
Journal of Computer and Communications, 2023, 11, 161-176 
https://www.scirp.org/journal/jcc 

ISSN Online: 2327-5227 
ISSN Print: 2327-5219 

 

DOI: 10.4236/jcc.2023.115012  May 30, 2023 161 Journal of Computer and Communications 
 

 
 
 

End-to-End Auto-Encoder System for Deep 
Residual Shrinkage Network for AWGN 
Channels 

Wenhao Zhao1, Shengbo Hu2 

1School of Mathematical Sciences, Guizhou Normal University, Guiyang, China  
2School of Big Data and Computer Science, Guizhou Normal University, Guiyang, China 

 
 
 

Abstract 
With the rapid development of deep learning methods, the data-driven ap-
proach has shown powerful advantages over the model-driven one. In this 
paper, we propose an end-to-end autoencoder communication system based 
on Deep Residual Shrinkage Networks (DRSNs), where neural networks 
(DNNs) are used to implement the coding, decoding, modulation and de-
modulation functions of the communication system. Our proposed autoen-
coder communication system can better re-duce the signal noise by adding 
an “attention mechanism” and “soft thresholding” modules and has better 
performance at various signal-to-noise ratios (SNR). Also, we have shown 
through comparative experiments that the system can operate at moderate 
block lengths and support different throughputs. It has been shown to work 
efficiently in the AWGN channel. Simulation results show that our model has 
a higher Bit-Error-Rate (BER) gain and greatly improved decoding perfor-
mance compared to conventional modulation and classical autoencoder sys-
tems at various signal-to-noise ratios. 
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1. Introduction 

At present, signal processing in modern communication systems is well-estab- 
lished and can be proven to be optimal. Nevertheless, these processing methods 
are often linear [1] [2] [3]. In Figure 1(a) conventional communication systems, 
signal processing modules are composed of most sub-modules, e.g., source en-
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coder, channel encoder. These sub-modules are non-linear and can only be ap-
proximated as linear modules. And these sub-modules are designed by individu-
al optimization, the optimal submodules thus designed do not guarantee an op-
timal end-to-end communication system. 

In recent years, deep learning has profoundly impacted the development of 
modern communications technology. The application of deep learning methods 
to traditional communication submodules has been extensively studied, such as 
channel coding [4] [5] [6], channel estimation [7]-[12], digital demodulation 
[10] [11] [12], etc. In addition, deep learning-based methods are used to optim-
ize traditional communication blocks by jointly including joint channel coding 
[13] [14] [15] and joint channel estimation [16] [17]. 

However, in contrast to conventional communication systems, the design of 
end-to-end communication systems based on deep learning networks adopts a 
holistic approach where both the transmitter and receiver are represented by 
deep neural networks (DNNs), as in Figure 1(b) [18]; The model comprises an 
auto-encoder, auto-decoder, and a differentiated channel. The auto-encoder 
learns to encode the symbols to be transmitted as coded data and then sends the  

 

 
Figure 1. Conventional wireless communication system architecture and autoencoder-based end-to-end communication system 
architecture: Figure 1(a) conventional wireless communication system; Figure 1(b) application of neural networks to build au-
toencoder-based end-to-end communication system, in which neural networks replace the original transmitter and receiver. 
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coded data to the channel. The decoder will receive the data passing through the 
channel to recover the transmitted symbols through learning the neural net-
work. The auto-encoder in the model replaces the coding and modulation part 
of the traditional communication system, while the auto-decoder replaces the 
traditional communication system decoding and demodulation. The transmitter 
DNNs and receiver DNNs are trained in a supervised learning manner using ac-
tual or simulated data sets. The entire learning process is no longer chunked for 
the optimization of submodules. But rather, it is left entirely to the deep learning 
model, thus transforming the problem of data transmission in communication 
into an end-to-end machine learning optimization problem. 

