
Journal of Computer and Communications, 2023, 11, 88-117
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2023.117007 Jul. 28, 2023 88 Journal of Computer and Communications

Multi-Strategy-Driven Salp Swarm Algorithm
for Global Optimization

Zhiwei Gao, Bo Wang*

College of Science, Shenyang University of Technology, Shenyang, China

Abstract
In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low
convergence accuracy and slow convergence speed, a Multi-Strategy-Driven
Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources or
random leaders were associated with the current bottle sea squirt at the be-
ginning of the iteration, to which Levy flight random walk and crossover
operators with small probability were added to improve the global search
and ability to jump out of local optimum. Secondly, the position mean of
the leader was used to establish a link with the followers, which effectively
avoided the blind following of the followers and greatly improved the con-
vergence speed of the algorithm. Finally, Brownian motion stochastic steps
were introduced to improve the convergence accuracy of populations near
food sources. The improved method switched under changes in the adap-
tive parameters, balancing the exploration and development of SSA. In the
simulation experiments, the performance of the algorithm was examined
using SSA and MSD-SSA on the commonly used CEC benchmark test func-
tions and CEC2017-constrained optimization problems, and the effective-
ness of MSD-SSA was verified by solving three real engineering problems.
The results showed that MSD-SSA improved the convergence speed and con-
vergence accuracy of the algorithm, and achieved good results in practical en-
gineering problems.

Keywords
Salp Swarm Algorithm (SSA), Levy Flight, Brownian Motion, Location Update,
Simulation Experiment

1. Introduction

With the continuous development of human cognition and society, the complexity

How to cite this paper: Gao, Z.W. and
Wang, B. (2023) Multi-Strategy-Driven Salp
Swarm Algorithm for Global Optimization.
Journal of Computer and Communications,
11, 88-117.
https://doi.org/10.4236/jcc.2023.117007

Received: June 2, 2023
Accepted: July 25, 2023
Published: July 28, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2023.117007
https://www.scirp.org/
https://doi.org/10.4236/jcc.2023.117007
http://creativecommons.org/licenses/by/4.0/

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 89 Journal of Computer and Communications

of various application problems and scientific computations has increased, and
the own drawbacks of traditional optimization computation methods have re-
vealed themselves to be unable to meet people’s needs in a reasonable time. In
recent years, meta-heuristic algorithms have received much attention and have
been applied to many fields because of their operational flexibility, ease of im-
plementation and gradient-free mechanism. Among them, the evolutionary al-
gorithm includes Genetic Algorithm (GA) [1], Differential Evolution (DE) [2],
etc. The swarm intelligence techniques mainly include Particle Swarm Optimi-
zation (PSO) [3], Ant Colony Optimization (ACO) [4], Artificial Bee Colony
Algorithm (ABC) [5], Cuckoo Search (CS) [6], etc. The recently proposed swarm
intelligence algorithm includes Polar Bear Optimization (PBO) [7], Grey Wolf
Algorithm (GWO) [8], Whale Optimization Algorithm (WOA) [9], Salp Swarm
Algorithm (SSA) [10], etc. The Salp Swarm Algorithm was proposed by Mirjalili
et al. The algorithm has adaptive parameters that facilitate both global searches
in the early stages of the algorithm and local development in the later stages of
the algorithm. Similar to other swarm intelligence algorithms, it suffers from
the disadvantages of being prone to local optimality and low convergence accu-
racy in late iterations.

Since the Salp Swarm Algorithm was proposed in 2017, many scholars at home
and abroad have improved the performance of the Salp Swarm Algorithm by
addressing its shortcomings. Thawkar [11] proposed a hybrid model using Teach-
ing-Learning-Based Optimization and Salp Swarm Algorithm (TLBO-SSA), and
applied it to the diagnosis of breast cancer, and achieved good results. Neggz et
al. [12] introduced the sine cosine algorithm into the Salp Swarm Algorithm to
obtain an enhanced algorithm (ISSAFD), which improved the exploration effect
in the global search stage, enhanced the diversity of the population, avoided falling
into local optimization, and balanced the exploration and development of the
algorithm. Zhang et al. [13] proposed a multi-strategy Enhanced Salp Swarm
Algorithm (ESSA), which uses orthogonal learning to generate opposite solu-
tions, expands the diversity of the population, uses quadratic interpolation to
improve the local search ability of the algorithm, and uses test functions to test
the accuracy of the improved algorithm. Heidari et al. [14] proposed the Chaotic
Salp Swarm Algorithm (CDESSA), chaotic initialization was introduced in the
initial stage of the algorithm to expand the diversity of the population, and dif-
ferential evolution was used to prevent premature convergence. Chen et al. [15]
used a weighted center of gravity for the leader and adaptive weight for follow-
ers, balancing the development and exploration of the algorithm. Yang et al. [16]
proposed a multi-strategy fusion Salp Swarm Algorithm (ISSA), which uses the
mid-vertical theorem to change the position update mode of the follower and
introduces the perturbation mechanism of the mid-vertical convergence strat-
egy to improve the ability of the algorithm to jump out of the local optimum.
Liu et al. [17] proposed a Differential Evolution Parasitic Salp Swarm Algorithm
(PDESSA), which introduced the position information of the previous genera-
tion of leaders, strengthened the global search, introduced adaptive inertia weight,

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 90 Journal of Computer and Communications

balanced the exploration and exploitation of the algorithm, and finally intro-
duced a dual-population mechanism with evolution and parasitism strategies,
which increased the diversity of the population and improved the ability of the
algorithm to jump out of local extremum. Zhang et al. [18] introduced the
Levy flight strategy into the algorithm, and updated the follower by compar-
ing the fitness value of the follower, which enhanced the global search ability
and convergence speed of the algorithm. Xie et al. [19] proposed a New Salp
Swarm Algorithm (NSSA), introduced the idea of following the head wolf in
the gray wolf optimization algorithm to the update method of leader, and car-
ried out experiments in 23 benchmark test functions to apply it to image match-
ing.

All of the above-improved versions improve the performance of the original
algorithm in finding the optimum to a certain extent. In order to make the algo-
rithm capable of solving more complex optimization problems, it still needs to
be improved. In this paper, we propose a Multi-Strategy-Driven Salp Swarm Al-
gorithm (MSD-SSA). Firstly, in the first half of the algorithm, the leader’s posi-
tion is updated using Levy flight with small probability, Levy flight is a ran-
dom wandering with larger probability of large span steps, which can expand
the global search range and jump out of local extremes more effectively. Se-
condly, a crossover operation is performed on the leader and the better leader
is retained based on a greedy strategy to improve the convergence speed of the
algorithm. Again, in the second half of the algorithm, we introduce Brownian
motion random step is introduced in the second half of the algorithm, and
Brownian motion is used to search deeply in the latest iteration to improve the
convergence accuracy of the algorithm. Finally, the follower update method is
different from the original algorithm, and the average position of the leader is
used to update the followers, which strengthens the connection between the
followers and the leader and makes the convergence speed faster. The per-
formance of MSD-SSA is verified by experimenting with the commonly used
benchmark test functions and CEC2017 [20] test set to solve the optimal val-
ues and three engineering problems, and comparing with the traditional Salp
Swarm Algorithm.

