimate and 
the original value estimate guarantees a stable and controllable current value es-
timate. Moreover, since the design of r2 is based on terminal rewards, this means 
that the environment only provides reward feedback based on the packing re-
sults after the packing is completed. Consequently, when training the agent with 
a single reward r2, it encounters another common problem in reinforcement learn-

https://doi.org/10.4236/jcc.2023.117010


M. K. Qi, L. Y. Zhang 
 

 

DOI: 10.4236/jcc.2023.117010 165 Journal of Computer and Communications 
 

ing: sparse rewards. In such cases, the agent struggles to obtain sufficient infor-
mation to learn the policy. To address this, the value network with intrinsic re-
ward r2 shares the network backbone with the value network with intrinsic re-
ward r1, differing only in the output layer. This helps facilitate the learning of the 
intrinsic value network under the sparse reward r2 condition. 

( ) 2
1 2 |t t t tV s E R R R S sγ γ+ + = + + + =                (2) 

3.3. Network Architecture and Training Configurations 

According to previous literature, the ACKTR (Actor-Critic using Kroneck-
er-Factored Trust Region) algorithm demonstrates significant advantages over 
other reinforcement learning algorithms in the context of online 3D packing 
problems [3]. Our model is designed based on the ACKTR framework. To ad-
dress the high variance in value estimation due to reward uncertainty, we intro-
duce intrinsic rewards based on the packing strategy. Different rewards train 
separate state-value networks that generate the value function. The results of 
these networks are combined through weighted summation to obtain the final 
value predictions, which guide the actor in learning a policy network to assist the 
agent in placing items at each Load Point (LP). ACKTR is an advanced online 
model-free reinforcement learning technique that builds upon the A2C (Advan-
tage Actor-Critic) algorithm. It incorporates enhancements to improve sampling 
efficiency, such as utilizing natural gradient descent instead of stochastic gra-
dient descent, effectively addressing the scale arbitrariness prevalent within the 
parameter space. Furthermore, ACKTR introduces a substitution for the conju-
gate gradient component found in TRPO (Trust Region Policy Optimization) by 
employing K-FAC (Kronecker-Factored Approximated Curvature). This substi-
tution optimizes the storage and inversion operations associated with the Fisher 
matrix, resulting in improved performance [24]. 
• State input: To simplify the process, a Convolutional Neural Network (CNN) 

is employed to encode the initial state of the Bin Packing Problem (BPP). The 
box information, represented by nd , is expanded into a three-channel tensor 
called 3L W

nD × ×∈ . Each nd  is a 2D matrix of dimensions L W× , which 
captures the length, width, and height details of the respective box. Thus, the 
state ns  is a combination of the stacked height map nH  and the tensor nD . 
The resulting state, { },n n ns H D= , is transformed into a 2D matrix with di-
mensions 4L W× × , as depicted in Figure 3. 

• Model structure: Figure 4 provides an illustrative representation of the 
comprehensive framework of the model. Our model contains three separate 
multi-layer perceptron modules. In addition to the actor and critic networks 
under the actor-critic framework, an intrinsic reward-based intrinsic critic 
network is also introduced. To help train the intrinsic critic network and 
critic network to share the same network architecture, only the output layers 
of the two networks differ. The estimate of the value is determined by the 
weighted prediction value of the intrinsic-critic and critic networks. The  
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Figure 3. An indication of the status during the packing process. 

 

 
Figure 4. The packaging model structure under the guidance of double value. 
 

actor computes the action vector ( )t ta sπ , which is guided by the value to 
update its strategy. Under the hard constraint, we use action masking to 
project the policy onto the legitimate action space, ensuring that the agent 
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samples actions from a valid space. The training strategy for the actor net-
work parameters is based on the policy gradient formula shown in Equation 
(3), where actorθ  represents the adjustable parameters for different actors. 
The discount factor γ is set to 1, while the hyperparameters σ and ρ are set to 
0.7 and 0.3, respectively. 

