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Abstract 
In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low 
convergence accuracy and slow convergence speed, a Multi-Strategy-Driven 
Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources or 
random leaders were associated with the current bottle sea squirt at the be-
ginning of the iteration, to which Levy flight random walk and crossover 
operators with small probability were added to improve the global search 
and ability to jump out of local optimum. Secondly, the position mean of 
the leader was used to establish a link with the followers, which effectively 
avoided the blind following of the followers and greatly improved the con-
vergence speed of the algorithm. Finally, Brownian motion stochastic steps 
were introduced to improve the convergence accuracy of populations near 
food sources. The improved method switched under changes in the adap-
tive parameters, balancing the exploration and development of SSA. In the 
simulation experiments, the performance of the algorithm was examined 
using SSA and MSD-SSA on the commonly used CEC benchmark test func-
tions and CEC2017-constrained optimization problems, and the effective-
ness of MSD-SSA was verified by solving three real engineering problems. 
The results showed that MSD-SSA improved the convergence speed and con-
vergence accuracy of the algorithm, and achieved good results in practical en-
gineering problems. 
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1. Introduction 

With the continuous development of human cognition and society, the complexity 
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of various application problems and scientific computations has increased, and 
the own drawbacks of traditional optimization computation methods have re-
vealed themselves to be unable to meet people’s needs in a reasonable time. In 
recent years, meta-heuristic algorithms have received much attention and have 
been applied to many fields because of their operational flexibility, ease of im-
plementation and gradient-free mechanism. Among them, the evolutionary al-
gorithm includes Genetic Algorithm (GA) [1], Differential Evolution (DE) [2], 
etc. The swarm intelligence techniques mainly include Particle Swarm Optimi-
zation (PSO) [3], Ant Colony Optimization (ACO) [4], Artificial Bee Colony 
Algorithm (ABC) [5], Cuckoo Search (CS) [6], etc. The recently proposed swarm 
intelligence algorithm includes Polar Bear Optimization (PBO) [7], Grey Wolf 
Algorithm (GWO) [8], Whale Optimization Algorithm (WOA) [9], Salp Swarm 
Algorithm (SSA) [10], etc. The Salp Swarm Algorithm was proposed by Mirjalili 
et al. The algorithm has adaptive parameters that facilitate both global searches 
in the early stages of the algorithm and local development in the later stages of 
the algorithm. Similar to other swarm intelligence algorithms, it suffers from 
the disadvantages of being prone to local optimality and low convergence accu-
racy in late iterations. 

Since the Salp Swarm Algorithm was proposed in 2017, many scholars at home 
and abroad have improved the performance of the Salp Swarm Algorithm by 
addressing its shortcomings. Thawkar [11] proposed a hybrid model using Teach-
ing-Learning-Based Optimization and Salp Swarm Algorithm (TLBO-SSA), and 
applied it to the diagnosis of breast cancer, and achieved good results. Neggz et 
al. [12] introduced the sine cosine algorithm into the Salp Swarm Algorithm to 
obtain an enhanced algorithm (ISSAFD), which improved the exploration effect 
in the global search stage, enhanced the diversity of the population, avoided falling 
into local optimization, and balanced the exploration and development of the 
algorithm. Zhang et al. [13] proposed a multi-strategy Enhanced Salp Swarm 
Algorithm (ESSA), which uses orthogonal learning to generate opposite solu-
tions, expands the diversity of the population, uses quadratic interpolation to 
improve the local search ability of the algorithm, and uses test functions to test 
the accuracy of the improved algorithm. Heidari et al. [14] proposed the Chaotic 
Salp Swarm Algorithm (CDESSA), chaotic initialization was introduced in the 
initial stage of the algorithm to expand the diversity of the population, and dif-
ferential evolution was used to prevent premature convergence. Chen et al. [15] 
used a weighted center of gravity for the leader and adaptive weight for follow-
ers, balancing the development and exploration of the algorithm. Yang et al. [16] 
proposed a multi-strategy fusion Salp Swarm Algorithm (ISSA), which uses the 
mid-vertical theorem to change the position update mode of the follower and 
introduces the perturbation mechanism of the mid-vertical convergence strat-
egy to improve the ability of the algorithm to jump out of the local optimum. 
Liu et al. [17] proposed a Differential Evolution Parasitic Salp Swarm Algorithm 
(PDESSA), which introduced the position information of the previous genera-
tion of leaders, strengthened the global search, introduced adaptive inertia weight, 
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balanced the exploration and exploitation of the algorithm, and finally intro-
duced a dual-population mechanism with evolution and parasitism strategies, 
which increased the diversity of the population and improved the ability of the 
algorithm to jump out of local extremum. Zhang et al. [18] introduced the 
Levy flight strategy into the algorithm, and updated the follower by compar-
ing the fitness value of the follower, which enhanced the global search ability 
and convergence speed of the algorithm. Xie et al. [19] proposed a New Salp 
Swarm Algorithm (NSSA), introduced the idea of following the head wolf in 
the gray wolf optimization algorithm to the update method of leader, and car-
ried out experiments in 23 benchmark test functions to apply it to image match-
ing. 

