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Abstract 
Many approaches have been proposed to pre-compute data cubes in order to 
efficiently respond to OLAP queries in data warehouses. However, few have 
proposed solutions integrating all of the possible outcomes, and it is this idea 
that leads the integration of hierarchical dimensions into these responses. To 
meet this need, we propose, in this paper, a complete redefinition of the 
framework and the formal definition of traditional database analysis through 
the prism of hierarchical dimensions. After characterizing the hierarchical 
data cube lattice, we introduce the hierarchical data cube and its most concise 
reduced representation, the closed hierarchical data cube. It offers compact 
replication so as to optimize storage space by removing redundancies of 
strongly correlated data. Such data are typical of data warehouses, and in par-
ticular in video games, our field of study and experimentation, where hierar-
chical dimension attributes are widely represented. 
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1. Introduction and Motivations 

Data warehouses ([1]), allow the storage of huge volumes of data accumulated 
over time in operational databases. In fact, recently, the evolution of technolo-
gies has led companies to store their data and thus preserve the “memory” of 
their activities. Data warehouses have been designed for this purpose. Unlike 
operational databases, they have some notable characteristics. First of all, they 
are not intended for the day-to-day management of the information system, 
but to provide genuine assistance in decision-making. Their users, the deci-
sion-makers, are therefore few in number and are interested not in the detail of 
the data but in general trends, according to this or that criterion, not explicitly 
stored. Warehouses’ data are also peculiar. Often inserted in the warehouse when 
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refreshing, these data are persistent as they will not be updated. In addition, 
when inserted, these data are provided with a timestamp. They are said to be 
historicized. From the data deposits thus constituted, it was natural to seek to 
make the best use of it. Here again, it is not a question of formulating classic, 
simple and frequent requests fetching usually some tuples1, but to carry out ana-
lyses that require aggregation of the data in order to identify major trends. Such 
queries are particularly expensive because they require scans of large volumes of 
data and they are inherently complex. However, being part of a decision support 
process (hence the acronym OLAP for online analytical processing2), the formu-
lation of these queries depends on both prior knowledge and the needs of deci-
sion-makers ([3] [4]). OLAP is opposed to online transaction processing (OLTP). 
It therefore takes place on an ad hoc basis and ideally should be interactive. 
However, the underlying calculation is complex and time-consuming, hence the 
idea of pre-calculating the results. 

However, as it is not obvious how to predict the decision-makers’ assumptions, 
the preliminary calculations must consider all possible outcomes. It is this idea 
that encouraged us to integrate the hierarchical dimensions into these answers 
([5]). To meet this need, we propose in this paper a complete redefinition of the 
framework and formal definition of traditional database analysis ([6]), the data-
cube, and its closed datacube through the prism of hierarchical dimensions. 
Hierarchies add their own modeling complexity to those of data warehouses 
([7]), it is for this reason, and the consequent computation times that they in-
duce, that few authors have been interested in this field. However, we believe 
that a work of framing and formal definition of hierarchical dimensions is judi-
cious. Moreover, in general, we will consider two classes of OLAP operators. The 
first is dedicated to the data structure and allows its manipulation in order to re-
trieve remarkable information. The second is dedicated to the granularity of the 
data and proposes operators that aggregate and synthesise the information in 
one direction (roll-up), and which break them down or specify them in the other 
(drill down) ([8]). Dimensional hierarchies define the access paths in the data 
and allow the implementation of this second class of OLAP operators. It is also 
for this reason that studying the hierarchical dimensions is relevant although the 
volume of data generated, even greater than in the case of the classic datacube, 
must be understood by a particularly reduced approach to be completely usable. 

Computing a hierarchical datacube, taking into account the hierarchical struc-
ture of the dimensions, can be judicious to obtain an optimized aggregation, a 
simplified analysis, an intuitive navigation and to help decision-making based on 
the hierarchies. Using the hierarchical structure of dimensions, it is possible to 
perform optimized aggregations by consolidating data at different levels of gra-

 

 

1Ordered collection of the values of an indefinite number of attributes relating to the same object. 
2This term was defined by [2] through twelve rules to be applied to a database so that it is OLAP: 1) 
Multidimensional conceptual view; 2) Transparency; 3) Accessibility; 4) Constancy of response 
times; 5) Client/server architecture; 6) Dimension independence; 7) Management of sparse matrices; 
8) Multi-user support; 9) No restrictions on inter- and intra-dimensional 10) Intuitive data manipu-
lation 11) Flexible reporting 12) Unlimited number of dimensions and unlimited number of items 
on dimensions. 
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nularity. This allows data to be pre-aggregated at higher levels of the hierarchy, 
which reduces the size of the data cube and therefore improves query perfor-
mance. A hierarchical datacube also helps simplify analysis by providing an ag-
gregated view of data at different levels of granularity. The aim is to facilitate the 
understanding of trends and relationships between the different dimensions, 
avoiding the complexity of detailed data. The hierarchical structure of the di-
mensions in a hierarchical datacube also allows intuitive and easy navigation 
between the different levels of granularity. This allows users to explore data 
more efficiently and navigate between levels of detail and aggregations without 
extra effort. This can improve user experience and speed up data analysis. Final-
ly, in many cases, the hierarchical structure of dimensions is meaningful from a 
decision-making perspective. By using a hierarchical datacube, it is possible to 
take this hierarchical structure into account to obtain more relevant decision in-
formation that is better aligned with the reality of the domain. 

2. Use Cases 
2.1. Open Match 3 

For this paper, we introduce an example applied to a video game, the one we in-
itially studied and experimented with when researching this contribution. 

In this example, we will use the video puzzle-game3 of the Match 34 type open 
source5 Open Match 3, a web browser-based video game6, developed by Giorda-
no Ferdinandi, Stephen Surtees and Rachel Kehoe of Clockwork Chilli. 

Initially, we focused on this type of video game because of its immense popu-
larity, making the example more eloquent and its application relevant. In addi-
tion, besides its ethical side, this choice of open source allowed us to have access 
and to directly modify the source code of the video game in order to accommo-
date all the probes we wanted to listen to. 

 

 

3A video game of puzzle is a type of video game based on reflection. Its name comes from the jigsaw 
puzzle, a game consisting of putting pieces in order. It can be a game in which the player has to 
move elements in a specific way. Many of these games are called tile-matching games. 
4A match 3 game is a type of video game in which the player must combine three elements of the 
same colour or shape in order to eliminate them from the game board. These games are often con-
sidered as reflection games and are generally based on the combination of strategy and luck. Match 3 
games can be played on various platforms, including computers, mobile phones, and game consoles, 
and they are generally very popular with different age groups. Match 3 games can be simple enter-
tainment or they can offer increasingly complex challenges as the player progresses through the 
game. 
5The open source term designates an approach to software development (and now extends to works 
of the mind) whose license respects criteria precisely established by the Open Source Initiative 
(https://opensource.org/) and in which the source code is freely available and can be used, modified 
and distributed by anyone. The aim of the open source approach is to allow more people to contri-
bute to the development and improvement of software, which can lead to increased innovation and 
improved quality. Open source licences prescribe the conditions under which source code can be 
used, modified and distributed. Some licences require that changes to the source code be published 
so that others can benefit from them, while other licences allow the user to keep their changes pri-
vate). 
6A browser-based video game is a type of online game that can be played through a web browser and 
does not require installation or downloading. 
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2.2. Relation Example 

Let’s consider the OM3 data warehouse (cf. Figure 1) of the Open Match 3 video 
game (cf. Figure 2). 
 