2. Salp Swarm Algorithm (SSA)

The inspiration for the Salp Swarm Algorithm [10] comes from the group move-
ment and predatory behavior of the marine organism salp. The salp is a marine
creature with a translucent barrel-shaped body that resembles a jellyfish. Based
on the behavior of this creature, the algorithm for SSA was simulated. In SSA,
the problem to be solved is to find the largest food source. The fitness function
of the algorithm depends on the quality of the food source.

Depending on the position of the individuals in the chain structure, all indi-
viduals can be divided into two categories: leaders and followers. The leader
guides all individuals to form a herd chain and move towards the food source to
find a better food source for the population, and the followers follow the pre-

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 91 Journal of Computer and Communications

vious individual and are indirectly guided by the leader. The mathematical mod-
el of these two stages is as follows:

In the D-dimensional search space, N individuals of salp are randomly gener-
ated. The population of salp is shown in the N D× matrix in Equation (1)

1 1 11
1 2
2 2 22
1 2

1 2

.

D

D

N N NN
D

x x xX
x x xXX

x x xX

  
  
  = =   
  

      





  



 (1)

Among them, X shows the population of salp, iX shows the i-th individual
in the population, and i

jx shows the j-th attribute of the i-th individual in the
population.

The position update of leader is related to the current global optimal food
source location, so after generating the population, find the current global op-
timal food source location F. In the population, leader has leadership functions,
and their positions are updated according to Equation (2)

()()
()()

1 1 2

1 1 2

1,
2
1,

2

j j j j
i
j

j j j j

F c r ub lb lb
x

F c r ub lb

r

rlb

 + − + ≥= 
 − − + <


 (2)

where, i
jx shows the new position of the i-th leader in the j-th dimension, jF

is the j-th dimension of the best food source, jub and jlb show the upper and
lower bounds of the individual in the j-dimensional space, respectively, 1r and

2r are random numbers subject to uniform distribution on []0, 1 . The coeffi-
cient c1 is an important convergence factor of SSA.

c1 is mainly responsible for the exploration and development of the algorithm,
which is calculated by Equation (3)

2

1
max

42exp ,tc
T

  
 = −    

 (3)

where, t is the current number of iterations, and maxT is the maximum number
of iterations. The value of c1 gradually decreases from 2, and its variation curve is
shown in Figure 1. In the early stage of algorithm iteration, c1 changes quickly
and has a large step size, which is conducive to global search. At the later stage of
the iteration, c1 tends to be stable and the step size is small, which is conducive
to fine search and converges to the global best food source.

Followers use Newton’s law of motion to update the position, give the initial
velocity, acceleration and initial position to the follower, and obtain the position
update formula as shown in Equation (4)

2
0

1 ,
2

i
jx v t at= + (4)

Assuming its initial velocity 0 0v = , ()final 0a v v t= − , Equation (5) is the po-
sition update of followers.

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 92 Journal of Computer and Communications

Figure 1. Change curve of c1 iteration for 500 times.

() () ()()11 1 1 ,
2

i i i
j j jx t x t x t−= − + − (5)

where, 2i ≥ . i
jx shows the new position updated by the i-th follower on the

j-th dimension. According to Equation (5), the position update of the follower is
related to the position of the previous individual.

The process of SSA is as follows:
Step 1. Set parameters such as population size, maximum number of itera-

tions, upper and lower boundaries.
Step 2. Find individual fitness value and get food source, leader and followers.
Step 3. Judge whether the maximum iteration is reached. If so, output the op-

timal value position and optimal value, otherwise proceed to the next step.
Step 4. Equation (2) updates leader position and amend boundary, Equation

(5) updates follower position and amend boundary.
Step 5. Calculate the fitness value of the individual after the location update.
Step 6. Increase the number of iterations by 1, return to Step 3.

3. Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA)
3.1. Random Step of Levy Flight and Brownian Motion

In the standard SSA, the leader only searches according to the location of the
food source, and the update mode of the follower is only related to its adjacent
Levy flight [21], proposed by French Mathematician Paul Pierre Lévy [21], is a
heavy-tailed distribution with a high probability of producing a large stride. Most
animals follow this rule in their foraging behavior. The accidental long-distance
step of Levy flight helps to expand the search range and jump out of the limit of
local optimization, more short distance steps can carefully search the surround-

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 93 Journal of Computer and Communications

ing area and improve the local exploitation ability. The trajectory of Levy’s flight
is shown in Figure 2.

The probability density function of Levy flight obeys the Levy distribution,
which can be expressed by Equation (6)

() () ()
0

1Levy exp cos d .s k ks kλβ
∞

−
π

= ∫ (6)

According to Mantegna method [22], the random step of Levy flight can be
expressed as follows

1 .ul
v β= (7)

where, u and v are Gaussian distributions that satisfy the following conditions

() ()2 2~ 0, , ~ 0, ,u vu N v Nδ δ (8)

()
1

1
2

1 sin
2 ,

1 2
2

u

β

β

ββ
δ

β β
−

 
Γ + ⋅ 

 =
 + Γ ⋅ ⋅ 

 π 
 


  

 (9)

1,vδ = (10)

Figure 2. Movement trajectory of Levy flight (a random walk graph generated by Levy
flight random step within a certain range and random direction walking).

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 94 Journal of Computer and Communications

the value of β is generally 1.5, and Γ is a Gamma function.
Brownian motion is the irregular motion made by a suspended particle, a

random wandering process without rules. Because the standard Brownian mo-
tion step change image is similar to a Gaussian distribution with mean 0 and va-
riance 1, the Brownian motion random number is generated from Equation (11)

()2Brown ~ 0, .N δ (11)

3.2. Crossover Operator

The crossover operator helped to increase the diversity of the population, there-
by increasing the chance for the population to break out of local optimum food
sources.

Different random integers were generated, each corresponding to the respec-
tive dimension of an individual, sorted based on their fitness values, and the po-
sitions of the corresponding dimensions were exchanged in sequence. The adja-
cent individuals underwent the crossover operator to generate the crossover in-
dividuals, and a greedy strategy was used to retain individuals with better fitness
values for the next iteration. c random numbers satisfy

{ }1 2,0 , , , , , i cc kD s D s s s s= < ≤ =  (12)

where, the random integers in s are different, and k is the proportion coefficient
of the crossover operator.

3.3. Mean Position of the Leader

In standard SSA, the position update of a follower is only related to the previous
individual, which is blind and slows down the convergence of the overall algo-
rithm. If the previous individual falls into a local optimum, then all the followers
are unable to jump out of the local optimum.

Consider the position relationship between the follower and the average lead-
er, and let the follower follow the average leader closely, with the following up-
date method

0 ,

lN
i
j

i
j

l

x
x

N
==
∑

 (13)

where, jx is the average position of all leaders in the j-th dimension, and lN
is the number of leaders.