All of the above-improved versions improve the performance of the original 
algorithm in finding the optimum to a certain extent. In order to make the algo-
rithm capable of solving more complex optimization problems, it still needs to 
be improved. In this paper, we propose a Multi-Strategy-Driven Salp Swarm Al-
gorithm (MSD-SSA). Firstly, in the first half of the algorithm, the leader’s posi-
tion is updated using Levy flight with small probability, Levy flight is a ran-
dom wandering with larger probability of large span steps, which can expand 
the global search range and jump out of local extremes more effectively. Se-
condly, a crossover operation is performed on the leader and the better leader 
is retained based on a greedy strategy to improve the convergence speed of the 
algorithm. Again, in the second half of the algorithm, we introduce Brownian 
motion random step is introduced in the second half of the algorithm, and 
Brownian motion is used to search deeply in the latest iteration to improve the 
convergence accuracy of the algorithm. Finally, the follower update method is 
different from the original algorithm, and the average position of the leader is 
used to update the followers, which strengthens the connection between the 
followers and the leader and makes the convergence speed faster. The per-
formance of MSD-SSA is verified by experimenting with the commonly used 
benchmark test functions and CEC2017 [20] test set to solve the optimal val-
ues and three engineering problems, and comparing with the traditional Salp 
Swarm Algorithm. 

2. Salp Swarm Algorithm (SSA) 

The inspiration for the Salp Swarm Algorithm [10] comes from the group move-
ment and predatory behavior of the marine organism salp. The salp is a marine 
creature with a translucent barrel-shaped body that resembles a jellyfish. Based 
on the behavior of this creature, the algorithm for SSA was simulated. In SSA, 
the problem to be solved is to find the largest food source. The fitness function 
of the algorithm depends on the quality of the food source. 

Depending on the position of the individuals in the chain structure, all indi-
viduals can be divided into two categories: leaders and followers. The leader 
guides all individuals to form a herd chain and move towards the food source to 
find a better food source for the population, and the followers follow the pre-
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vious individual and are indirectly guided by the leader. The mathematical mod-
el of these two stages is as follows: 

In the D-dimensional search space, N individuals of salp are randomly gener-
ated. The population of salp is shown in the N D×  matrix in Equation (1) 

1 1 11
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2 2 22
1 2

1 2
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Among them, X shows the population of salp, iX  shows the i-th individual 
in the population, and i

jx  shows the j-th attribute of the i-th individual in the 
population. 

The position update of leader is related to the current global optimal food 
source location, so after generating the population, find the current global op-
timal food source location F. In the population, leader has leadership functions, 
and their positions are updated according to Equation (2) 
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where, i
jx  shows the new position of the i-th leader in the j-th dimension, jF  

is the j-th dimension of the best food source, jub  and jlb  show the upper and 
lower bounds of the individual in the j-dimensional space, respectively, 1r  and 

2r  are random numbers subject to uniform distribution on [ ]0, 1 . The coeffi-
cient c1 is an important convergence factor of SSA. 

c1 is mainly responsible for the exploration and development of the algorithm, 
which is calculated by Equation (3) 

2

1
max

42exp ,tc
T

  
 = −    

                     (3) 

where, t is the current number of iterations, and maxT  is the maximum number 
of iterations. The value of c1 gradually decreases from 2, and its variation curve is 
shown in Figure 1. In the early stage of algorithm iteration, c1 changes quickly 
and has a large step size, which is conducive to global search. At the later stage of 
the iteration, c1 tends to be stable and the step size is small, which is conducive 
to fine search and converges to the global best food source. 

Followers use Newton’s law of motion to update the position, give the initial 
velocity, acceleration and initial position to the follower, and obtain the position 
update formula as shown in Equation (4) 

2
0

1 ,
2

i
jx v t at= +                         (4) 

Assuming its initial velocity 0 0v = , ( )final 0a v v t= − , Equation (5) is the po-
sition update of followers. 
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Figure 1. Change curve of c1 iteration for 500 times. 
 