 

Figure 1. Star schema of data warehouse OM3. 
 

 

Figure 2. Video game open match 3. 
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A DTurn is identified by IdTurn and classified by Game and by Round. These 
attributes constitute a hierarchical structure, called Step (cf. Table 1). 

A DSeries is identified by IdSeries and characterized by a Move causing one (or 
more, then called a chain) Combination of an Association, characterized by a 
matching Color (among the 4) and a Size of at least three elements. From an 
Association of four elements or more, bonus points and special elements (explo-
sion, rayon destructeur, etc., cf. Figure 3) are granted (cf. Table 2). 

Un DPlayer is identified by IdPlayer and classified by its Location (full). The 
most general location type is a Country (C), which includes a Region (R), which 
itself includes a City (C), specified by an IPAddress (I), itself specified by an OS 
(O, i.e. an operating system), a Browser (B), then a Lang (L) thus, at last, a Player 
(P) name. The values of the different attributes of DPlayer are coded as follows (cf. 
Table 3):  
 

Country  Region  City  IPAddress  

France =1 IDF =2 Paris =3 92.88.91.80 =4 

  PACA =9 Marseille =10 139.124.242.125 =11 

 

OS  Browser  Lang  Player  

Windows =5 Chrome =6 fr =7 P1 =8 

Linux =12 Opera =13 en =14 P2 =15 

Mac OS =16 Firefox =17 es =18 P3 =19 

 

 

Figure 3. Video game open Match 3, example of an explosion. 
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Table 1. Relation of the dimension DTurn. 

IdTurn Game Round Step 

1 1  S1 

2 1 2 S1-1 

3 1 3 S1-2 

4 4  S2 

5 4 5 S2-1 

6 4 6 S2-2 

7 4 7 S2-3 

8 8  S3 

9 8 9 S3-1 

10 8 10 S3-2 

11 8 11 S3-3 

 
Table 2. Relation of the dimension DSeries. 

IdSeries Move Combination Association Color Size 

1 1  A1   

2 1 2 A1-1 red 3 

3 1 3 A1-2 blue 3 

4 4  A2   

5 4 5 A2-1 green 4 

6 4 6 A2-2 yellow 3 

7 4 7 A2-3 red 3 

8 4 8 A2-4 blue 3 

9 4 9 A2-5 yellow 3 

10 4 10 A2-6 green 4 

11 11  A3   

12 11 12 A3-1 green 3 

13 11 13 A3-2 red 3 

14 11 14 A3-3 red 4 

15 11 15 A3-4 green 3 

16 11 16 A3-5 yellow 4 

17 11 17 A3-6 yellow 3 

18 11 18 A3-7 yellow 3 

19 19  A4   

20 19 20 A4-1 green 3 

21 21  A5   

22 21 22 A5-1 red 3 
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Continued 

23 23  A6   

24 23 24 A6-1 green 5 

25 25  A7   

26 25 26 A7-1 yellow 3 

27 25 27 A7-2 yellow 3 

28 25 28 A7-3 red 3 

29 25 29 A7-4 red 3 

30 25 30 A7-5 yellow 3 

31 25 31 A7-6 red 4 

32 25 32 A7-7 green 3 

33 25 33 A7-8 yellow 3 

34 25 34 A7-9 yellow 3 

35 25 35 A7-10 green 3 

36 25 36 A7-11 green 4 

37 25 37 A7-12 blue 3 

 
Table 3. Relation of the dimension DPlayer. 

IdPlayer C R C I O B L P Location 

1 1        France 

2 1 2       IDF 

3 1 2 3      Paris 

4 1 2 3 4     92.88.91.80 

5 1 2 3 4 5    Windows 

6 1 2 3 4 5 6   Chrome 

7 1 2 3 4 5 6 7  fr 

8 1 2 3 4 5 6 7 7 P1 

9 1 9       PACA 

10 1 9 10      Marseille 

11 1 9 10 11     139.124.242.125 

12 1 9 10 11 12    Linux 

13 1 9 10 11 12 13   Opera 

14 1 9 10 11 12 13 14  en 

15 1 9 10 11 12 13 14 15 P2 

16 1 9 10 11 16    Mac OS 

17 1 9 10 11 16 17   Firefox 

18 1 9 10 11 16 17 18  es 

19 1 9 10 11 16 17 18 19 P3 
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The table of facts FactOM3 is composed of a Time remaining before the end of 
the game (naturally decreasing, but also increasing to a maximum with the Score, 
it is thus a decisional element), a Duration of realization, a Number of elements 
in correspondence, a Score (number of points won) total and a description of 
Shape (0.5 for horizontal, 1 for vertical, and between these two values for mixed) 
for a IdPlayer (IdP), a IdTurn (IdT) and a IdSeries (IdS). The values of the dif-
ferent attributes FactOM3 are coded as follows (cf. Table 4):  
 

IdP  IdT  IdS  

P1 =8 S1 =1 A1 =1 

P2 =15 S2 =4 A2 =4 

P3 =19 S3 =8 A3 =11 

    A4 =19 

    A5 =21 

    A6 =23 

    A7 =25 

 
We only give a representation of a hierarchical dimension for DPlayer (cf. Fig-

ure 4), DTurn and DSeries being hierarchical dimensionswhich are much less well 
founded than this one. The maximum element ALLPlayer of this representation is 
defined by 3.5 in Subsection 3.2. 
 

 

Figure 4. Dimension of DPlayer. 
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Table 4. Relation of the table of facts FactOM3. 

RowId IdP IdT IdS Time Duration Number Score Shape 

1 P1 S1 A1 6.32 2.85 3.5 700 0.5 

2 P1 S1 A2 18.9 1.95 3.83 2300 0.5 

3 P2 S2 A3 26.39 1.7 3.43 2400 0.71 

4 P2 S2 A4 4.1 2.07 3 300 0.5 

5 P2 S2 A5 7.38 3.68 3 600 0.5 

6 P3 S3 A6 2.14 2.15 3 300 1 

7 P3 S3 A7 56.04 2.25 3.17 3800 0.5 

3. Hierarchical Dimension 
3.1. Types of Hierarchies 

Dimensional hierarchies are formed by the set of attributes of a dimensional re-
lation having a hierarchical relationship ( a a′∈ ). They correspond to relations of 
type 1 to several and offer the possibility of using the class of roll up and drill 
down ([8]). 

The literature provides an overview of the different types of hierarchies ([1]) 
that we propose to present. 

3.1.1. Simple Hierarchy 
Simple hierarchies have levels that can be considered as lists and their instances 
form a tree. These hierarchies can be symmetrical if the tree of instances is ba-
lanced or asymmetrical if it is not. 

3.1.2. Strict Hierarchy and Non-Strict Hierarchy 
In the framework of a strict hierarchy, the generalisation of a value at a given 
level only leads to, at most, one value. 

Example 3.1 The month-level generalisation of the date July, 14th 1789 is Ju-
ly.  

In practice, there are many situations where this type of hierarchy is too re-
strictive. Typically, a video game can be of several game types. Such hierarchies 
are called non-strict. 