3.4. Improving Salp Swarm Algorithm (ISSA)

In the standard SSA, the leader only searches according to the location of the
food source, and the update mode of the follower is only related to its adjacent
individual location. The global search or local search is determined according to
c1 value. If the food source is the local optimum, the leader will fall into it, and
the follower will not jump out of the local optimum, so that the SSA cannot jump
out of the local optimum. Therefore, in the early stage of the iteration, consider

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 95 Journal of Computer and Communications

the location of random leader or food source to establish contact with the cur-
rent individual to update the leader, and a small probability of Levy flight [21]
random step size should be added to help jump out of the local optimal during
the iteration process.

A random leader or food source establishes relationship with the current indi-
vidual location to obtain the location update formula of leader

()
() ()()

() ()()

1 2

1 2

11 1 ,
2

1
2

 11 ,

i i
j j j

i
j

i i rand
j j j

x t c F x t
x t

x t c x t x

r

r

 − + − − ≥= 
 − + − − <


 (14)

among them, rand
jx is the position of the randomly selected leader in the j-th

dimension. In this way, the influence of the food source on the current individu-
al and the influence of other individuals in the population are considered, the
exploration and exploitation process of the algorithm is also considered.

Adding Levy flight random number with small probability is beneficial to bet-
ter jump out of local optimum. When 0P P< , calculate the Levy flight [21] ran-
dom number through Equation (7) to Equation (10), and obtain the leader posi-
tion update formula to add Levy flight random number

()
() ()()()
() ()()()

1 2

1 2

11 1 ,
2
11

2
 1 ,

i i
j j j

i
j

i i rand
j j j

r

r

x t c F x t l
x t

x t c x t x l

 − + − − ⋅ ≥= 
 − + − − ⋅ <


 (15)

where, 0P is the probability of occurrence, l is the Levy flight [21] random
number.

Later, in the iteration, as the value of c1 continues to decrease, SSA tends to
fine tune the search, and to improve the search accuracy, a random step of Brow-
nian motion is used. Equation (11) is the position update method of leader adopt-
ing Brownian motion

()()()
()()()

1 1 2

1 1 2

1Brown,
2
1Brow

 n,
2

j j j j
i
j

j j j j

F c r ub lb lb
x

F c r ub l

r

rb lb

 + − + ⋅ ≥= 
 − − + ⋅ <


 (16)

where, Brown is the random step of Brownian motion.
The crossover operator can generate new individuals, expand the diversity of

the population, improve the search efficiency of the population, and better jump
out of the local optimum. Generate random dimensions according to Equation
(12), and apply the crossover operator to the leader.

According to Equation (13), the position updating method for the follower is
derived.

() ()()1 1 ,
2

i i
j j jx t x x t= + − (17)

where, jx is the mean position of the leaders calculated by Equation (13).
Followers are led purposefully, and the population is able to move faster to-

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 96 Journal of Computer and Communications

wards the optimal food source, allowing the algorithm to converge more quickly.
Each iteration of the algorithm uses a greedy strategy to select the optimal fit-

ness-valued individuals.
The flowchart of MSD-SSA is shown in Figure 3.

Figure 3. The flowchart of MSD-SSA.

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 97 Journal of Computer and Communications

The pseudo code of the MSD-SSA is described as follows:

Pseudo (MSD-SSA)

Initialize the salp population ()1,2, ,ix i N=  considering upper and lower

Calculate the fitness of each salp

While (end condition is not satisfied)

F = the best salp

Equation (3) Calculate c1

if 0 2t T≤ <

for each salp (ix)

if (leaders)

Equations (7)-(10) calculates the random step of Levy flight

Update the position of the search agents by Equation (14) or
Equation (15)

Equation (12) leader crossover operator operation

Greedy algorithm selects better leaders

else (followers)

Update the position of the search agents by Equation (17)

end

else 2T t T≤ <

for each salp (ix)

if (leaders)

Calculate the random step of Brownian motion

Update the position of the search agents by Equation (16)

else (followers)

Update the position of the search agents by Equation (17)

end

end

Amend the salp based on the upper and lower bounds of variables

end

return F

3.5. Time Complexity Analysis

Time complexity is an important indicator of the amount of work required to
run the algorithm and to evaluate the time consumption of the algorithm. The
time complexity is usually denoted by O. The MSD-SSA algorithm consists of
three parts: population initialization, updating the leader position and updating
the follower position. Assume that the iteration number of the algorithm is T,
the population size is N, and the dimension is D.

1) Initialize the population, which needs to be run ND time.
2) To calculate the individual fitness value and select the best individual as

food, it needs to run
()1

2
N N −

 times.

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 98 Journal of Computer and Communications

3) The algorithm parameters are updated and need to be run 4 times.
4) Leaders need to run D times to update in space.
5) Followers update ()1N D− times in space.

6) Levy flight update needs to run
1
2

ND times.

7) Brownian motion update needs to run 1
2

ND times.
8) It takes ND time to find out the food source from the population and ex-

port it.
Each of the above operation units goes through T iteration, so the total time

complexity of MSD-SSA is Equation (18)

() () ()
1

MSD SSA 4 1 .
2

-
N N

O T ND D N D
− 

= + + + + − 
 

 (18)

4. Simulation Experiments and Result Discussion

To verify the performance of MSD-SSA, 10 commonly used benchmark test
functions [23] and some CEC2017 constraint planning problems [20], as well as
three real engineering problems, were selected for experiments, mainly to verify
the merit-seeking capability and the convergence speed of MSD-SSA.

The operating device is the Windows 10 operating system, the CPU is Intel
Core i5-1135G7@2.4 GHz and 16 G running memory. The editing language is
python, and the experimental platform is PyCharm 2022.3.2.

4.1. Benchmarking Functions

The 10 benchmarks test functions [23] are shown in Table 1. The benchmark
test functions used are all 30-dimensional, the population of the algorithm has 30
individuals and the algorithm is iterated 500 times. Comparison is made using
(Wolf Pack Algorithm) WPA, SSA and MSD-SSA. The parameter settings for
WPA are 4, 6, 30α β ω= = = . The number of leaders and followers is half of the
population respectively, the parameter value in MSD-SSA is 0 0.2, 0.2P k= = .
The test functions in Table 1 were solved using WPA, SSA and MSD-SSA re-
spectively, and the python was used to make 30 independent experiments and
compare the mean, standard deviation and convergence speed (time) of the three
algorithms to avoid the bias caused by the randomness of the algorithms and to
ensure the reasonableness of the algorithms. The experimental results are shown
in Table 2 and the resulting convergence curves are plotted in Figure 4.

4.2. CEC2017 Constrained Optimization Problems

The CEC2017 test functions [20] are shown in Table 3. The test functions are in
10 and 30 dimensions, respectively. The population of the algorithm has 100 in-
dividuals, the number of leaders and followers is half of the population respec-
tively, and the algorithm is iterated 1000 times independently. The parameter
value in MSD-SSA is 0 0.2, 0.2P k= = . The test functions in Table 3 were solved
using MSD-SSA and SSA respectively, and the python was used to make 30

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 99 Journal of Computer and Communications

Table 1. Description of benchmark function.