( ) ( ) ( )( )11 1 1 ,
2

i i i
j j jx t x t x t−= − + −                  (5) 

where, 2i ≥ . i
jx  shows the new position updated by the i-th follower on the 

j-th dimension. According to Equation (5), the position update of the follower is 
related to the position of the previous individual. 

The process of SSA is as follows: 
Step 1. Set parameters such as population size, maximum number of itera-

tions, upper and lower boundaries. 
Step 2. Find individual fitness value and get food source, leader and followers. 
Step 3. Judge whether the maximum iteration is reached. If so, output the op-

timal value position and optimal value, otherwise proceed to the next step. 
Step 4. Equation (2) updates leader position and amend boundary, Equation 

(5) updates follower position and amend boundary. 
Step 5. Calculate the fitness value of the individual after the location update. 
Step 6. Increase the number of iterations by 1, return to Step 3. 

3. Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) 
3.1. Random Step of Levy Flight and Brownian Motion 

In the standard SSA, the leader only searches according to the location of the 
food source, and the update mode of the follower is only related to its adjacent 
Levy flight [21], proposed by French Mathematician Paul Pierre Lévy [21], is a 
heavy-tailed distribution with a high probability of producing a large stride. Most 
animals follow this rule in their foraging behavior. The accidental long-distance 
step of Levy flight helps to expand the search range and jump out of the limit of 
local optimization, more short distance steps can carefully search the surround-
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ing area and improve the local exploitation ability. The trajectory of Levy’s flight 
is shown in Figure 2. 

The probability density function of Levy flight obeys the Levy distribution, 
which can be expressed by Equation (6) 

( ) ( ) ( )
0

1Levy exp cos d .s k ks kλβ
∞

−
π

= ∫               (6) 

According to Mantegna method [22], the random step of Levy flight can be 
expressed as follows 

1 .ul
v β=                            (7) 

where, u and v are Gaussian distributions that satisfy the following conditions 
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Figure 2. Movement trajectory of Levy flight (a random walk graph generated by Levy 
flight random step within a certain range and random direction walking). 
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the value of β  is generally 1.5, and Γ  is a Gamma function. 
Brownian motion is the irregular motion made by a suspended particle, a 

random wandering process without rules. Because the standard Brownian mo-
tion step change image is similar to a Gaussian distribution with mean 0 and va-
riance 1, the Brownian motion random number is generated from Equation (11) 

( )2Brown ~ 0, .N δ                       (11) 

3.2. Crossover Operator 

The crossover operator helped to increase the diversity of the population, there-
by increasing the chance for the population to break out of local optimum food 
sources. 

Different random integers were generated, each corresponding to the respec-
tive dimension of an individual, sorted based on their fitness values, and the po-
sitions of the corresponding dimensions were exchanged in sequence. The adja-
cent individuals underwent the crossover operator to generate the crossover in-
dividuals, and a greedy strategy was used to retain individuals with better fitness 
values for the next iteration. c random numbers satisfy 

{ }1 2,0 ,  , , , , i cc kD s D s s s s= < ≤ =                 (12) 

where, the random integers in s are different, and k is the proportion coefficient 
of the crossover operator. 

3.3. Mean Position of the Leader 

In standard SSA, the position update of a follower is only related to the previous 
individual, which is blind and slows down the convergence of the overall algo-
rithm. If the previous individual falls into a local optimum, then all the followers 
are unable to jump out of the local optimum. 

Consider the position relationship between the follower and the average lead-
er, and let the follower follow the average leader closely, with the following up-
date method 

0 ,

lN
i
j

i
j

l

x
x

N
==
∑

                         (13) 

where, jx  is the average position of all leaders in the j-th dimension, and lN  
is the number of leaders. 

3.4. Improving Salp Swarm Algorithm (ISSA) 

In the standard SSA, the leader only searches according to the location of the 
food source, and the update mode of the follower is only related to its adjacent 
individual location. The global search or local search is determined according to 
c1 value. If the food source is the local optimum, the leader will fall into it, and 
the follower will not jump out of the local optimum, so that the SSA cannot jump 
out of the local optimum. Therefore, in the early stage of the iteration, consider 
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the location of random leader or food source to establish contact with the cur-
rent individual to update the leader, and a small probability of Levy flight [21] 
random step size should be added to help jump out of the local optimal during 
the iteration process. 