3.1.3. Multiple Hierarchy 
Multiple hierarchies make it possible to model situations where the different le-
vels are no longer lists but directed graphs without cycles. 

Example 3.2 Let us consider a time dimension. There are two ways of genera-
lising the day level: on the week level or the month level, although these two le-
vels are not comparable (i.e. one is not a generalisation of the other).  

3.1.4. Parallel Hierarchies 
For dimensions with only one attribute, there can only be one hierarchy per di-
mension. In practice, it is common for a single dimension to be composed of sever-
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al attributes useful for the analysis. 
If these attributes have an associated hierarchy, the dimensional hierarchy is 

said to be parallel and can be considered as a special case of multiple hierarchies. 
A parallel hierarchy can be composed of other types of hierarchies. Two catego-
ries of parallel hierarchies are generally distinguished:  
 Independent parallel hierarchy: there is no common level between the dif-

ferent hierarchies composing it;  
 Parallel hierarchy: there are common levels between the different hierarchies 

composing it; the hierarchy is said to be independent.  

3.2. Formal Framework of a Hierarchical Dimension 

Let r be a relation of schema  . In addition to the attributes of  , we will 
consider an additional attribute RowId qui which is implicit. The values of this 
attribute serve as a unique identifier for each tuple and are assigned at the time 
of their insertion. We note xt  the tuple such that [ ]t RowId x= . 

The attributes of   are divided into two sets:  
1)   is the set of attributes of hierarchical dimensions, also called hierar-

chical categories. Moreover, the attributes of   are ordered.  
2)   is the set of measured attributes, on which the aggregative or statistic-

al functions are applied.  
We simply call dimension a hierarchical dimension attribute. Likewise, we call 

hierarchy a hierarchy of values. 
Definition 3.1 (Dimension)—In r, we call a dimension, a dimensional 

attribute, or a category, id . id∀ ∈ , ( )ir d  is the projection of r onto id . 
A dimension is characterised by a structure (cf. Definition 3.2) and a hierarchy 

(cf. Definition 3.3). 
We call   the set of dimensions id  of r.  
Example 3.3 Let’s consider the data warehouse OM3. Its set of dimensions 
  is:  

{ }Player Turn SeriesD ,D ,D=  

Definition 3.2 (Structure of a dimension)—For each dimension id ∈ , we 
define the structure of a dimension, or schema, hS  as follows: id∀ ∈ , 

( )h iS d  is the structure of the dimension id .  
Example 3.4 Let’s consider the set of hierarchical dimension structures:  

( ) (
)

Player PlayerD ,Country,Region,City, IPAddress,

OS,Browser,Lang,Player

hS = Τ
 

( ) ( )Turn TurnD ,Game,RoundhS = Τ  

( ) ( )Series SeriesD ,Move,CombinationhS = Τ  

Definition 3.3 (Hierarchy)—For each dimension id ∈ , we define ih  the 
hierarchy associated with that dimension, which we will simply call hierarchy.  

Definition 3.4 (Level of a hierarchy)—For each hierarchy ih , we define 
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( )ih e , the level, or tier, or echelon, of this hierarchy.  
Definition 3.5 (Maximum element of a hierarchy)—A hierarchy ih  asso-

ciated with the dimension id ∈  contains a maximum element denoted iΤ  
defined by the value iALL . This value takes the idea of the ALL from [9], which 
represents the generalization of all the values of the domain of a dimension.  

Example 3.5 Considering the hierarchy Playerh  of the dimension PlayerD  (cf. 
Figure 4), the value of its maximum element is PlayerALL .  

Definition 3.6 (Depth of a hierarchy)—For each hierarchy ih , we define its 
Depth as follows: i ih d∀ ∈ , id ∈ , ( )iProf h  is the depth of the hierarchy 

ih , i.e. its number of levels.  
Example 3.6 Considering the hierarchy Playerh  of the dimension PlayerD  (cf. 

Figure 4), ( )Player 9Depth h = .  
Definition 3.7 (Domain of a dimension)—We define the domain of a dimen-

sion Dom as follows: id∀ ∈ , ( )iDom d  is the domain of dimension id .  
Definition 3.8 (Domain of a level of a dimension)—We define the domain of 

a level of a dimension, or dimensional footprint, Dom as follows:  
 id∀ ∈ , ( )h ie S d∀ ∈ , ( ),iDom d e  is the domain of the dimension id  for 

the level e, i.e. ( ),iDom d e  corresponds to the set of possible values for the 
level e of the hierarchy ih ;  

 id∀ ∈ , ( )
( )

( ),
h i

i i
e S d

Dom h Dom h e
∈

= ∪ .  

Definition 3.9 (Dimensional table)—In the “star” data model used in data 
warehouses (or datamart), each hierarchy can be represented by a table, of di-
mension D

id  corresponding to the dimension eponymous (the two concepts 
are mingled), relational schema ( )h iS d .  

Definition 3.10 (Dimensional tuple)—For each ( )ix Dom d∈ , we define the 
dimensional tuple xt  corresponding to the value x in the table D

id  is made up 
of the list of ancestors of x in ih . 

Likewise, for each ( ),ix Dom d e∈ , we define the dimensional tuple xt  cor-
responding to the value x for the level e of the hierarchy ih  in the table D

id  is 
also made up of the list of ancestors of x in ih . 

We simply call tuple a dimensional tuple.  
Example 3.7 For 2x P= , the tuple xt  corresponding in the relation PlayerD  

is:  

( )2, , ,139.124.242.125, , , ,xt France PACA Marseille Linux Opera en P=  

For 139.124.242.125x = , the tuple xt  corresponding in the relation PlayerD  
is:  

( ), , ,139.124.242.125, , , ,xt France PACA Marseille NULL NULL NULL NULL=  

3.3. Formal Definition of a Hierarchical Dimension 
3.3.1. Multidimensional Space 

Definition 3.11 (Multidimensional space)—The multidimensional space of r 
is noted and redefined with hierarchical dimensions as follows:  
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( ) ( ) { }{ } ( ){ }, , , ,
id i i jSpace r Dom h ALL ALL∈= × ∪ ∪ ∅ ∅� �  

where × symbolizes the Cartesian product, and ( ), ,∅ ∅�  the combination of 
empty values. is a tuple and represents a multidimensional pattern. 

The value of each maximal element iALL  of a hierarchy ih  is naturally 
contained in the hierarchy, in the associated domain ( )iDom h , and thus also in 

( )Space r .  
Example 3.8 The multidimensional space of the OM3, data warehouse, and 

its table of facts (cf. Table 4), is illustrated in Table 5. For the sake of clarity and 
conciseness, not all tuples in the multidimensional space are represented (there 
would be several thousand), and special values are abbreviated: PlayerALL  to 

PALL , TurnALL  to TALL  and SeriesALL  to SALL . 
Tuples identified by values 1, …, 13 et 31 are possible tuples for r (because all 

their values are real), even if the tuple identified by value 31 is not explicitly in 
the relation r. In this tuple, the symbol ∅  means “empty value”. The other 
tuples (identifiers 14, …, 30) cannot be tuples of r because they contain at least 
one iALL  value. They therefore convey information at a more aggregated level 
of detail than the previous ones.  