Hence, end-to-end autoencoder is one of the hot topics in communication 
systems. For example, O’Shea in [18] first proposed and used a deep neural net-
work approach for end-to-end communication system design, demonstrating 
the feasibility of applying neural networks to end-to-end communication sys-
tems; Wu [19] et al. used a one-dimensional convolutional neural network to 
improve on the pioneering work and obtained better results, demonstrating the 
substantial gain of implementing end-to-end autoencoder systems with complex 
neural networks. The autoencoder designed by He in [20] using the coding 
structure of Turbo codes can take full advantage of the advantages of Turbo 
codes and the flexibility of the encoder. On the other hand, in the unknown 
channel model [21] [22] [23], for example, in [21], Ye proposed a conditional 
GAN-based network for solving the data transmission problem in the case of an 
unknown channel model. The application of meta-learning in [22] also enables 
end-to-end communication systems under unknown channel models. [23] also 
apply GAN neural network to solve the unknown channel overfitting problem, 
so as to improve part of the system performance. Both progressively verify the 
feasibility and effectiveness of the autoencoder communication system. 

Besides, for the autoencoder mentioned above communication system using a 
conventional network architecture, although the designed method can achieve 
BER improvement, its gain is small, and the end-to-end autoencoder using a 
conventional neural network suffers from a reduced learning capability when the 
signal is in a low signal-to-noise situation. Therefore, it is necessary to propose a 
new autoencoder communication system for the low SNR situation. 

Deep Residual Shrinkage Networks (DRSN) [24] introduce a filtering noise 
reduction technique based on a deep residual network, which ensures that the 
model dynamically removes redundant noise from the feature map during train-
ing and focuses on learning informative features. This noise reduction process is 
mainly achieved due to the soft thresholding function in the network structure. 
Using the unique soft thresholding and attention mechanism, the noise immun-
ity of the network is significantly enhanced, and the recognition accuracy of the 
system at low SNR is improved. We can see that DRSN has shown an excellent 
denoising effect in [25] [26] [27]. 

Traditional signal-denoising algorithms require a lot of expertise and expe-
rience in signal analysis, relying mainly on the construction of wavelet filter 
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functions or the selection of modal decomposition methods [28]. At the same 
time, for different signals, it is necessary to redesign the signal transformation 
method to re-select the threshold, which is very troublesome and costly in terms of 
workforce [29]. Therefore, the traditional idea of “signal noise reduction + feature 
extraction” is problematic. To address these issues, we design a DRSN-AE using 
an integrated approach to signal noise reduction, feature extraction and diagno-
sis. Our proposed approach is a novel end-to-end learning-based autoencoder 
for wireless communication using DRSN. 

The unique structure of the DRSN network presents a new idea for signal 
noise reduction, which consists of a particular residual shrinkage building unit 
(RSBU), as shown in Figure 2, which is a network structure integrating deep re-
sidual network, attention mechanism and soft thresholding function. In layper-
son’s terms, with this network, we can catch the points we deservedly need to 
pay attention to, retain them, and discard the irrelevant points. Thus, it im-
proves the ability of deep neural networks to extract useful features from noisy 
signals. Recent research on residual blocks has focused on enhancing feature 
mapping. 

Soft thresholding is used as the primary step in signal-noise reduction me-
thods. Its use is to set features with absolute values below a certain threshold to 
zero and adjust other features towards zero, i.e. to shrink them. Here we will set 
a set of thresholds in advance, and the magnitude of their values may affect the 

 

 
Figure 2. Residual shrinkage block structure. 
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result of noise reduction. The expression for the soft thresholding function is as 
follows [24]: 
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In computer vision, the principle of the attention mechanism is to focus atten-
tion on regions of interest after a quick scan of the whole region, assigning dif-
ferent proportions of weight to regions of different levels of importance, with the 
more critical regions occupying more weight. The DRSN automatically learns a 
set of weights by training a small neural network to weight each channel of the 
feature map. The implication is that some feature channels are more important, 
while others are redundant in terms of information; In this way, we can enhance 
the valuable feature channels and weaken the redundant ones. This improves the 
accuracy of the prediction. 