A random leader or food source establishes relationship with the current indi-
vidual location to obtain the location update formula of leader 

( )
( ) ( )( )

( ) ( )( )

1 2

1 2

11 1 ,
2

       

1
2

    11 ,

i i
j j j

i
j

i i rand
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x t

x t c x t x

r

r

 − + − − ≥= 
 − + − − <


          (14) 

among them, rand
jx  is the position of the randomly selected leader in the j-th 

dimension. In this way, the influence of the food source on the current individu-
al and the influence of other individuals in the population are considered, the 
exploration and exploitation process of the algorithm is also considered. 

Adding Levy flight random number with small probability is beneficial to bet-
ter jump out of local optimum. When 0P P< , calculate the Levy flight [21] ran-
dom number through Equation (7) to Equation (10), and obtain the leader posi-
tion update formula to add Levy flight random number 
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where, 0P  is the probability of occurrence, l  is the Levy flight [21] random 
number. 

Later, in the iteration, as the value of c1 continues to decrease, SSA tends to 
fine tune the search, and to improve the search accuracy, a random step of Brow-
nian motion is used. Equation (11) is the position update method of leader adopt-
ing Brownian motion 
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where, Brown is the random step of Brownian motion. 
The crossover operator can generate new individuals, expand the diversity of 

the population, improve the search efficiency of the population, and better jump 
out of the local optimum. Generate random dimensions according to Equation 
(12), and apply the crossover operator to the leader. 

According to Equation (13), the position updating method for the follower is 
derived. 

( ) ( )( )1 1 ,
2

i i
j j jx t x x t= + −                    (17) 

where, jx  is the mean position of the leaders calculated by Equation (13). 
Followers are led purposefully, and the population is able to move faster to-
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wards the optimal food source, allowing the algorithm to converge more quickly. 
Each iteration of the algorithm uses a greedy strategy to select the optimal fit-

ness-valued individuals. 
The flowchart of MSD-SSA is shown in Figure 3. 

 

 
Figure 3. The flowchart of MSD-SSA. 

https://doi.org/10.4236/jcc.2023.117007


Z. W. Gao, B. Wang 
 

 

DOI: 10.4236/jcc.2023.117007 97 Journal of Computer and Communications 
 

The pseudo code of the MSD-SSA is described as follows: 
 

Pseudo (MSD-SSA) 

Initialize the salp population ( )1,2, ,ix i N=   considering upper and lower 

Calculate the fitness of each salp 

While (end condition is not satisfied) 

F = the best salp 

Equation (3) Calculate c1 

if 0 2t T≤ <  

for each salp ( ix ) 

if (leaders) 

Equations (7)-(10) calculates the random step of Levy flight 

Update the position of the search agents by Equation (14) or 
Equation (15) 

Equation (12) leader crossover operator operation 

Greedy algorithm selects better leaders 

else (followers) 

Update the position of the search agents by Equation (17) 

end 

else 2T t T≤ <  

for each salp ( ix ) 

if (leaders) 

Calculate the random step of Brownian motion 

Update the position of the search agents by Equation (16) 

else (followers) 

Update the position of the search agents by Equation (17) 

end 

end 

Amend the salp based on the upper and lower bounds of variables 

end 

return F 

3.5. Time Complexity Analysis 

Time complexity is an important indicator of the amount of work required to 
run the algorithm and to evaluate the time consumption of the algorithm. The 
time complexity is usually denoted by O. The MSD-SSA algorithm consists of 
three parts: population initialization, updating the leader position and updating 
the follower position. Assume that the iteration number of the algorithm is T, 
the population size is N, and the dimension is D. 

1) Initialize the population, which needs to be run ND time. 
2) To calculate the individual fitness value and select the best individual as 

food, it needs to run 
( )1

2
N N −

 times. 
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3) The algorithm parameters are updated and need to be run 4 times. 
4) Leaders need to run D times to update in space. 
5) Followers update ( )1N D−  times in space. 

6) Levy flight update needs to run 
1
2

ND  times. 

7) Brownian motion update needs to run 1
2

ND  times. 
8) It takes ND time to find out the food source from the population and ex-

port it. 
Each of the above operation units goes through T iteration, so the total time 

complexity of MSD-SSA is Equation (18) 

( ) ( ) ( )
1

MSD SSA 4 1 .
2

-
N N

O T ND D N D
− 

= + + + + − 
 

       (18) 

4. Simulation Experiments and Result Discussion 

To verify the performance of MSD-SSA, 10 commonly used benchmark test 
functions [23] and some CEC2017 constraint planning problems [20], as well as 
three real engineering problems, were selected for experiments, mainly to verify 
the merit-seeking capability and the convergence speed of MSD-SSA. 