( ) ( )( ) ( ) ( )( )( ) ( )1 2
1 1 1 2 1 2 log

actor

n n n n n n actor n nr V s V s r V s V s P a s

θ

σ γ ρ γ+ +

∇

= ⋅ + − + ⋅ + − ∇
(3) 

• Loss function: Our model is trained using a composite loss, defined by Equ-
ation (4) and specifically designed as Equation (5), the loss function actorL  
serves as the actor network’s loss function to guide the network’s update of 
policy parameters. This loss consists of two components: a policy objective 
function and an entropy regularization term. The policy objective function 
measures the performance of the current policy, which is the expected return 
obtained under the current policy. We design the loss based on the ac-
tor-critic framework, so that the policy objective function exists as an advan-
tage function. The entropy regularization term can improve the exploratory 
nature of the policy and prevent the policy from getting stuck in local opti-
ma. criticL  and -intrinsic criticL  evaluate the returns of taking actions under re-
wards r1 and r2, respectively. The loss of the value network is usually in the 
form of MSE to make the estimated value function as close as possible to the 
true value, thus better guiding the actor network to output the packing poli-
cy. Moreover, entropyE  is the entropy loss function used to penalize the sto-
chasticity of the policy, which allows the distribution of the output packing 
policy of the actor network to spread more widely and avoid getting stuck in 
local optima due to insufficient exploration. infE  starts to avoid illegal ac-
tions from the generation of policy network parameters based on the com-
puted action masks, that is, it tries to penalize illegal actions as much as 
possible during the network generation of the policy. 

-intrinsic cactor critic inf entropyriticL L L L E Eα β δ ω ϕ= ⋅ + ⋅ + ⋅ + ⋅ + ⋅        (4) 
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= + −

 = + −
 =
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∑

∑

(5) 

4. Experiments 

We conducted our experiments on a desktop computer running Windows 10, 
equipped with a 12th Gen Intel(R) Core(TM) i9-12900KF CPU @ 3.20 GHz, 64 
GB of RAM, and an Nvidia RTX A6000 GPU with 48 GB of memory. The code 
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is written in Python and all network models are implemented using PyTorch. 
The spatial resolution of the bottom of the disputed container was set to 10 × 10. 

4.1. Training and Test Set 

Regarding the dataset, we followed the settings of [14] and set the length, width, 
and height of the container to L = W = H = 10. The item information is gener-
ated via three different settings. To avoid overly simplified scenarios, the size 
range of items is defined as follows: 2 2il L≤ ≤ , 2 2iw W≤ ≤ , 2 2ih H≤ ≤ . 
The concrete form is shown in Figure 5. In the initial setting, RS (Random  

 

 
Figure 5. Predefined project visualization. 
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Sequence), the bins are combined in a random fashion, which poses a challenge 
in evaluating the algorithm’s performance due to the uncertainty surrounding 
the optimal placement order. However, in some logistics centers and transfer 
stations, such randomly generated, unknown-order situations are more common 
and realistic. Although it is difficult to accurately measure the algorithm’s learn-
ing performance relative to the optimal solution in this dataset, if the algorithm 
wins in a comparison of general performance (such as comparing their average 
number of wins in a packing game), it demonstrates its practicality. From an en-
gineering point of view, the generality and practicality of the algorithm are par-
ticularly important for such practical scenarios. In the second data collection 
method, CUT-1, we obtain the data set by cutting a complete container. Within 
the scope of the set, the bins can be divided into several sub-boxes, and the re-
sults are sorted from top to bottom based on the Z-coordinate of the FLB of each 
sub-box, forming the CUT-1 dataset. In the third cut method, CUT-2, boxes are 
sorted according to their stacking dependence after the cut, and a box is added 
to the sequence only if all of its support items are present. In both the second 
and third methods, we can easily obtain the optimal placement order, so the 
performance of the algorithm is mainly focused on these two methods. 