In the modified residual module, not only is there a soft thresholding function 
as a non-linear layer, but a sub-network is embedded for automatically setting 
the threshold required for soft thresholding. 

In this paper, we verify the feasibility of our end-to-end paradigm using a dif-
ferentiated channel model. In this AWGN channel, it is known that the update 
of weights in neural networks is done chiefly using stochastic gradient descent 
(SGD), which has minimized the loss function as the goal. Inspired by the excel-
lent denoising effect of Deep Residual Shrinkage Networks (DRSN), we design 
the Deep Residual Shrinkage Network Auto-Encoder communication system 
(DRSN-AE)—a channel coding scheme with a data-driven encoder and decod-
er—to address the above challenges. DRSN-AE can achieve reliability in channel 
coding under AWGN channels with short to medium block lengths. Such prob-
lems are also explored in depth by Shannon in [30] and are summarized as 
Shannon’s theorem, while we demonstrate once again that channel coding can 
be learned from the data itself in an end-to-end manner with good results. The 
main contributions are as follows: 
• We use the DRSN to model. The design of the residual structure unique to 

the DRSN-AE autoencoder communication system can mitigate the vanish-
ing gradient and exploding gradient arising from the deepening of the net-
work layers. Our proposed DRSN-AE-based system outperforms the model 
proposed by N. Wu in [19] for different Eb/N0 training, and the system still 
converges quickly and smoothly in a short epochs. 

• The DRSN-AE autoencoder has good adaptability and generalization to short 
and medium block lengths ( 100L ≤ ) and different code rates. The experi-
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mental results show that the DRSN-AE autoencoder with a self-attentive 
mechanism and a soft thresholding structure can support better coding and 
decoding in high-noise situations. 

The rest of the paper is organized as follows. Section II describes the end-to- 
end learning of the communication system in AWGN channel. The simulation 
results and performance evaluation are detailed in Section III. Conclusions are 
given in Section IV. 

2. End-to-End Communication Systems in AWGN Channel 

As described in the introduction, end-to-end models designed by applying a da-
ta-driven approach are gradually being promoted and applied. We have adopted 
an integrated approach to design the autoencoder communication system in 
which signal noise reduction, feature extraction and diagnosis are performed. In 
this section, the system architecture of DRSN-AE is first introduced, as well as 
the system parameters. 

Finally, complete content and organizational editing before formatting. Please 
take note of the following items when proofreading spelling and grammar. 

2.1. System Architecture 

Every communication system is composed of information sources, a channel, 
and an information host. The symbolic information s sent by the communica-
tion system contains k bits of information. After passing through the channel, it 
is subject to noise interference, which will cause the signal accepted by the host 
to differ from the original signal, i.e., the communication system has a BER, and 
the criterion for judging the performance of the communication system is the 
BER. So we propose an end-to-end communication system aimed at reducing 
the BER, the DRSN self-coding communication system, whose architecture is 
shown in Figure 1(b), where the encoder and decoder of the DRSN-AE system 
are jointly trained and optimized by applying the unique residual systolic block 
structure in Figure 2, the improved RSBU and the convolutional layer and built. 

In order for the reader to more clearly understand this article in the text, we 
describe it here, where in Figure 1(b), the encoder (i.e. transmitter) first maps k 
information bits of information into a message { }1, ,s M∈  , where 2kM = . 
From the modulation point of view, the sequence of symbols s in Figure 1(b) is 
mapped into n natural numbers, which are transformed into a new signal 

( ) nx f s R= ∈  occupies n channel time slots. Our system can simultaneously 
batch process k × L bits of complete messages, each message carries k bits, L is 
the number of symbols (block length) and the sent message sequence s occupies 
n channel time slots, i.e. the message’s information rate of this system is calcu-
lated as R k n=  (bits/channel used). In this system, the input sequence s is 
converted into a unique thermal vector, which means that the proposed system 
aims at minimizing the BER. 