3.3.2. Specialisation Orders 
The multidimensional space of r is structured by the specialisation relation be-
tween tiles. This order was originally introduced by [10] [11] in the context of 
concept learning. 

The ordered set ( ) ( ) , sCL r Space r=   is a complete lattice called cube lat-
tice. 

Definition 3.12 (Intradimensional specialization order)—Let’s consider 
( ), ix y Dom h∈ :  

is an ancestor of on the hierarchy .
id ix y x y h⇔  

Definition 3.13 (Multidimensional specialization order)—Let’s consider 
( ),t t Space r′ ⊆ , we define the order relation s  as follows:  

[ ] [ ],
is i i d it t d t d t d′ ′⇔ ∀ ∈   

3.3.3. Functions 
Definition 3.14 (Dimensional Attribute function) For a tuple xt  de id , the 

function 
idAttribute  returns the set of attributes whose value is different from 

NULL. 
Let’s consider xt  a tuple of id :  

( ) [ ]{ }|
id x x xAttribute t A t t A NULL= ∈ ≠  

Example 3.9 For the dimension PlayerD :  
If ( )2, , ,139.124.242.125, , , ,xt France PACA Marseille Linux Opera en P=  

Then 
( ) {

}
PlayerD

2

, , ,139.124.242.125,

, , ,
xAttribute t France PACA Marseille

Linux Opera en P

=
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Table 5. Multidimensional space of the data warehouse OM3. 

RowId IdP IdT IdS 

1 France S1 A1 

2 France S1 A1-1 

3 France S1 A1-2 

4 France S1 A2 

… … … … 

5 France S1-1 A1 

… … … … 

6 IDF S1 A1 

… … … … 

7 es S3-3 A7-12 

8 P1 S1 A1 

… … … … 

9 P1 S1 A2 

… … … … 

10 P3 S3 A7 

… … … … 

11 France S1 ALLS 

… … … … 

12 PACA S3-3 ALLS 

13 Marseille S1 ALLS 

… … … … 

14 P1 S1 ALLS 

… … … … 

15 France ALLT A1 

16 France ALLT A1-1 

… … … … 

17 fr ALLT A7-12 

19 P1 ALLT A1 

… … … … 

19 ALLP S1 A1 

20 ALLP S1 A1-1 

… … … … 

21 France ALLT ALLS 
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Continued 

22 IDF ALLT ALLS 

23 Paris ALLT ALLS 

… … … … 

24 ALLP S1 ALLS 

… … … … 

25 ALLP ALLT A7 

… … … … 

26 ALLP ALLT ALLS 

27 ∅  ∅  ∅  

 

If 
(

)
, , ,139.124.242.125,

, , ,
yt France PACA Marseille

NULL NULL NULL NULL

=
 

Then ( ) { }
PlayerD , , ,139.124.242.125yAttribute t France PACA Marseille= . 

3.3.4. Operators 
Definition 3.15 (Dimensional min/max operators) - We define the operators 

min and max as follows:  

( ) ( ) ( ){ }, | :
di i i h imin d x Dom h e e S d e e′ ′= ∈ ∈ <   

( ) ( ) ( ){ }, | :
di i i h imax d x Dom h e e S d e e′ ′= ∈ ∈ >   

Thus, ( )
di imin d  represents the set of possible values of the highest (general) 

level of the hierarchical dimension structure. In a similar way, ( )
di imax d  

represents the set of possible values of the lowest (specific) level of the hierarchical 
dimension structure.  

Example 3.10 For the dimension PlayerD :  

( ) { }PlayerD
DPlayer

min France=  

( ) { }Player 1 2 3D , ,
DPlayer

max P P P=  

The min/max operators can be overloaded in order to be applied to a set of tuples 
T of dimension id , noted respectively ( )

s
min T  and ( )

s
max T , by being im-

plemented as follows:  

( ) ( ) ( ), , | :
di i x h imin T x Dom h e t e S d e e′ ′= ∀ ∈ ∈ <   

( ) ( ) { }, , | ( ) :
di i x h imax T x Dom h e t e S d e e′ ′= ∀ ∈ ∈ >   

Example 3.11 - For the dimension PlayerD , if { },x yT t t=  with:  

( )2, , ,139.124.242.125, , , ,xt France PACA Marseille Linux Opera en P=  

( )3, , ,139.124.242.125, , , ,yt France PACA Marseille Mac OS Firefox es P=  

So, we have:  
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( ) ( )
DPlayer

, , , , , , ,min T France NULL NULL NULL NULL NULL NULL NULL=  

( ) ( ){
( )}

DPlayer 2

3

, , , , , , , ,

, , , , , , ,

max T NULL NULL NULL NULL NULL NULL NULL P

NULL NULL NULL NULL NULL NULL NULL P

=
 

Definition 3.16 (Generalized min/max operators on the cube lattice)—We 
generalize the min operator on the cube lattice as follows:  

( ) ( ) { }
[ ]( ) [ ] [ ] [ ] [ ] [ ] [ ]{ }

, | :

, | :
s

s

s

i i i i i i i s i

T CL r min T t T t T t t

d min T d t d T d t d T d t d t d

 ′ ′∀ ⊆ = ∈ ∈


′ ′∀ ∈ = ∈ ∈











 
 

Likewise, we generalize the max operator on the cube lattice as follows:  

( ) ( ) { }
[ ]( ) [ ] [ ] [ ] [ ] [ ] [ ]{ }

, | :

, | :
s

s

s

i i i i i i i s i

T CL r max T t T t T t t

d max T d t d T d t d T d t d t d

 ′ ′∀ ⊆ = ∈ ∈


′ ′∀ ∈ = ∈ ∈











 
 

Definition 3.17 (Dimensional Sum operator). Let’s consider id ∈ , we de-
fine the Dimensional Sum 

id+  of id  as follows: ( ), ix y Dom h∀ ∈ , 
idx y+  is 

the nearest (small) common ancestor to x and y in ih . In other words:  

( ) ( )
( ) ( )

, , ,

, | and | :
i i i

i i

d i d d h i

x Dom h f y Dom h g

x y z Dom h e z x z y e S d e e

∀ ∈ ∀ ∈

′ ′+ = ∈ ∈ >  
 

Example 3.12 For the dimension PlayerD , if x Paris=  and y Marseille=  
then 

PlayerDx y France+ = .  
The Dimensional Sum operator can be overloaded to be applied to all tuples 

xt  and yt  of a dimension id , noted 
ix d yt t+ , by being implemented as fol-

lows:  

( ) ( )
( )

, , , ,

, , and ,
i di

i i

i z x d y x y

x Dom h f y Dom h g

z Dom h e e f e g t t t t +

∀ ∈ ∀ ∈

∃ ∈ < < = + =
 

Example 3.13 For the dimension PlayerD :  
If x Paris= , 

( ), , , , , , ,xt France IDF Paris NULL NULL NULL NULL NULL=  

And y Marseille= , 

( ), , , , , , ,yt France PACA Marseille NULL NULL NULL NULL NULL=  

Then z France= , 

( ), , , , , , ,
iz x d yt t t

France NULL NULL NULL NULL NULL NULL NULL

= +

=
 

Definition 3.18 (Generalized Sum operator on the cube lattice). We general-
ize the Sum operator on the cube lattice as follows:  

( ) { }
[ ] [ ] [ ]