Function Range minf

() 2
1

1

n

i
i

f x x
=

=∑

[]100,100−
 0

()2
1 1

nn

i i
i i

f x x x
= =

= +∑ ∏

[]10,10−
 0

()
2

3
1 1

n i

j
i j

f x x
= =

 
=  

 
∑ ∑

[]100,100−

 0

() { }4 max ,1i if x x i n= ≤ ≤

[]100,100−
 0

() () ()
1 2 22

5 1
1

100 1
n

i i i
i

f x x x x
−

+
=

 = − + −  ∑

[]30,30−
 0

() [)4
6

1
0,1

n

i
i

f x ix random
=

= +∑

[]1.28,1.28−
 0

() ()2
7

1
10cos 2 10

n

i i
i

f x x x
=

 = − π + ∑

[]5.12,5.12−
 0

() ()2
8

1

1 120exp 0.2 exp cos 2 20
n

i i
i

f x x x e
n n=

   = − − − π + +       
∑

[]32,32−

 0

() 2
9

1 1

1 cos 1
4000

nn
i

i
i i

x
f x x

i= =

 
= − + 

 
∑ ∏

[]600,600−

 0

() () () () ()

()

()

()
()

()

1
2 22 2

10 1
1

1

10sin 1 1 sin 1

,10,100, 4 ,

11 1

4
,

, ,

,

,

, 0

n

i i i n
i

n

i
i

i i

m
i i

i i

m
i i

f x y y y y
n

u x

y x

k x a x a
u x a k m a x a

k x a x a

−

+
=

=

π   = π + − + π + −   

+

= + +

 − >
= − ≤ ≤


− − < −

∑

∑

[]50,50−
 0

Table 2. Performance comparison of WPA, SSA and MSD-SSA on test functions.

Function Stats MSD-SSA SSA WPA

1f

Mean 8.98E−11 9.42E−09 4.28E+00

Std 6.65E−12 2.38E−08 7.27E−12

Time(s) 5.704768753 6.055757221 4.325863247

2f

Mean 4.19E−06 0.35004655 1.2226230412

Std 3.30E−07 0.00191453 1.52E−05

Time(s) 5.858462628 6.122387815 5.813986003

3f
Mean 2.94E−10 53.75321536 68.26151173

Std 2.30E−10 200.9015373 0.0

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 100 Journal of Computer and Communications

Continued

 Time(s) 7.408410994 7.686855181 5.0839362025

4f

Mean 3.47E−06 11.45540334 8.71E+10

Std 3.09E−07 0.147363826 2.84E−14

Time(s) 5.779169146 6.071856912 3.682288539

5f

Mean 28.12139887 390.9104529 486.1950995

Std 0.165077021 19.94642673 0.0

Time(s) 6.140934952 6.516275398 6.908285319

6f

Mean 4.45E−05 0.033427049 0.001022907

Std 0.000118094 0.049622245 1.42E−14

Time(s) 5.421882804 5.717415269 4.837871611

7f

Mean 3.46E−11 41.78822494 26.68294181

Std 5.57E−12 6.15E−09 5.68E−14

Time(s) 6.163218141 6.453282237 2.911670494

8f

Mean 2.07E−06 2.495401167 20.79011457

Std 2.84E−07 9.90E−10 3.55E−15

Time(s) 7.183958522 7.221007339 7.085961198

9f

Mean 1.18E−10 0.010155491 686.3675368

Std 1.52E−11 0.001599289 0.0

Time(s) 7.029453381 7.650319187 6.498791745

10f

Mean 0.379057981 4.053250733 3.487683579

Std 0.097481408 0.421909641 1.19E−07

Time(s) 7.203487563 7.375670958 17.2234921

independent experiments and compare the mean, standard deviation and con-
vergence speed (time) of the two algorithms to avoid the bias caused by the ran-
domness of the algorithms and to ensure the reasonableness of the algorithms.
Table 4 and Table 5 show the experimental results in 10 and 30 dimensions,
respectively, and the obtained convergence curves are shown in Figure 5 and
Figure 6, respectively.

4.3. Result Discussion

For benchmarks test functions, the experimental results in Table 2 show that
MSD-SSA has significant advantages over SSA in optimizing most functions. In
terms of convergence precision, the convergence accuracy of MSD-SSA for

1 2 3 4 6 7 8 9, , , , , , ,f f f f f f f f is significantly better than that of SSA. For 5f and

10f , the final convergence is not optimal, but the convergence results are greatly
improved compared with SSA. In terms of algorithm robustness, except 8f , the
stability is better than SSA. Although the stability of 8f is slightly weaker than

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 101 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 102 Journal of Computer and Communications

Figure 4. Corresponds to the convergence curve of test function f1 - f10 respectively.

Table 3. CEC2017 description of benchmark function.

(a)

Problem Function

CEC01
()

() ()
1

2

1

2

1

 5000cos 0.1 400

min

s.t 0. 0
D

i i
i

D i

j
i j

x

g x x

f x

x

= =

=

 
=  

 

 = − − ≤ π

∑

∑

∑

CEC02
()

() () ()
1

2

1

2

1

min

s.t. 5000cos 0.1 4000 0

D i

j
i
D

i
i

j

ig Mx

M

Mx

f x x

x

= =

=

 = − − ≤ 

 
=  

 

π∑

∑ ∑

CEC03
() ()

() () () ()

2

1

1 2
1 1

 10cos 2 10

 sin 2 0, ?

min

s. 2 0t.

D

i i
i

D D

i i i i
i i

x x

g x x

f

g xx x

x

x
=

= =

= − + 

= − ≤ = ≤

π∑

∑ ∑

CEC04

() () ()
() () ()

() () ()

1 2 22 2
1

1

2
1 1 1

1

2
2 2 2

1

 100 1

 50cos 2 4

min

s. 0 0

 50cos 2 4

t.

0 0

D

i i i
i
D

i i
i
D

i i
i

x x x

g M x M x

g

f x

x

x M x M x

−

+
=

=

=

 − + −  

 = − − ≤ 

 = − − ≤ 

=

π

π

∑

∑

∑

CEC05

() ()

() ()

() ()

() ()

() ()

() ()()

2

1

1
1

2
1

3
1

4
1

5
1

 10cos 2 10

 sin 0

 sin 0

 cos 0

 cos 0

min

s.

 sin

t.

2

D

i i
i

D

i i
i

D

i i
i

D

i i
i

D

i i
i

i i
i

x x

h x x

h x x

h x x

h x x

h x x

f x

x

x

x

x

x

=

=

=

=

=

=

 − + 

= − =

= =

= −

= π

π

π

=

= =

=

∑

∑

∑

∑

∑

() ()()6
1

0

 sin 2 0

D

D

i i
i

xh x x
=

=

= − =

∑

∑

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 103 Journal of Computer and Communications

Continued

CEC06

() ()

()

()

2 1 2
2

1
1 1

2

2
1 1

2

2

min 2

s.t.

 max , where 1, ,

 0

 0

i l l l l

i

j
i j

i

i

D

D

j
j

x x y x w x l

h x

f D

y

h x w

−

= =

= =

= = =

 
= = 

 
 

= = 

=

 

∑ ∑

∑ ∑



CEC07

() ()
()

() ()

2 1 2

1

22
1

1

2

2

 max , where 1, ,

min 2

s.t 0

.