The operating device is the Windows 10 operating system, the CPU is Intel 
Core i5-1135G7@2.4 GHz and 16 G running memory. The editing language is 
python, and the experimental platform is PyCharm 2022.3.2. 

4.1. Benchmarking Functions 

The 10 benchmarks test functions [23] are shown in Table 1. The benchmark 
test functions used are all 30-dimensional, the population of the algorithm has 30 
individuals and the algorithm is iterated 500 times. Comparison is made using 
(Wolf Pack Algorithm) WPA, SSA and MSD-SSA. The parameter settings for 
WPA are 4, 6, 30α β ω= = = . The number of leaders and followers is half of the 
population respectively, the parameter value in MSD-SSA is 0 0.2, 0.2P k= = . 
The test functions in Table 1 were solved using WPA, SSA and MSD-SSA re-
spectively, and the python was used to make 30 independent experiments and 
compare the mean, standard deviation and convergence speed (time) of the three 
algorithms to avoid the bias caused by the randomness of the algorithms and to 
ensure the reasonableness of the algorithms. The experimental results are shown 
in Table 2 and the resulting convergence curves are plotted in Figure 4. 

4.2. CEC2017 Constrained Optimization Problems 

The CEC2017 test functions [20] are shown in Table 3. The test functions are in 
10 and 30 dimensions, respectively. The population of the algorithm has 100 in-
dividuals, the number of leaders and followers is half of the population respec-
tively, and the algorithm is iterated 1000 times independently. The parameter 
value in MSD-SSA is 0 0.2, 0.2P k= = . The test functions in Table 3 were solved 
using MSD-SSA and SSA respectively, and the python was used to make 30  
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Table 1. Description of benchmark function. 
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Table 2. Performance comparison of WPA, SSA and MSD-SSA on test functions. 

Function Stats MSD-SSA SSA WPA 

1f  

Mean 8.98E−11 9.42E−09 4.28E+00 

Std 6.65E−12 2.38E−08 7.27E−12 

Time(s) 5.704768753 6.055757221 4.325863247 

2f  

Mean 4.19E−06 0.35004655 1.2226230412 

Std 3.30E−07 0.00191453 1.52E−05 

Time(s) 5.858462628 6.122387815 5.813986003 

3f  
Mean 2.94E−10 53.75321536 68.26151173 

Std 2.30E−10 200.9015373 0.0 
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 Time(s) 7.408410994 7.686855181 5.0839362025 

4f  

Mean 3.47E−06 11.45540334 8.71E+10 

Std 3.09E−07 0.147363826 2.84E−14 

Time(s) 5.779169146 6.071856912 3.682288539 

5f  

Mean 28.12139887 390.9104529 486.1950995 

Std 0.165077021 19.94642673 0.0 

Time(s) 6.140934952 6.516275398 6.908285319 

6f  

Mean 4.45E−05 0.033427049 0.001022907 

Std 0.000118094 0.049622245 1.42E−14 

Time(s) 5.421882804 5.717415269 4.837871611 

7f  

Mean 3.46E−11 41.78822494 26.68294181 

Std 5.57E−12 6.15E−09 5.68E−14 

Time(s) 6.163218141 6.453282237 2.911670494 

8f  

Mean 2.07E−06 2.495401167 20.79011457 

Std 2.84E−07 9.90E−10 3.55E−15 

Time(s) 7.183958522 7.221007339 7.085961198 

9f  

Mean 1.18E−10 0.010155491 686.3675368 

Std 1.52E−11 0.001599289 0.0 

Time(s) 7.029453381 7.650319187 6.498791745 

10f  

Mean 0.379057981 4.053250733 3.487683579 

Std 0.097481408 0.421909641 1.19E−07 

Time(s) 7.203487563 7.375670958 17.2234921 

 
independent experiments and compare the mean, standard deviation and con-
vergence speed (time) of the two algorithms to avoid the bias caused by the ran-
domness of the algorithms and to ensure the reasonableness of the algorithms. 
Table 4 and Table 5 show the experimental results in 10 and 30 dimensions, 
respectively, and the obtained convergence curves are shown in Figure 5 and 
Figure 6, respectively. 

4.3. Result Discussion 

For benchmarks test functions, the experimental results in Table 2 show that 
MSD-SSA has significant advantages over SSA in optimizing most functions. In 
terms of convergence precision, the convergence accuracy of MSD-SSA for 

1 2 3 4 6 7 8 9, , , , , , ,f f f f f f f f  is significantly better than that of SSA. For 5f  and 

10f , the final convergence is not optimal, but the convergence results are greatly 
improved compared with SSA. In terms of algorithm robustness, except 8f , the 
stability is better than SSA. Although the stability of 8f  is slightly weaker than  
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Figure 4. Corresponds to the convergence curve of test function f1 - f10 respectively. 