From the point of view of channel coding, the transmitter in Figure 1(b) 
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achieves linear coding through linear weighting operations performed by the 
convolutional kernel, while the addition of rectified linear units (Relu) gives the 
network the capability of nonlinear coding. From a deep learning perspective, 
the convolution operation is a filtering process, and the DNNs in our transmitter 
and receiver are numerous filters that can extract information features better. 

The channel layer between the transmitter and receiver can be considered a 
conditional probability density function ( )|P Y X . The channel we use in this 
paper is the AWGN channel: ( )2, ~ 0,y x z z N σ= + , which is the signal to be 
transmitted by the transmitter will be interfered with by Gaussian white noise 
with a fixed variance ( ) 1

02 bRE Nσ −= . 
The decoder (i.e. receiver) in Figure 1(b) is based on the data features learned 

by the system to classify the signal Y in the case of 2k. The decoder produces an 
estimate ŝ  of the transmitted message s. Our system’s transmitter and receiver 
are built by interleaving the RSBU units and the convolutional layers. The di-
lated convolution technique is used between the different convolutional layers 
for fast training without losing information features again. The whole learning 
and transformation process is represented by ( )g Y  in Figure 1(b). 

The network architecture of the encoder and decoder of the DRSN-AE system 
is shown in Table 1, where the normalization layer can also be thought of as a 
batch norm without affine projection, which is essential for the training of en-
coder. The final layer of the encoder pairs x to further constrain the encoded 
symbols. The following are possible such constraints and are implemented using 
normalization layers: 

Energy constraints: 2
2x n≤                    (3) 

Average power constraint: 2 1,ix i Ε ≤ ∀               (4) 

2.2. System Parameters 

To conform to the sending of anonymous data in daily life and to facilitate 
comparison with the next pair [19]. We also use randomly generated binary se-
quences, and the training and validation sets conform to a 0 - 1 uniform distri-
bution. The data is based on binary data generated by [19] to mimic the real-life 
data flow [19]. The autoencoder system of Figure 1(b) is trained using 12,800 
data messages, where each message contains a block length of L symbols, each 
with k bits of information, the network is tested using 64,000 data messages, and 
the batch size is set to 64 [19]. The autoencoder is an unsupervised learning sys-
tem because the data used has no external markers. Typically, the autoencoder 
aims to find a low-dimensional representation of the input at some intermediate 
layer, thus allowing reconstruction with minimal error at the output. This con-
cept allows the autoencoder to learn without any prior knowledge. 

Moreover, The DRSN network of the system decoder can learn how to dis-
criminate the corresponding received signals, while we define the loss function 
between the sent and received symbol sequences in Figure 1 as the binary cross 
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entropy (BCE), converting both into a one-hot vector. Using Adam optimization 
to train the end-to-end system, we use a dynamic learning rate, with the initial 
learning rate set to 0.001 and the learning rate decaying by a factor of 10 when 
saturation occurs, resulting in fast and accurate training. 

In our work, the network architecture shown in Table 1 is sufficient to 
achieve optimal BER performance without any loss of learning capability. In ad-
dition, the encoders and decoders in the system are batch processing the sym-
bols instead of processing the symbol sequences with data inefficiently as in 
conventional communication systems. The hyperparameter information of our 
proposed DRSN-AE is shown in Table 2. 

 
Table 1. Structure of the DRSN-AE autoencoder communication system (before activa-
tion, the Conv1D layer is followed by a batch return layer). 