 0

D
i l l l l

i
i

i i

D

i

x y x w x l

g x w

h x y

f x D

y

−

=

+
=

= = = =

= ≤

= − =

∏

∑



CEC08

() ()

()

() ()

2

1
1 1
1

2
2 1

1

 m max

 0

i

0

n

s.t.

i

D i

j
i j
D

i i
i

x

h x

h x

x

x

x x

f

= =
−

+
=

 
= = 



=



= − =

∑ ∑

∑

CEC09

()

()

() ()

1

1
1 22

1
1

 0

min

s.

t

.

 0

D

i
i
D

i
i

D

i i
i

f x

x

x

x

g x

h x x

=

=
−

+
=

= ≤

= − =

=∑

∏

∑

CEC10

() () ()()
() ()()

()

()

1 2 22
1

1

2
1

1

2
1

3
1

 100 1

 10cos 2 10 100 0

 2 0

 5

m

t.

0

in

s.

D

i i i
i
D

i i
i
D

i
i

D

i
i

f x x x x

g x x

g

x

x D

g

x

x

x

−

+
=

=

=

=

− + −

= − + − ≤

=

=

= − ≤

π

− ≤

∑

∑

∑

∑

CEC11

() { }
()

() () ()

2

1

 100 0

min max ,1

s.

 cos sin 0

t.

i
D

i
i

f x i D

x

x x

x

g x D

h f xf
=

= − ≤

=

=

+

≤ ≤

=

∑

CEC12

()

()

() () ()() () ()() ()

2

1

1

2

 100 0

 cos sin exp cos sin 1 exp 1

min

s.t.

0

D

i
i

D

i
i

x

g x D

h f

f x

x

x f fx x xf x

=

=

= − ≤

= + − + − + =

=

∑

∑

CEC13

() ()() ()

()

()

() () ()

2 2
2 2

1

1
1

2
2

1

22 2
1

1 1

, if 0.5
 10cos 2 10 ,

0.5 2 , otherwise

 1 0

 100 0

min

100 sin 1

.t

0

s .

D
i i

i i i
i i

D

i
i

D

i
i

DD

i i i
i i

x x
x z z z

round x

g x x

g x x D

h x

f

x x x

=

=

=

+
= =

 <− + = 


= − ≤

= π

π

= − ≤

= − + − =

∑

∑

∑

∑ ∏

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 104 Journal of Computer and Communications

Continued

CEC14

() () () ()
()

()
()

() ()

2 2 2
1

1 1 1 2
2 2

1

2

1

1

1

1

1
1

2

sin 0.5
 , , , , 0.5

1 0.001

 cos 0.25cos 0.125 0

 exp c

min

s.t.

os exp 0.25

i i

i i D i i

i i

D D

i i
i i

D

D

i
i

i
f x g g g

x

x x
x x x x x x

x

x x

g x x

g x

+

+

= =

=

=
+

+

− + −
+

+ +

   = − − ≤   
   
  = − ≤ 

= + =

 
  

∑

∑ ∑

∑ 0

CEC15

() ()

()

()

2

1

1
1

2
1

 10cos 2 10 ,

min

s.t. 4 0

 4 0

D

i i
i

D

i
i

D

i

y y y Mx

g

f x

y

g y

x

x

=

=

=

 − + = 

= −

π

≤

≤

=

= −

∑

∑

∑

CEC16

() () ()

() ()()

()

()

2 22
1

1

2
1

1

2
1

2
1

 100 1 ,

 10cos 2 10 0

min

s.

2 0

t.

5 0

D

i i i
i

D

i i
i

D

i
i

D

i
i

y x y y Mx

g y y

g

f x

y D

g

x

x

yx

+
=

=

=

=

 − + − =  

= − + ≤

= − ≤

= − ≤

=

π

∑

∑

∑

∑

(b)

Problem Range
Number of Bindings

E I

CEC01 [−100, 100] 0 1

CEC02 [−100, 100] 0 1

CEC03 [−10, 10] 0 2

CEC04 [−10, 10] 0 2

CEC05 [−20, 20] 6 0

CEC06 [−100, 100] 2 0

CEC07 [−10, 10] 2 0

CEC08 [−100, 100] 2 0

CEC09 [−100, 100] 1 1

CEC10 [−100, 100] 0 3

CEC11 [−100, 100] 1 1

CEC12 [−100, 100] 1 1

CEC13 [−100, 100] 1 2

CEC14 [−100, 100] 0 2

CEC15 [−100,100] 0 2

CEC16 [−100,100] 0 3

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 105 Journal of Computer and Communications

Table 4. Performance comparison of MSD-SSA and SSA on test functions (10D).

Function Stats MSD-SSA SSA

CEC01

Mean 4.95E−12 1.40E−10

Std 9.24E−13 1.21E−10

Time(s) 17.15478114 17.28749408

CEC02

Mean 5.76E−12 3.09E−10

Std 4.13E−12 2.58E−10

Time(s) 18.4906462 20.90592599

CEC03

Mean 1.36E+01 52.73252666

Std 2.14E−02 8.29E−11

Time(s) 16.40691744 15.34842814

CEC04

Mean 8.998415914 8.998926142

Std 1.96E−05 6.60E−05

Time(s) 16.44151483 17.00241801

CEC05

Mean 4.65E−08 2.85E+02

Std 2.16E−08 2.22E−04

Time(s) 16.64680717 15.42366769

CEC06

Mean 1.82E−06 43.35792483

Std 5.63E−07 3.18E−06

Time(s) 15.58736248 15.84327443

CEC07

Mean 9.47E−08 1.433217519

Std 7.41E−08 6.15E−09

Time(s) 11.6278939 11.85922258

CEC08

Mean 9.86E−07 1.25E−05

Std 4.70E−07 8.69E−06

Time(s) 16.0366317 16.74224679

CEC09

Mean −1.33E−06 −4.401215885

Std 1.61E−06 3.409789061

Time(s) 12.24845986 12.47100568

CEC10

Mean 66.18822172 77.81946403

Std 112.4076859 2.520774604

Time(s) 14.35157094 14.49965868

CEC11

Mean 14.92256511 18.06415685

Std 4.54E−10 2.24E−06

Time(s) 12.37109933 12.83158839

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 106 Journal of Computer and Communications

Continued

CEC12

Mean 33.92920169 76.96902002

Std 7.539802782 1.83E−09

Time(s) 12.85865462 12.98471289

CEC13

Mean 0.001098596 258.125

Std 3.29E−03 2.125

Time(s) 20.21733594 20.87134676

CEC14

Mean 0.244309396 0.96925917

Std 0.316349688 2.71E−02

Time(s) 16.51488175 18.18085654

CEC15

Mean 11.74930116 19.49499386

Std 3.007734851 5.007423369

Time(s) 14.43568053 14.38639846

CEC16

Mean 7.705309519 264727.795

Std 0.165002392 6.04E+05

Time(s) 14.64010904 14.70395908

Table 5. Performance comparison of MSD-SSA and SSA on test functions (30D).