 
Table 3. CEC2017 description of benchmark function. 
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(b) 

Problem Range 
Number of Bindings 

E I 

CEC01 [−100, 100] 0 1 

CEC02 [−100, 100] 0 1 

CEC03 [−10, 10] 0 2 

CEC04 [−10, 10] 0 2 

CEC05 [−20, 20] 6 0 

CEC06 [−100, 100] 2 0 

CEC07 [−10, 10] 2 0 

CEC08 [−100, 100] 2 0 

CEC09 [−100, 100] 1 1 

CEC10 [−100, 100] 0 3 

CEC11 [−100, 100] 1 1 

CEC12 [−100, 100] 1 1 

CEC13 [−100, 100] 1 2 

CEC14 [−100, 100] 0 2 

CEC15 [−100,100] 0 2 

CEC16 [−100,100] 0 3 
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Table 4. Performance comparison of MSD-SSA and SSA on test functions (10D). 

Function Stats MSD-SSA SSA 

CEC01 

Mean 4.95E−12 1.40E−10 

Std 9.24E−13 1.21E−10 

Time(s) 17.15478114 17.28749408 

CEC02 

Mean 5.76E−12 3.09E−10 

Std 4.13E−12 2.58E−10 

Time(s) 18.4906462 20.90592599 

CEC03 

Mean 1.36E+01 52.73252666 

Std 2.14E−02 8.29E−11 

Time(s) 16.40691744 15.34842814 

CEC04 

Mean 8.998415914 8.998926142 

Std 1.96E−05 6.60E−05 

Time(s) 16.44151483 17.00241801 

CEC05 

Mean 4.65E−08 2.85E+02 

Std 2.16E−08 2.22E−04 

Time(s) 16.64680717 15.42366769 

CEC06 

Mean 1.82E−06 43.35792483 

Std 5.63E−07 3.18E−06 

Time(s) 15.58736248 15.84327443 

CEC07 

Mean 9.47E−08 1.433217519 

Std 7.41E−08 6.15E−09 

Time(s) 11.6278939 11.85922258 

CEC08 

Mean 9.86E−07 1.25E−05 

Std 4.70E−07 8.69E−06 

Time(s) 16.0366317 16.74224679 

CEC09 

Mean −1.33E−06 −4.401215885 

Std 1.61E−06 3.409789061 

Time(s) 12.24845986 12.47100568 

CEC10 

Mean 66.18822172 77.81946403 

Std 112.4076859 2.520774604 

Time(s) 14.35157094 14.49965868 

CEC11 

Mean 14.92256511 18.06415685 

Std 4.54E−10 2.24E−06 

Time(s) 12.37109933 12.83158839 
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CEC12 

Mean 33.92920169 76.96902002 

Std 7.539802782 1.83E−09 

Time(s) 12.85865462 12.98471289 

CEC13 

Mean 0.001098596 258.125 

Std 3.29E−03 2.125 

Time(s) 20.21733594 20.87134676 

CEC14 

Mean 0.244309396 0.96925917 

Std 0.316349688 2.71E−02 

Time(s) 16.51488175 18.18085654 

CEC15 

Mean 11.74930116 19.49499386 

Std 3.007734851 5.007423369 

Time(s) 14.43568053 14.38639846 

CEC16 

Mean 7.705309519 264727.795 

Std 0.165002392 6.04E+05 

Time(s) 14.64010904 14.70395908 

 
Table 5. Performance comparison of MSD-SSA and SSA on test functions (30D). 

Function Stats MSD-SSA SSA 

CEC01 

Mean 4.07E−11 8.49E−02 

Std 4.14E−11 2.53E−01 

Time(s) 51.15962758 52.07183607 

CEC02 

Mean 8.43E−11 4.20E−05 

Std 3.43E−11 1.23E−04 

Time(s) 56.50194526 63.13624792 

CEC03 

Mean 13.58830671 216.8995591 

Std 4.74E−03 3.99E−09 

Time(s) 49.91018164 46.72936332 

CEC04 

Mean 28.99603765 28.99797197 

Std 1.02E−04 1.28E−04 

Time(s) 53.07714818 52.0836818 

CEC05 

Mean 1.33E−07 7.50E+02 

Std 2.69E−07 1.54E−04 

Time(s) 37.88733799 39.50639632 

CEC06 

Mean 2.03E−06 0.17485355 

Std 1.49E−07 4.80E−01 

Time(s) 60.88767364 52.5819994 
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CEC07 