, ,

,
ii i i d i

u v CL r z u v

d z d u d v d

∀ ∈ = +

∀ ∈ = + 

 

z is the sum of tuples u and v.  
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Definition 3.19 (Dimensional Product operator). Let’s consider id ∈ , we 
define the Dimensional Product 

id•  of id  as follows: ( ), ix y Dom h∀ ∈ , 

idx y•  is the set of nearest common descendants of x and y in ih . In other 
words:  

( ) ( ) ( )
( ) ( ){ }

, , , , , ,

, | et | :
i i i

i i i

d i d d h i

f g Prof h x Dom h f y Dom h g

x y z Dom h e x z y z e S d e e

∀ < ∀ ∈ ∀ ∈

′ ′• = ∈ ∈ <  
 

If x and y have no common descendants in ih , then:  

{ }
idx y• = ∅  

Example 3.14 For the dimension PlayerD :  
If x Paris=  and 92.88.91.80y = , { }

PlayerDx y Windows• =  
If x Marseille=  and

 
139.124.242.125y = , { }

PlayerD ,x y Linux Mac OS• =  
If x Paris=  and y Marseille= , { }

PlayerDx y• = ∅  
The Dimensional Product operator can be overloaded to be applied to all 

tuples xt  and yt  of a dimension id , noted 
ix d yt t• , by being implemented as 

follows:  

( ) ( ) ( )

{ } ( )

( ){ }

, , , , , ,

if , , and

, , otherwise.

di
i

i i i

x y i
z x d y

f g Prof h x Dom h f y Dom h g

t z Dom h e f e g e
t t t

•

∀ < ∀ ∈ ∀ ∈

 ∃ ∈ < <= • = 
 ∅ ∅ �

 

Example 3.15 For the dimension PlayerD :  
If x Marseille= ,  

( ), , , , , , ,xt France PACA Marseille NULL NULL NULL NULL NULL=  

And 139.124.242.125y = ,  

(
)

, , ,139.124.242.125,

, , ,
yt France PACA Marseille

NULL NULL NULL NULL

=
 

Then { },z Linux Mac OS= ,  

({
)

(
)}

, , ,139.124.242.125,

, , ,

, , ,139.124.242.125,

, , ,

iz x d yt t t

France PACA Marseille

Linux NULL NULL NULL

France PACA Marseille

Mac OS NULL NULL NULL

= •

=

 

Definition 3.20 (Generalized Product operator on the cube lattice). We ge-
neralize the Product operator on the cube lattice as follows:  

( ) { }
[ ] [ ] [ ]{ }

, ,

,
ii i i d i

u v CL r z u v

d z d u d v d

∀ ∈ = •

∀ ∈ = • 

 

z is the product of tuples u and v.  
Definition 3.21 (Dimensional Semi-product operator). Let’s consider id ∈ , 

we define the dimensional Semi-product 
id  of id  as follows: ( ), ix y Dom h∀ ∈ , 
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idx y  is the set of nearest descendants of x and y in ih . In other words:  

( ) ( )
( ) ( ){ }

, , , ,

, | et | :
i i i

i i

d i d d h i

f Prof h x y Dom h f

x y z Dom h e x z y z e S d e e

∀ < ∀ ∈

′ ′= ∈ ∈ <  

 

If x and y do not have the same level, or if they do not have descendants, in 

ih , then:  

{ }
idx y = ∅

 

Example 3.16 For the dimension PlayerD :  
IF x Linux=  and y Max OS= , { }

PlayerD ,x y Opera Firefox=  
IF x Marseill=  and y Max OS= , { }

PlayerDx y = ∅  
The Dimensional Semi-product operator can be overloaded to be applied to 

all tuples xt  and yt  of a dimension id , noted 
ix d yt t , by being imple-

mented as follows:  

( ) ( ) ( )
( ){ }

, , , , , ,

| | :
i di

i i i

z x d y x y h i

f Prof h x y Dom h f z Dom h e

t t t t e f e S d e e

∀ < ∀ ∈ ∀ ∈

′ ′= = > ∈ <




 

( )

{ } ( )

( ){ }

, , ,

if , ,

, , otherwise.

di
i

i

x y i
z x d y

x y Dom h f

t z Dom h e f e
t t t

∀ ∈

 ∃ ∈ <= = 
 ∅ ∅ �





 

Example 3.17 For the dimension PlayerD :  
If x Linux= ,  

(
)

, , ,139.124.242.125,

, , ,
xt France PACA Marseille

Linux NULL NULL NULL

=
 

And y Mac OS= ,  

(
)

, , ,139.124.242.125,

, , ,
yt France PACA Marseille

Mac OS NULL NULL NULL

=
 

Then { },z Opera Firefox= , 

({
)

(
)}

, , ,139.124.242.125,

, , ,

, , ,139.124.242.125,

, , ,

iz x d yt t t

France PACA Marseille

Linux Opera NULL NULL

France PACA Marseille

Mac OS Firefox NULL NULL

=

=



 

Definition 3.22 (Generalized Semi-product operator on the cube lattice) We 
generalize the Semi-Product operator on the cube lattice as follows:  

( ) { }
[ ] [ ] [ ]{ }

, ,

,
ii i i d i

u v CL r z u v

d z d u d v d

∀ ∈ =

∀ ∈ = 





 

z is the product of tuples u and v.  
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3.3.5. Characterization of the Hierarchical Cube Lattice 
By endowing the multidimensional space ( )Space r  of r with orders of specia-
lization and using the operators, notably Sum and Product, we propose an alge-
braic structure called Hierarchical Datacube Lattice, or Hierarchical Cube Lattice, 
or simply Cube Lattice, which sets a theoretical and general framework for mul-
tidimensional database mining. It is easily transposable from the standard data-
cube lattice. The following lemmas and propositions give the fundamental prop-
erties of the cube lattice, which are repeated in Theorem 6. 

Lemma 1. The ordered set ( ) ( ) , sCL r Space r=   is a complete lattice 
called cube lattice for which:  
 ( )T CL r∀ ⊆ , ⋀  t TT t∈= +  où ⋀ symbolises the infimum.  
 ( )T CL r∀ ⊆ , ⋁  t TT t∈= •  où ⋁ symbolises the supremum.  

Lemma 2. The lattice ( ) ( ) , sCL r Space r=   is a co-atomic and atomic lat-
tice.  

Proposition 3 (Hierarchical lattice of parts of binary attributes). Let ( )r  
be the hierarchical lattice of parts of binary attributes of the binary relation, i.e.  

the lattice ( ), ,
i

i i
d

d a a Dom d
∈

 
⋅ ∀ ∈ ⊆  

 
∪


 . Then there exists an order- em-

bedding Φ :  

( ) ( )CL r r→   

( ) ( )

[ ] ( ){ }

, if , ,

| otherwise.
i

i i
d

i i i

d a a Dom d t
t

d t d d Attribute t
∈

 ⋅ ∀ ∈ = ∅ ∅


 ⋅ ∀ ∈

�
�
∪
  

The rank of a tuple t, noted ( )rank t , is the length of the smallest path (mi-
nimal number of arcs) in the cube lattice connecting it to the tuple  
( ), ,i jALL ALL� . We thus have: ( ) ( )rank t t= Φ  if ( ), ,t ≠ ∅ ∅� , 1+  
otherwise.  