Function Stats MSD-SSA SSA

CEC01

Mean 4.07E−11 8.49E−02

Std 4.14E−11 2.53E−01

Time(s) 51.15962758 52.07183607

CEC02

Mean 8.43E−11 4.20E−05

Std 3.43E−11 1.23E−04

Time(s) 56.50194526 63.13624792

CEC03

Mean 13.58830671 216.8995591

Std 4.74E−03 3.99E−09

Time(s) 49.91018164 46.72936332

CEC04

Mean 28.99603765 28.99797197

Std 1.02E−04 1.28E−04

Time(s) 53.07714818 52.0836818

CEC05

Mean 1.33E−07 7.50E+02

Std 2.69E−07 1.54E−04

Time(s) 37.88733799 39.50639632

CEC06

Mean 2.03E−06 0.17485355

Std 1.49E−07 4.80E−01

Time(s) 60.88767364 52.5819994

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 107 Journal of Computer and Communications

Continued

CEC07

Mean 1.69E−07 4.251761281

Std 7.76E−08 9.14E−07

Time(s) 33.93889532 35.76503084

CEC08

Mean 1.96E−06 1.00E−01

Std 4.65E−07 2.32E−01

Time(s) 47.31576941 16.74224679

CEC09

Mean −1.22E−06 140.9718139

Std 7.82E−06 14.72215499

Time(s) 34.64287498 35.75151873

CEC10

Mean 412.7758021 3.40E+24

Std 192.0322279 2.06E+16

Time(s) 50.08848522 50.88623056

CEC11

Mean 15.86505171 18.06415776

Std 7.441012651 2.00E−09

Time(s) 46.07220759 47.57178798

CEC12

Mean 18.84955905 246.6150233

Std 13.15724649 1.83E−09

Time(s) 46.61474404 47.4385241

CEC13

Mean 0.001098596 258.125

Std 3.29E−03 2.125

Time(s) 20.21733594 20.87134676

CEC14

Mean 2.774791549 3.080194387

Std 0.158284286 1.94E−03

Time(s) 53.51142323 54.34439452

CEC15

Mean 55.81424714 80.32612567

Std 2.267501187 17.39791280

Time(s) 46.47466836 48.06013227

CEC16

Mean 1265.662073 1.24365E+11

Std 737.6460717 1.12E+07

Time(s) 52.5728548 51.41614304

SSA, its standard deviation also has reaches 10−7. In terms of convergence speed,
MSD-SSA converges to the optimal point faster than SSA.

For CEC2017 test functions, the CEC2017 test functions [20] include single
and multi-modal problems, which can effectively evaluate the performance of
algorithms. Table 4 tests 16 CEC2017 test functions [20] with 10-dimensions.
The experimental results show that under the same environment, MSD-SSA has

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 108 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 109 Journal of Computer and Communications

Figure 5. CEC2017 test function iteration curve (10D).

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 110 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 111 Journal of Computer and Communications

Figure 6. CEC2017 test function iteration curve (30D).

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 112 Journal of Computer and Communications

a better convergence effect and faster convergence speed than SSA. For most
CEC2017 test functions, MSD-SSA is more stable. However, Table 4 shows that
the standard deviation of CEC10 and CEC12 is too large, indicating that the ro-
bustness of the improved algorithm is poor for CEC10 and CEC12.

Table 5 tests 16 CEC2017 test functions [20] with 10 dimensions. Compared
with the CEC2017 10-dimensionals test function, the 30-dimensionals test func-
tion is more complex. According to Table 5, MSD-SSA is superior to SSA in
terms of convergence accuracy, manipulation speed and robustness. However, the
standard deviations of CEC10, CEC11, CEC12, CEC15 and CEC16 are too large,
indicating that the robustness of MSD-SSA is poor and needs to be improved.

In summary, the improved algorithm has a stronger search capability and faster
convergence to the target value for most functions.

5. Engineering Problems and Result Discussion
5.1. Cantilever Beam Design Problem

In the era of big data, solving the constrained optimization problem is crucial to
engineering. Although benchmark functional testing was addressed in the pre-
vious section, the issues in actual projects are within specific limitations. Optim-
ize practical engineering problems using SSA and MSD-SSA, and verify the fea-
sibility of MSD-SSA for practical engineering problems.

The goal of CBD [24] is to minimize the weight of cantilever beam and square
section, see Figure 7. The variables of this problem are composed of five hollow
square members. The CBD problem [24] is expressed as follows:

() ()
()

1 2 3 4 5

3 3 3 3 3
1 2 3

1 2 3 4 5

4 5

61 27

m
19 7 1 1 0

 0.01 , ,

in 0.0624

, , 10

s

0

.t.

f x x x x x x

xg

x
x x x x x

x x x x

= + + +

= + +

+ ≤

+

≤ ≤

+

− (19)

Do 30 independent experiments to verify the effectiveness of the algorithm.
See Table 6 for the experimental results.

Figure 7. Cantilever beam structure [25].

Table 6. Comparison results of MSD-SSA with SSA for CBD problem [24].

Algorithm
Optimize the Solution Optimal

Cost x1 x2 x3 x4 x5

MSD-SSA 6.221899 4.667276 4.307131 3.680037 2.177050 1.313731

SSA 6.010624 5.320413 4.493760 3.498178 2.151536 1.339961

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 113 Journal of Computer and Communications

5.2. Tension/Compression Spring Design Problem

The purpose of TCSD [26] is to minimize the weight of the spring. This problem
has three variables, namely wire diameter, mean coil diameter, and the number
of dynamic coils. Equation (20) describes the TCSD [26] problem.

Do 30 independent experiments to verify the effectiveness of the algorithm.
See Table 7 for the experimental results.

() ()

()

() ()
()

()

2
3 2 1

3
2 3

4
1

2
2 1 2

23 4
12 1 1

1
3
2

1

3

2

1

2

4

3

1

 1 0

4 1 0
12566

 1 0

 1 0
1.5

 0.05

min 2

s.t.
71785

5180

2

14

,0

0.45

f x x x x

x x
x

x

x x xx
xx x x

xx

g

g

g

g

x

x x
x xx

= − ≤

= + ≤

= − ≤

= +

−

−

≤

−

=

≤

+
≤

2 3.25 1.3,2 15x x≤ ≤ ≤ ≤

 (20)

5.3. Schematic Views of Speed Reducer Design

The goal is to minimize the weight of a speed reducer so that the engine and
propeller can rotate efficiently. This problem involves constraints on stresses in
the shafts, transverse deflection of the shafts, surface stress and bending stress of
the gear teeth (see Figure 8). Equation (21) describes the SRD problem [27].