Mean 1.69E−07 4.251761281 

Std 7.76E−08 9.14E−07 

Time(s) 33.93889532 35.76503084 

CEC08 

Mean 1.96E−06 1.00E−01 

Std 4.65E−07 2.32E−01 

Time(s) 47.31576941 16.74224679 

CEC09 

Mean −1.22E−06 140.9718139 

Std 7.82E−06 14.72215499 

Time(s) 34.64287498 35.75151873 

CEC10 

Mean 412.7758021 3.40E+24 

Std 192.0322279 2.06E+16 

Time(s) 50.08848522 50.88623056 

CEC11 

Mean 15.86505171 18.06415776 

Std 7.441012651 2.00E−09 

Time(s) 46.07220759 47.57178798 

CEC12 

Mean 18.84955905 246.6150233 

Std 13.15724649 1.83E−09 

Time(s) 46.61474404 47.4385241 

CEC13 

Mean 0.001098596 258.125 

Std 3.29E−03 2.125 

Time(s) 20.21733594 20.87134676 

CEC14 

Mean 2.774791549 3.080194387 

Std 0.158284286 1.94E−03 

Time(s) 53.51142323 54.34439452 

CEC15 

Mean 55.81424714 80.32612567 

Std 2.267501187 17.39791280 

Time(s) 46.47466836 48.06013227 

CEC16 

Mean 1265.662073 1.24365E+11 

Std 737.6460717 1.12E+07 

Time(s) 52.5728548 51.41614304 

 
SSA, its standard deviation also has reaches 10−7. In terms of convergence speed, 
MSD-SSA converges to the optimal point faster than SSA. 

For CEC2017 test functions, the CEC2017 test functions [20] include single 
and multi-modal problems, which can effectively evaluate the performance of 
algorithms. Table 4 tests 16 CEC2017 test functions [20] with 10-dimensions. 
The experimental results show that under the same environment, MSD-SSA has 
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Figure 5. CEC2017 test function iteration curve (10D). 
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Figure 6. CEC2017 test function iteration curve (30D). 
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a better convergence effect and faster convergence speed than SSA. For most 
CEC2017 test functions, MSD-SSA is more stable. However, Table 4 shows that 
the standard deviation of CEC10 and CEC12 is too large, indicating that the ro-
bustness of the improved algorithm is poor for CEC10 and CEC12. 

Table 5 tests 16 CEC2017 test functions [20] with 10 dimensions. Compared 
with the CEC2017 10-dimensionals test function, the 30-dimensionals test func-
tion is more complex. According to Table 5, MSD-SSA is superior to SSA in 
terms of convergence accuracy, manipulation speed and robustness. However, the 
standard deviations of CEC10, CEC11, CEC12, CEC15 and CEC16 are too large, 
indicating that the robustness of MSD-SSA is poor and needs to be improved. 

In summary, the improved algorithm has a stronger search capability and faster 
convergence to the target value for most functions. 

5. Engineering Problems and Result Discussion 
5.1. Cantilever Beam Design Problem 

In the era of big data, solving the constrained optimization problem is crucial to 
engineering. Although benchmark functional testing was addressed in the pre-
vious section, the issues in actual projects are within specific limitations. Optim-
ize practical engineering problems using SSA and MSD-SSA, and verify the fea-
sibility of MSD-SSA for practical engineering problems. 

The goal of CBD [24] is to minimize the weight of cantilever beam and square 
section, see Figure 7. The variables of this problem are composed of five hollow 
square members. The CBD problem [24] is expressed as follows: 
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Do 30 independent experiments to verify the effectiveness of the algorithm. 
See Table 6 for the experimental results. 

 

 
Figure 7. Cantilever beam structure [25]. 

 
Table 6. Comparison results of MSD-SSA with SSA for CBD problem [24]. 

Algorithm 
Optimize the Solution Optimal  

Cost x1 x2 x3 x4 x5 

MSD-SSA 6.221899 4.667276 4.307131 3.680037 2.177050 1.313731 

SSA 6.010624 5.320413 4.493760 3.498178 2.151536 1.339961 
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5.2. Tension/Compression Spring Design Problem 

The purpose of TCSD [26] is to minimize the weight of the spring. This problem 
has three variables, namely wire diameter, mean coil diameter, and the number 
of dynamic coils. Equation (20) describes the TCSD [26] problem. 