Proposition 4 (Hierarchical co-atom/atom). Hierarchical co-atoms (respec-
tively hierarchical atoms) are the maximal tuples, namely the most specific 
tuples (respectively maximal tuples) of the lattice deprived of its universal majo-
rant (respectively minorant). The hierarchical co-atoms (respectively hierarchic-
al atoms) of the hierarchical cube lattice of a relation r are noted ( )( )t CL r  
(respectively ( )( )t CL r ).  

Lemma 5. The cube lattice ( )CL r  is graduated. If 2≤  then ( )CL r  is 
not distributive.  

Lemma 5 shows that the cube lattice is a graduated lattice. Therefore, we can 
apply level-wise algorithms on this search space. 

Theorem 6 (Hierarchical datacube lattice). Let r be a data warehouse com-
posed of hierarchical dimensions and measures ( ∪  ). The ordered set 

( ) ( ) , sCL r Space r=   is a complete, atomic, co-atomic and gradual hierar-
chical lattice called a hierarchical datacube lattice in which:  
 ( )T CL r∀ ⊆ , ⋀ t TT t∈= +  
 ( )T CL r∀ ⊆ , ⋁ t TT t∈= • .  
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Example 3.18: Figure 5 shows the cube lattice of our example table of facts 
relation (cf. Table 4). In this diagram, the edges represent the links of generali-
zation or specialization between tuples. The values of the coded attributes are as 
follows:  
 

Location  Step  Association  

France =F ( )*
xS x∈  =x ( )*

xA x∈  =x 

IDF =I ( )*,x yS x y− ∈  =x − y ( )*,x yA x y− ∈  =x − y 

PACA =P ALLTurn =* ALLSeries =* 

Marseille =M     

ALLPlayer =*     

 
Disregarding ( ), ,∅ ∅ ∅ , hierarchical co-atoms are tuples conveying informa-

tion at the most detailed level, i.e. that of the actual values of dimensions. In 
other words, the hierarchical co-atoms are the potential tuples of a relation. 
Thus, we have:  
 

 

Figure 5. Hasse diagram of the hierarchical cube lattice of OM3. 
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( )( )

( )
( )
( )
( )

( )

( )

( )
( )

( )

( )

1 1

1 1 1

1 1 2

1 2

1 1 1

1 1

3 3 7 12

1 1 1

1 1 2

2 3 7

, , ,
, , ,
, , ,
, , ,

, , ,

, , ,
OM3

, , ,
, , ,

, , ,

, , ,

France S A
France S A
France S A
France S A

France S A

IDF S A
t CL

es S A
P S A

P S A

P S A

−

−

−

− −

 
 
 
 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 
 
 
 
 

�

�

�

�

�

�

  

The hierarchical atoms of the lattice offer the most synthetic information 
possible, with the exception of the tuple (ALLPlayer, ALLTurn, ALLSeries). Since we 
will only consider three dimensions here, all hierarchical atoms have two differ-
ent synthetic iALL  values. Thus we have:  

( )( )

( )
( )
( )

( )

( )

Turn Series

Turn Series

Turn Series

Player 1 Series

Player Turn 7

, , ,
, , ,
, , ,

, , ,

, , ,

France ALL ALL
IDF ALL ALL
Paris ALL ALL

t CL r ALL S ALL

ALL ALL A

 
 
 
 
 
  =  
 
 
 
 
 
  

�

�

�

  

Property 3.1 (Size of a hierarchical cube lattice). The height (number of levels) 
of the hierarchical cube lattice is 1+ . The number of elements for a level 
( )1, ,i i∈ �   is:  

( ) ( )( )max .
i i
i

i

i iAd A d
d i

Dom h Dom h
i ∈⊆ ∈

=

   
≤       

∑ ∏



 

The total number of elements in the hierarchical cube lattice is:  

( ) ( )( )
1, ,

2 1 1
i i
i

i i
i d A d A

d i

Dom h Dom h
= ⊆ ∈ ∈

=

 
   + = + +   
  

 

∑ ∑ ∏ ∏
�   

 

The above property gives an analysis of the number of elements contained in a 
level of the hierarchical cube lattice and the total number of elements. This 
property is particularly important as it allows us to characterise the complexity 
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of algorithms using the hierarchical cube lattice as a search space. 

4. Hierarchical Datacube 

The concept of a datacube in a relational world ([9]) is immediately transposed 
into a hierarchical datacube in a data warehouse world, with the integration of 
hierarchical dimensions. 

Thus, we call the result of a partitioning query, according to a set X ⊆  of 
hierarchical dimensions, cuboid, noted ( )Xcuboid r . Likewise, the datacube 
constituted by the set of all cuboids is noted ( )datacube r . The cuboids can be 
ordered with respect to their level of detail by the partial order relation  . 

Example 4.1: The cuboid according to the hierarchical dimensions Player TurnD ,D  
is less aggregated (more detailed) than the cuboid according to PlayerD  or that 
according to TurnD . In other words:  

( ) ( )
Player Player TurnD D ,DCuboid r Cuboid r  

( ) ( )
Turn Player TurnD D ,DCuboid r Cuboid r  

In a standard way, the set of cuboids endowed with this order forms a lattice. 
The cuboids of this lattice are grouped by level according to their number of 
hierarchical dimensions. These levels are numbered starting from the bottom of 
the lattice (cuboid bearing no dimension id ) and going up towards the top 
(cuboid according to all possible criteria called “base cuboid”). Let’s consider 
two cuboids ( )cuboid r  according to the hierarchical dimension subset   
and ( )cuboid r  according to  , if ⊂   then ( ) ( )cuboid r cuboid r  , 
the cuboids are said to have a family relationship, ( )cuboid r  is called the 
“ancestor” of ( )cuboid r  and ( )cuboid r  is the “offspring” of ( )cuboid r . 

Figure 6 gives the representation of the cuboid lattice of the data warehouse 
OM3 according to the hierarchical dimensions PlayerD  (IdP), TurnD  (IdT) and 

SeriesD  (IdS). 
 

 

Figure 6. Cuboids of OM3 according to PlayerD  (IdP), TurnD  (IdT) and SeriesD  (IdS). 
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By taking the example of the OM3 and its table of facts (cf. Table 4), we can 
express in SQL the hierarchical datacube necessary for an analysis according to 
the measurements Time and Score with respect to hierarchical dimensions IdP, 
IdT and IdS with the following query: 
 

 
 

This query will calculate the 23 = 8 partitionings (where ∅  represents the 
partitioning along no dimension id , i.e. aggregating the entire data warehouse 
into a single tuple:  
 “IdP, IdT, IdS”;  
 “IdP, IdT”;  
 “IdP, IdS”;  
 “IdT, IdS”;  
 “IdP”;  
 “IdT”;  
 “IdS”;  
 “∅ ”.  

As with the traditional datacube, the naive way to compute this type of query 
is to rewrite it as a collection of eight aggregative queries and run them sepa-
rately. However, each of its subqueries has its own pattern. To make all these 
cuboids uni-compatible, we use the value iALL  (cf. Definition 3.5): this value 
has a particular semantics, it is a generalization of all the values of the domain of 
an attribute of a dimension id . Thus, the cuboids all share the same schema 
( ∪  ) and can be grouped together in a single relation: the hierarchical da-
tacube. Each multidimensional tuple consists of a set of values for its hierarchical 
dimensions and numerical values for their measures. The value of the measure is 
computed by aggregating the set of tuples of the original relation sharing the 
same values of the selected hierarchical dimensions. 