Do 30 independent experiments to verify the effectiveness of the algorithm.
See Table 8 for the experimental results.

Table 7. Comparison results of MSD-SSA with SSA for TCSD problem [26].

Algorithm
Optimize the Solution Optimal

Cost x1 x2 x3

MSD-SSA 0.050000 0.317851 13.97190 0.0126917

SSA 0.054734 0.434490 7.854553 0.0128271

Figure 8. Schematic views of speed reducer design [27].

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 114 Journal of Computer and Communications

() ()
() () ()

() ()

()

2 2
1 2 3 3

2 2 3 3 2 3
1 6 7 6 7 4 6 5 7

2 21 2 2
1 2 3 1 2 3

3

min 0.7854 3.3333 14.9334 43.0934

1.508 7.4777 0.7854

27 397.5 1 0, 1 0,

1.93

s.t.

f x x x x

x x x x x x x x

x

g x g x

x

x x x x x x

g x

= + −

− + + + +

= ≤

+

= − ≤ −

= ()

()
()

3

4

1 22 6
4

5

3
54

4 4
2 6 3 2 7 3

2 3

3
6

1.93
1 0, 1 0,

745 16.9 10

11
 1 0

0
,

xx
x x x x

g
x x

x

x

x
g x

x

x

− ≤ = − ≤

 + × = − ≤

()
()

() ()

() ()

()

1 22 6
5

6

2
7 8

1
9 1

2 3

3
7

3 2

1

6
0

2

7
11

5

4

745 157.5 10
 1 0,

5
 1 0, 1 0,

1.5
 1 0, 1 0,

12
1.1 1.9

 1 0

85

40
1.9

 2.6

xx
g x

x
g x g x

xg x g x
x

x

x
x x

x
x
x

x
g x

x
x

+ ×
= − ≤

= − ≤ = − ≤

= − ≤ = − ≤

+
= −



≤

 

+

≤



1 2 3

4 5 6 7

3.6,0.7 0.8,17 28,
 7.3 8.3,7.3 8.3,2.9 3.9,5.0 5.5

x x
x x x x
≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

 (21)

5.4. Result Discussion

For the CBD problem [24], the optimization results of MSD-SSA and SSA are
1.313731 and 1.339961, the optimal solution is shown in Table 6.

For the TCSD problem [26], the optimization results of MSD-SSA and SSA
are 0.0126917 and 0.0128271, the optimal solution is shown in Table 7.

For the SRD problem [27], the optimization results of MSD-SSA and SSA are
2997.0889 and 3041.6166, the optimal solution is shown in Table 8.

The average operation time(s) obtained from the above practical engineering
problems are as follows:

It can be seen from Table 9 that MSD-SSA takes less time to solve the same

Table 8. Comparison results of MSD-SSA with SSA for SRD problem.

Algorithm
Optimize the Solution Optimal

Cost x1 x2 x3 x4 x5 x6 x7

MSD-SSA 3.5018 0.7 17 7.3000 7.7348 3.3526 5.2880 2997.0889

SSA 3.5000 0.7 17 7.3188 8.0557 3.4982 5.2868 3041.6166

Table 9. Time spent by MSD-SSA and SSA to solve practical problems.

Algorithm
Time(s)

CBD TCSD SRD

MSD-SSA 1.083599512 0.768733430 1.719269466

SSA 1.306071830 0.799066846 1.804705365

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 115 Journal of Computer and Communications

practical engineering problems than SSA, which shows that the improved algo-
rithm is superior to the original algorithm in terms of convergence speed.

6. Conclusions and Implications

Based on the drawbacks of low convergence accuracy, slow convergence speed
and easy to fall into a local optimum of the Salp Swarm Algorithm, this paper
proposes a Multi-Strategy-Driven Salp Swarm Algorithm. Firstly, the Levy flight
strategy with small probability is introduced to the leaders and the crossover op-
erator operation is adopted to improve the global exploration ability in the early
stage of the algorithm, so that the leaders can effectively jump out of the trap of
local optimum. Secondly, Brownian motion is adopted in the latest iteration to
improve the exploitation ability of the algorithm near the global optimum and
improve the convergence accuracy of the algorithm. Finally, the positional rela-
tionship between the leaders is used to update the followers, so that the leaders
have the purpose. The final update of the followers with the positional relation-
ship between leaders, so that the leaders purposefully follow the better individu-
al, improves the convergence speed of the algorithm. The above improvements
optimize the global and local search of the algorithm, balancing the exploration
and exploitation functions of the algorithm. In the simulation experiments,
benchmark test functions and three real engineering problems were used for
comparison tests to examine the performance of the algorithm. The experimen-
tal results show that the improved algorithm has higher global convergence and
faster convergence than the original algorithm, and also outperforms the origi-
nal algorithm in terms of algorithm robustness. The next steps will continue to
improve the optimal performance of the tunicate algorithm, and increase its op-
timization accuracy, convergence speed and convergence stability. Based on this,
it will be applied to solve more practical problems.

SSA can be applied in many different fields, such as optimization design, ma-
chine learning, and so on. Specifically, MSD-SSA can be applied to problems that
require finding the optimal solution, such as optimizing design variables to achieve
the best performance in engineering, or adjusting model parameters to obtain the
best prediction results in machine learning. The optimization capability of this al-
gorithm can improve the convergence speed and accuracy of the algorithm, and it
has certain advantages for solving complex and high-dimensional problems. In
general, the application scenarios of MSD-SSA are relatively broad, and they can
provide assistance in solving problems in multiple fields.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Holland, J.H. (1992) Genetic Algorithms. Scientific American, 267, 66-73.

https://doi.org/10.4236/jcc.2023.117007

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 116 Journal of Computer and Communications

https://doi.org/10.1038/scientificamerican0792-66

[2] Das, S. and Suganthan, P.N. (2010) Differential Evolution: A Survey of the State-of-
the-Art. IEEE Transactions on Evolutionary Computation, 15, 4-31.
https://doi.org/10.1109/TEVC.2010.2059031

[3] Kennedy, J. and Eberhart, R. (1995) Particle Swarm Optimization. Proceedings
of ICNN’95—International Conference on Neural Networks, Perth, 27 Novem-
ber-December 1995, 1942-1948. https://doi.org/10.1109/ICNN.1995.488968

[4] Dorigo, M., Birattari, M. and Stutzle, T. (2006) Ant Colony Optimization. IEEE
Computational Intelligence Magazine, 1, 28-39.
https://doi.org/10.1109/MCI.2006.329691

[5] Karaboga, D. (2010) Artificial Bee Colony Algorithm. Scholarpedia, 5, Article No.
6915. https://doi.org/10.4249/scholarpedia.6915

[6] Mareli, M. and Twala, B. (2018) An Adaptive Cuckoo Search Algorithm for Opti-
mization. Applied Computing and Informatics, 14, 107-115.
https://doi.org/10.1016/j.aci.2017.09.001