4.2. Performance Comparison 

Table 1 shows the performance comparison across the three datasets, where our 
performance on the RS dataset is close to that of the offline loading scenario. 
Figure 6 shows partial visual results of our model on three datasets. Figure 7 
shows the distribution of the three models on 100 test cases. It can be observed 
that our model performs best in obtaining the optimal policy for the CUT-1 da-
taset, achieving the highest box recovery rate for the cut boxes. On the CUT-2 
dataset, our model demonstrates superior performance in terms of overall place-
ment utilization and the number of items placed. On the RS dataset, our model 
maintains an equilibrium performance. Similar to [3], we also evaluate the im-
pact of BPP-K on performance. BPP-K involves the addition of one or more 
sensing devices to the pre-placed boxes in a forward-looking manner without 
affecting the placement sequence, with the goal of finding the optimal placement 
for the projected item. The performance of BPP-K in our model is depicted  

 
Table 1. Presents the performance comparison of our method on the three datasets. 

Method 
Items/% Space Uti. 

RS CUT-1 CUT-2 

Boundary Rule (Online) 

BPH (Online) 

LBP (Offline) 

Zhao et al. (Online) 

Our (Online) 

8.7/34.9% 

8.7/35.4% 

12.9/54.7% 

12.2/50.5% 

13.2/54.4% 

10.8/41.2% 

13.5/51.9% 

14.9/59.1% 

19.1/73.4% 

19.2/74.0% 

11.1/40.8% 

13.1/49.2% 

15.2/59.5% 

17.5/66.9% 

18.3/69.7% 
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Figure 6. Visualization of palletizing results. 
 

 
Figure 7. Distribution map of test cases. 
 

in Figure 8. 
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In our model testing, we investigated the impact of box rotation on perfor-
mance, and the results on the three datasets are presented in Table 2. For com-
putational efficiency, we considered only two rotation angles: 1) vertical angle 
and 2) horizontal angle. In reality, each box can have six rotation directions, 
namely: direction 1 (l, w, h), direction 2 (w, l, h), direction 3 (h, w, l), direction 4 
(l, h, w), direction 5 (w, h, l), and direction 6 (h, l, w), where l, w, and h represent 
the length, width, and height of the box, respectively. Increasing the number of 
rotation angles poses challenges in maintaining the action mask representation. 
As the resolution of the action space increases, the storage and computation re-
quirements rise dramatically. Considering that our stability estimation method 
still relies on the original ergodic approach, introducing all six rotation angles 
makes the model more difficult to solve and results in a decrease in accuracy. 
Thus, only two rotation angles are considered in this study. In the future, we will 
further investigate the effect of all six rotation angles on the model performance 
by optimizing the stability estimation method. 

5. Conclusion 

We design an online 3D packing model that is described as a sequential deci-
sion process and solved using deep reinforcement learning methods. To meet 
real-world requirements, we introduce sequential dependencies and physical 
stability, and impose hard constraints on the action space in the form of action 
masks. We develop a two-valued network model based on the actor-critic frame-
work, which includes both primitive and intrinsic value networks. We find that 
the problem of high variance in value estimation due to reward uncertainty can 
be corrected by an intrinsic reward mechanism, enabling the network to realis-
tically perform long-term prediction and planning. To accelerate learning, we 
share the network heads of the original and intrinsic value networks. In the future,  

 

 
Figure 8. BPP-K performance graph. 
 

Table 2. Rotation performance comparison. 

Rotation RS CUT-1 CUT-2 

w Orientation 

w/o Orientation 

13.2/54.4% 

15.2/62.3% 

18.6/74.0% 

18.7/75.9% 

18.3/69.7% 

18.9/72.5% 
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we would like to carry out more studies on this issue. For example, more box 
rotation angles are introduced to improve packing efficiency; to further improve 
the performance of the model, it is important to explore the reasons why the agent 
autonomously discriminates and causes high variance in the value estimates. 
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