Example 4.2 - The multidimensional tuple ( )8,1,t ALL=  is obtained by ag-
gregating by IdP and IdT the tuples ( )1 8,1,1t =  and ( )2 8,1,4t =  of the exam-
ple data warehouse (cf. Table 4). The measures of t are obtained by applying the 
measure functions on the set of tuples needed for the aggregation. 

In our case, we have:  
 ( ) ( ) ( ) ( )Time 1 2, Time Time 6.32,18.9 25.22f t r t t SUM= + = =   
 … 
 ( ) ( ) ( ) ( )Score 1 2, Score Score 700,2300 2300f t r t t MAX= + = =   
 … 

With the example data warehouse (cf. Table 4), the query to naively compute 
the hierarchical datacube according to the hierarchical dimensions PlayerD  (IdP), 

TurnD  (IdT) and SeriesD  (IdS) and the measures Time, Duration, Number, Score 
and Shape is as follows: 
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The result of this query is given by the Table 6. For clarity, different cuboids 
are separated by a horizontal line, and special values are abbreviated: ALLPlayer as 
ALLP, ALLTurn as ALLT and ALLSeries as ALLS. 

5. Closed Hierarchical Datacube 

The combinatorial explosion of results during datacube computations is a well 
known phenomenon ([12]), which is amplified with the computation of hierar-
chical datacubes. The closed hierarchical cube approach we propose aims at 
representing the hierarchical datacube without loss of information but with a 
consequent decrease of the necessary storage space. To do this, we eliminate 
possible redundancies by keeping only one representative for a set of tuples from 
the same data of the original relation. It is easily transposable from the standard 
closed datacube. 

5.1. Experimental Results for Closed Datacube 

Our objective now is to compare, through various experiments, the sizes of the 
datacube and the closed cube. In this sub-section, we report a summary of our 
results. All experiments are conducted on an Intel Pentium G2120 3.10 GHz 
with 3.6 GB main memory and running on Turnkey LAMP Stack (based on De-
bian GNU/Linux). We use the algorithm Close [13] (for which we have the 
sources) in order to perform experimental comparisons between the representa-
tions. We use real data sets to evaluate the effectiveness of our approach. 
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Table 6. Relational representation of the hierarchical datacube of OM3. 

IdP IdT IdS Time Duration Number Score Shape 

P1 S1 A1 6.32 2.85 3.5 700 0.5 

P1 S1 A2 18.9 1.95 3.83 2300 0.5 

P2 S2 A3 26.39 1.7 3.43 2400 0.71 

P2 S2 A4 4.1 2.07 3 300 0.5 

P2 S2 A5 7.38 3.68 3 600 0.5 

P3 S3 A6 2.14 2.15 3 300 1 

P3 S3 A7 56.04 2.25 3.17 3800 0.5 

P1 S1 ALLS 25.22 2.04 3.8 2300 0.5 

P2 S2 ALLS 37.87 1.79 3.4 2400 0.7 

P3 S3 ALLS 58.18 2.25 3.17 3800 0.5 

P1 ALLT A1 6.32 2.85 3.5 700 0.5 

P1 ALLT A2 18.9 1.95 3.83 2300 0.5 

P2 ALLT A3 26.39 1.7 3.43 2400 0.71 

P2 ALLT A4 4.1 2.07 3 300 0.5 

P2 ALLT A5 7.38 3.68 3 600 0.5 

P3 ALLT A6 2.14 2.15 3 300 1 

P3 ALLT A7 56.04 2.25 3.17 3800 0.5 

ALLP S1 A1 6.32 2.85 3.5 700 0.5 

ALLP S1 A2 18.9 1.95 3.83 2300 0.5 

ALLP S2 A3 26.39 1.7 3.43 2400 0.71 

ALLP S2 A4 4.1 2.07 3 300 0.5 

ALLP S2 A5 7.38 3.68 3 600 0.5 

ALLP S3 A6 2.14 2.15 3 300 1 

ALLP S3 A7 56.04 2.25 3.17 3800 0.5 

P1 ALLT ALLS 25.22 2.04 3.8 2300 0.5 

P2 ALLT ALLS 37.87 1.79 3.4 2400 0.7 

P3 ALLT ALLS 58.18 2.25 3.17 3800 0.5 

ALLP S1 ALLS 25.22 2.04 3.8 2300 0.5 

ALLP S2 ALLS 37.87 1.79 3.4 2400 0.7 

ALLP S3 ALLS 58.18 2.25 3.17 3800 0.5 

ALLP ALLT A1 6.32 2.85 3.5 700 0.5 

ALLP ALLT A2 18.9 1.95 3.83 2300 0.5 

ALLP ALLT A3 26.39 1.7 3.43 2400 0.71 

ALLP ALLT A4 4.1 2.07 3 300 0.5 

ALLP ALLT A5 7.38 3.68 3 600 0.5 

ALLP ALLT A6 2.14 2.15 3 300 1 

ALLP ALLT A7 56.04 2.25 3.17 3800 0.5 

ALLP ALLT ALLS 121.27 2.11 3.32 3800 0.55 
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We use the real dataset SEP85L containing weather conditions at various 
weather stations from December 1981 through November 1991. This weather 
dataset has been frequently used in calibrating various cube algorithms [14]. 
Mushroom is a dataset widely known in frequent pattern mining. It provides 
various characteristics of mushrooms. Death is a dataset gathering information 
about patients’ decease with the date and cause. TombNecropolis and TombOb-
jects are issued from archaeological excavation. They encompass a list of necro-
polises, their tombs and other properties like the country, the funeral rite, the 
objects discovered in the tombs and their description. Finally, Joint_Objects_ 
Tombs results from the natural join between TombObjects and TombNecropolis 
according to the identifiers of necropolises and tombs. 

Table 7 gives the datasets used for experiments. The columns Attributes and 
Tuples stand for the number of attributes and tuples respectively. In the last 
column, the size in bytes of the dataset is reported (each dimension or attribute 
is encoded as an integer requiring 4 bytes for any value). 

Table 8 illustrates the size of the studied representations for the various data-
sets. 

These five datasets are only encompassing strongly correlated data. Thus we 
are in the most difficult cases. In this context, the closed cube reduces the size of 
the datacube from 8 to more than 300 times. 

By using the SEP85L dataset, we have generated 9 datasets having from 2 to 10 
dimensions by projecting the weather dataset on the first k dimensions ( 2 10k≥ ≥ ). 
Table 9 presents the number of resulting patterns for the approaches. 
 
Table 7. Experimental datasets. 

Tables Attributes Tuples Size 

SEP85L 20 507,684 56,520 

Mushroom 23 8124 747,408 

Death 5 389 7780 

TombNecropolis 7 1846 51,688 

TombObjects 12 8278 397,344 

Joint_Objects_Tombs 17 7643 519,724 

 
Table 8. Size of the data cubes (in bytes). 

 Datacube Closed cube 

Death 220,152 24,984 

TombNecropolis 3,639,072 189,728 

Joint_Objects_Tombs (1%) 58,848,264 4,485,168 

Mushroom (5%) 436,823,808 1,233,984 

TombObjects 903,611,124 8,032,648 
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Table 9. Experimental results for SEP85L. 