[7] Połap, D. and Woźniak, M. (2017) Polar Bear Optimization Algorithm: Meta-Heuristic
with Fast Population Movement and dynamic Birth and Death Mechanism. Symme-
try, 9, Article 203. https://doi.org/10.3390/sym9100203

[8] Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014) Grey Wolf Optimizer. Advances in
Engineering Software, 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007

[9] Mirjalili, S. and Lewis, A. (2016) The Whale Optimization Algorithm. Advances in
Engineering Software, 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008

[10] Mirjalili, S., et al. (2017) Salp Swarm Algorithm: A Bio-Inspired Optimizer for En-
gineering Design Problems. Advances in Engineering Software, 114, 163-191.
https://doi.org/10.1016/j.advengsoft.2017.07.002

[11] Thawkar, S. (2021) A Hybrid Model Using Teaching-Learning-Based Optimization
and Salp Swarm Algorithm for Feature Selection and Classification in Digital Mammo-
graphy. Journal of Ambient Intelligence and Humanized Computing, 12, 8793-8808.
https://doi.org/10.1007/s12652-020-02662-z

[12] Neggaz, N., Ewees, A.A., Abd Elaziz, M. and Mafarja, M. (2020) Boosting Salp Swarm
Algorithm by Sine Cosine Algorithm and Disrupt Operator for Feature Selection.
Expert Systems with Applications, 145, Article ID: 113103.
https://doi.org/10.1016/j.eswa.2019.113103

[13] Zhang, H., et al. (2022) A Multi-Strategy Enhanced Salp Swarm Algorithm for Global
Optimization. Engineering with Computers, 38, 1177-1203.
https://doi.org/10.1007/s00366-020-01099-4

[14] Zhang, H., et al. (2023) Differential Evolution-Assisted Salp Swarm Algorithm
with Chaotic Structure for Real-World Problems. Engineering with Computers, 39,
1735-1769. https://doi.org/10.1007/s00366-021-01545-x

[15] Chen, L.X. and Mu, Y.M. (2021) Improved Salp Swarm Algorithm. Application Re-
search of Computers, 38, 1648-1652. (In Chinese)

[16] Yang, G.Y., Wu, D.F., Liu, F.K. and Xu, T.Q. (2023) Improved Salp Swarm Algo-
rithm with Multi-Strategy. Application Research of Computers, 40, 704-709. (In
Chinese)

[17] Liu, J.S., Yuan, M.M. and Li, Y. (2022) Robot Path Planning Based on Improved Salp
Swarm Algorithm. Journal of Computer Research and Development, 59, 1297-1314.
(In Chinese)

[18] Zhang, Y. and Qin, L.X. (2020) Improved Salp Swarm Algorithm Based on Levy

https://doi.org/10.4236/jcc.2023.117007
https://doi.org/10.1038/scientificamerican0792-66
https://doi.org/10.1109/TEVC.2010.2059031
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.4249/scholarpedia.6915
https://doi.org/10.1016/j.aci.2017.09.001
https://doi.org/10.3390/sym9100203
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1007/s12652-020-02662-z
https://doi.org/10.1016/j.eswa.2019.113103
https://doi.org/10.1007/s00366-020-01099-4
https://doi.org/10.1007/s00366-021-01545-x

Z. W. Gao, B. Wang

DOI: 10.4236/jcc.2023.117007 117 Journal of Computer and Communications

Flight Strategy. Computer Science, 47, 154-160. (In Chinese)

[19] Xie, C. and Zheng, H.Q. (2022) A Novel Salpa Warm Algorithm and Application.
Computer Engineering & Science, 44, 84-190.
https://doi.org/10.54097/hset.v24i.3896

[20] Wu, G.H., Mallipeddi, R. and Suganthan, P.N. (2017) Problem Definitions and
Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter
Optimization. Technical Report.
https://www.researchgate.net/publication/317228117

[21] Zhang, J. and Wang, J.-S. (2020) Improved Salp Swarm Algorithm Based on Levy
Flight and Sine Cosine Operator. IEEE Access, 8, 99740-99771.
https://doi.org/10.1109/ACCESS.2020.2997783

[22] Mantegna, R.N. (1994) Fast, Accurate Algorithm for Numerical Simulation of Levy
Stable Stochastic Processes. Physical Review E, 49, 4677-4683.
https://doi.org/10.1103/PhysRevE.49.4677

[23] Yao, X., Liu, Y. and Lin, G. (1999) Evolutionary Programming Made Faster. IEEE
Transactions on Evolutionary Computation, 3, 82-102.
https://doi.org/10.1109/4235.771163

[24] Yildiz, A.R. (2019) A Novel Hybrid Whale-Nelder-Mead Algorithm for Optimiza-
tion of Design and Manufacturing Problems. The International Journal of Advanced
Manufacturing Technology, 105, 5091-5104.
https://doi.org/10.1007/s00170-019-04532-1

[25] Saremi, S., Mirjalili, S. and Lewis, A. (2017) Grasshopper Optimization Algorithm:
Theory and Application. Advances in Engineering Software, 105, 30-47.
https://doi.org/10.1016/j.advengsoft.2017.01.004

[26] Zhao, S., et al. (2022) Elite Dominance Scheme Ingrained adaptive Salp Swarm Al-
gorithm: A Comprehensive Study. Engineering with Computers, 38, 4501-4528.
https://doi.org/10.1007/s00366-021-01464-x

[27] Askari, Q., Saeed, M. and Younas, I. (2020) Heap-Based Optimizer Inspired by
Corporate Rank Hierarchy for Global Optimization. Expert Systems with Applica-
tions, 161, Article ID: 113702. https://doi.org/10.1016/j.eswa.2020.113702

https://doi.org/10.4236/jcc.2023.117007
https://doi.org/10.54097/hset.v24i.3896
https://www.researchgate.net/publication/317228117
https://doi.org/10.1109/ACCESS.2020.2997783
https://doi.org/10.1103/PhysRevE.49.4677
https://doi.org/10.1109/4235.771163
https://doi.org/10.1007/s00170-019-04532-1
https://doi.org/10.1016/j.advengsoft.2017.01.004
https://doi.org/10.1007/s00366-021-01464-x
https://doi.org/10.1016/j.eswa.2020.113702

	Multi-Strategy-Driven Salp Swarm Algorithm for Global Optimization
	Abstract
	Keywords
	1. Introduction
	2. Salp Swarm Algorithm (SSA)
	3. Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA)
	3.1. Random Step of Levy Flight and Brownian Motion
	3.2. Crossover Operator
	3.3. Mean Position of the Leader
	3.4. Improving Salp Swarm Algorithm (ISSA)
	3.5. Time Complexity Analysis

	4. Simulation Experiments and Result Discussion
	4.1. Benchmarking Functions
	4.2. CEC2017 Constrained Optimization Problems
	4.3. Result Discussion

	5. Engineering Problems and Result Discussion
	5.1. Cantilever Beam Design Problem
	5.2. Tension/Compression Spring Design Problem
	5.3. Schematic Views of Speed Reducer Design
	5.4. Result Discussion

	6. Conclusions and Implications
	Conflicts of Interest
	References