Do 30 independent experiments to verify the effectiveness of the algorithm. 
See Table 7 for the experimental results. 
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5.3. Schematic Views of Speed Reducer Design 

The goal is to minimize the weight of a speed reducer so that the engine and 
propeller can rotate efficiently. This problem involves constraints on stresses in 
the shafts, transverse deflection of the shafts, surface stress and bending stress of 
the gear teeth (see Figure 8). Equation (21) describes the SRD problem [27]. 

Do 30 independent experiments to verify the effectiveness of the algorithm. 
See Table 8 for the experimental results. 

 
Table 7. Comparison results of MSD-SSA with SSA for TCSD problem [26]. 

Algorithm 
Optimize the Solution Optimal  

Cost x1 x2 x3 

MSD-SSA 0.050000 0.317851 13.97190 0.0126917 

SSA 0.054734 0.434490 7.854553 0.0128271 

 

 
Figure 8. Schematic views of speed reducer design [27]. 
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5.4. Result Discussion 

For the CBD problem [24], the optimization results of MSD-SSA and SSA are 
1.313731 and 1.339961, the optimal solution is shown in Table 6. 

For the TCSD problem [26], the optimization results of MSD-SSA and SSA 
are 0.0126917 and 0.0128271, the optimal solution is shown in Table 7. 

For the SRD problem [27], the optimization results of MSD-SSA and SSA are 
2997.0889 and 3041.6166, the optimal solution is shown in Table 8. 

The average operation time(s) obtained from the above practical engineering 
problems are as follows: 

It can be seen from Table 9 that MSD-SSA takes less time to solve the same  
 

Table 8. Comparison results of MSD-SSA with SSA for SRD problem. 

Algorithm 
Optimize the Solution Optimal  

Cost x1 x2 x3 x4 x5 x6 x7 

MSD-SSA 3.5018 0.7 17 7.3000 7.7348 3.3526 5.2880 2997.0889 

SSA 3.5000 0.7 17 7.3188 8.0557 3.4982 5.2868 3041.6166 

 
Table 9. Time spent by MSD-SSA and SSA to solve practical problems. 

Algorithm 
Time(s) 

CBD TCSD SRD 

MSD-SSA 1.083599512 0.768733430 1.719269466 

SSA 1.306071830 0.799066846 1.804705365 
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practical engineering problems than SSA, which shows that the improved algo-
rithm is superior to the original algorithm in terms of convergence speed. 

6. Conclusions and Implications 

Based on the drawbacks of low convergence accuracy, slow convergence speed 
and easy to fall into a local optimum of the Salp Swarm Algorithm, this paper 
proposes a Multi-Strategy-Driven Salp Swarm Algorithm. Firstly, the Levy flight 
strategy with small probability is introduced to the leaders and the crossover op-
erator operation is adopted to improve the global exploration ability in the early 
stage of the algorithm, so that the leaders can effectively jump out of the trap of 
local optimum. Secondly, Brownian motion is adopted in the latest iteration to 
improve the exploitation ability of the algorithm near the global optimum and 
improve the convergence accuracy of the algorithm. Finally, the positional rela-
tionship between the leaders is used to update the followers, so that the leaders 
have the purpose. The final update of the followers with the positional relation-
ship between leaders, so that the leaders purposefully follow the better individu-
al, improves the convergence speed of the algorithm. The above improvements 
optimize the global and local search of the algorithm, balancing the exploration 
and exploitation functions of the algorithm. In the simulation experiments, 
benchmark test functions and three real engineering problems were used for 
comparison tests to examine the performance of the algorithm. The experimen-
tal results show that the improved algorithm has higher global convergence and 
faster convergence than the original algorithm, and also outperforms the origi-
nal algorithm in terms of algorithm robustness. The next steps will continue to 
improve the optimal performance of the tunicate algorithm, and increase its op-
timization accuracy, convergence speed and convergence stability. Based on this, 
it will be applied to solve more practical problems. 

SSA can be applied in many different fields, such as optimization design, ma-
chine learning, and so on. Specifically, MSD-SSA can be applied to problems that 
require finding the optimal solution, such as optimizing design variables to achieve 
the best performance in engineering, or adjusting model parameters to obtain the 
best prediction results in machine learning. The optimization capability of this al-
gorithm can improve the convergence speed and accuracy of the algorithm, and it 
has certain advantages for solving complex and high-dimensional problems. In 
general, the application scenarios of MSD-SSA are relatively broad, and they can 
provide assistance in solving problems in multiple fields. 
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