Dimensions 
Number of tuples 

Datacube Closed datacube 

2 12,234 7928 

3 21,114 13,883 

4 27,514 18,874 

5 38,793 24,478 

6 62,248 34,898 

7 109,314 52,344 

8 199,639 81,640 

9 371,791 136,275 

10 722,133 172,452 

 
Whatever the number of dimensions is, the closed cube is the smallest repre-

sentation. It is always significantly reduced when compared to the datacube it-
self. 

5.2. Formal Framework of Closed Hierarchical Datacube 

The following definitions and corollary give the fundamental properties of the 
closed hierarchical datacube, which are repeated in Theorem 7. 

Definition 5.1 (Hierarchical cube closure operator)—The hierarchical cube 
closure operator associates to any tuple t of the hierarchical cube lattice a single 
tuple called the hierarchical closure of t, or simply the closure of t. It is obtained 
by considering the set of tuples more specific than t and by determining the 
most general tuple of this set using the Sum operator. This operator is noted   
and defined as follows:  

( ) ( )

( )

:

| and
, , otherwise.

s

CL r CL r

t t t t r
t

→

′ ′ ′+ ∈
 ∅ ∅

�
�


  

Example 5.1 Considering the multidimensional space of the data warehouse 
OM3 (cf. Table 5) and its table of facts (cf. Table 4), we have  

( )( ) ( ) ( ) ( )1 T S 1 1 1 1 1 2 1 1 S, , , , , , , ,P ALL ALL P S A P S A P S ALL= + =  and  
( )( ) ( )P T 7 3 3 7, , , ,ALL ALL A P S A= .  

Corollary 1   is a closure operator of ( )CL r  on r.   satisfies the fol-
lowing properties:  
 ( ) ( ), ,g gt t t r t r′ ′⇒     (isotonicity);  
 ( ),gt t r   (extensivity);  
 ( ) ( )( ), , ,t r t r r=    (idempotency).  

Definition 5.2 (Hierarchical cube closure system) Let’s consider  

https://doi.org/10.4236/jcc.2023.116004


M. M. Nevot et al. 
 

 

DOI: 10.4236/jcc.2023.116004 69 Journal of Computer and Communications 
 

( ) ( ) ( ){ }| ,r t CL r t r t= ∈ =  . ( )r  is a closure system on r and the asso-
ciated closure operator is  . Any tuple belonging to ( )r  is a hierarchical 
closed tuple or a hierarchical cube closure.  

Example 5.2 Considering the multidimensional space of the data warehouse 
OM3 (cf. Table 5) and its table of facts (cf. Table 4), we have:  

( )

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

1 1 1

1 1 2

2 2 3

2 2 4

2 2 5

3 3 6

3 3 7

1 1 S

2 2 S

3 3 S

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, ,

P S A
P S A
P S A
P S A
P S A

r P S A
P S A
P S ALL
P S ALL
P S ALL

 
 
 
 
 
 
 
  =  
 
 
 
 
 
 
 
∅ ∅  �

  

Theorem 7. The partially ordered set ( ) ( ) , gCCL r r=    is a complete 
and co-atomic lattice called a closed cube lattice such that: 
 ( )T CCL r∀ ⊆ , ⋀ t TT t∈= +  
 ( )T CCL r∀ ⊆ , ⋁ ( ),t TT t r∈= •  

All tuples with the same closure generalize the same tuples of the original re-
lation. As they generalize the same original tuples, they share the same aggre-
gated value of the measure (property of GROUP BY). For each tuple of the cube 
lattice, it is sufficient to calculate its closure to find its measure. Thus the closed 
hierarchical cube is a cover of the hierarchical datacube. 

Example 5.3 - Figure 7 shows the closed hierarchical cube lattice of OM3.  
 

 

Figure 7. Hasse diagram of the closed hierarchical cube lattice of OM3. 
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5.3. Possible Limitations of Closed Hierarchical Datacube 

Despite offering advantages in term of storage efficiency and query acceleration, 
closed hierarchical datacube have some possible limitations and limitations to 
account for, like loss in details, analysis flexibility, hierarchy management and 
adaptability to non-hierarchical dimensions. One of the possible inconveniences 
of a closed hierarchical datacube is that data consolidation may imply a loss of 
detail or an over-aggregation of data. By aggregating data at higher hierarchical 
levels, specific details may be lost at lower hierarchical levels, which can limit the 
ability to perform fine-grained data analysis at the lowest levels of granularity. 
That can be an inconvenience if details analysis is needed for specific decisions 
or perspectives. A closed datacube can also be less flexible for ad hoc analysis, 
because data are consolidated at specific hierarchical levels. If new analysis ques-
tions need different granularity levels of different data groupings, this may re-
quire to compute new closed datacubes or to recompute the current ones, which 
will require more time and resources. Also, closed datacubes are typically pre- 
computed to aggregate data at higher hierarchical levels, which can speed up 
analysis queries. However, this also means that data are pre-computed and 
stored in advance, which can incur a cost in terms of storage space for updates 
and modifications of underlying data. For example, hierarchies management can 
be complex in a closed datacube, because there can be more consolidation and 
aggregation levels to consider. The definition and management of hierarchical 
relations between dimensions can require a special attention to ensure that con-
solidations and aggregations are correctly aligned with the needs of the analysis. 
Finally, closed datacubes are made to work with hierarchical dimensions where 
there is a parent-child relation between granularity levels. However, they might 
not be as suitable for non-hierarchical dimensions, where data don’t follow a 
clear hierarchical structure. In these cases, closed datacubes may not be as effi-
cient to aggregate and consolidate data, which can lead to a loss in performance 
and accuracy in analysis results. 

6. Conclusions 

As part of multidimensional data warehouses (or datamart), after presenting an 
application case on a video game, having given a definition to the hierarchical 
dimensions and presented the different types of hierarchies ([1]), we have de-
fined a theoretical framework and a formal definition of the attributes of hierar-
chical dimensions and their associated structure and hierarchy. 

Inspired by the classical theory, and transposing it in a relatively direct way, 
we have defined, in a hierarchical context, the multidimensional space, speciali-
sation orders ([10] [11]), functions and operators, in particular the Sum operator 
and the Product operator, and for each, defined at the dimensional level, over-
loaded and generalized on the cube lattice. 

We then characterized the hierarchical datacube lattice and gave a calculation 
of its size, showing the complexity of algorithms using the hierarchical cube lat-
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tice as a search space. 
We then proposed the hierarchical datacube, which shows the same appeal as 

the classic datacube ([9]), major concept for data warehouse management. 
As with the original datacube, the closed hierarchical datacube is its most 

concise representation. It exploits the generally large redundancies in the data. 
This is a good way to reduce the size of a datacube. By removing them, it allows 
the necessary size to be reduced substantially without losing useful data. When 
the data are very correlated, the representation by a closed hierarchical cube 
shows all its interest because the reduction brought is quite significant, and nev-
ertheless makes it possible to find even more information than with a traditional 
datacube. These strong correlations appear in real data sets and increase when 
the dimensional data is very scattered over very large domains. Such characteris-
tics are typical of data warehouses ([15] [16]), and in particular in the field of 
video games where hierarchical dimension attributes are often legion. 
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