Type of layer Activation Output dimensions 

One hot input None L × 2k 

Conv1D Relu L × 32 

RSBU Relu L × 32 

Conv1D Relu L × 64 

RSBU Relu L × 64 

Conv1D Relu L × 256 

RSBU Relu L × 256 

Power Norm Layer None L × 256 

AWGN channel None L × 256 

Conv1D Relu L × 128 

RSBU Relu L × 128 

Conv1D Relu L × 64 

RSBU Relu L × 64 

Conv1D Relu L × 32 

RSBU Relu L × 32 

Conv1D Relu L × 2k 

RSBU Relu L × 2k 

Conv1D Softmax L × 2k 

 
Table 2. Hyper-parameters of DRSN-AE. 

Parameter Name Setting 

Loss Binary Cross-Entropy (BCE) 

Batch Size 100 

Optimizer Adam with initial learning rate 0.001 

Block Length 10 

Number of Epochs 200 
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Generally, the BER gain of an auto-encoder system trained at a high SNR is 
better than that of an auto-encoder system trained at a low SNR. This idea is also 
discussed in [19] to verify that, for example, the performance of CNN-AE 
trained at 27 dB achieves better gain results. The DRSN network we use has 
good generalization capability, allowing our system to perform well at different 
Eb/N0 and short and medium block lengths. In this study, we use an Eb/N0 of 9 
dB to train the encoder and decoder to verify that our designed auto-encoder 
system can adapt to low SNR. 

3. Simulation Results and Performance Evaluation 

In this section, we not only compare the BER of conventional communication at 
different code rates but also verify the CNN-AE auto-encoder communication 
system described in [19]. Then we compare the CNN-AE auto-encoder, and the 
auto-encoder communication system with a residual network (Resnet-AE) pro-
posed in this paper. Unless otherwise stated, our parameters are set at the same 
code rate for a fair comparison, with block length L being to set 10 and the Eb/N0 
used for training sequence being set to 9 dB. 

We provide here extensive simulation results to demonstrate the generaliza-
tion capability of the proposed DRSN-based autoencoder (DRSN-AE) system in 
terms of block length, training convergence, and code rate R, when communi-
cating over AWGN channels. In addition, the simulation platform we use is py-
charm, the graphics device used is the Nvidia 3050, our source code is imple-
mented in Keras. 

3.1. Code Rates Gain of DRSN-AE 

This subsection extends the proposed DRSN-AE system to AWGN channels at 
various code rates. It is also compared with classical modulation schemes such as 
BPSK and QAM as benchmarks. To facilitate the comparison of the experi-
ments, we set n to 1 and changed the value of k to change the system’s R. It is 
worth noting that the R here is the message’s information rate, not the standard 
code rate. 

Figure 3 plots the BER performance of DRSN-AE with different code rates R 
= 1, 2, 4 (bits/channel use) when transmitting over AWGN channels. In this, we 
compare the DRSN-AE system with the conventional uncoded modulation. In 
conventional communication, the transmitter in Figure 1(b) is replaced with 
conventional modulation, and the receiver is replaced with the corresponding 
demodulation and decoding. We compare here only the modulation model 
when uncoded, and as expected, it can be seen that our scheme significantly 
outperforms the conventional BPSK, 16QAM, and 64QAM schemes. The 
DRSN-AE system provides a gain improvement of at least 2 dB at BER of even a 
code rate of 1. The signal feature representation capability of the DRSN network 
facilitated by the deep network architecture can learn the appropriate symbol 
conversion even at high data rates. Also, we note that at low Eb/N0, our BER gain  
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Figure 3. BER performance of the DRSN-AE system at different rates R = 1, 2, 4 
(bits/channel use) compared to the corresponding BPSK, 16QAM, 64QAM modulations 
in AWGN channels. 

 
is less significant than the high BER gain, mainly because the neural network- 
based auto-encoder communication system can extract the maximum number of 
features to optimize the training process when there is enough data. Also, the 
performance gain of the DRSN-AE communication system concerning conven-
tional communication is more pronounced in the case of channel impairment. 
The reason is that the performance of conventional communication is degraded 
because the added channel impairment distorts the waveform, while our system 
is trained to learn and compensate for these effects. The performance gain of the 
DRSN-AE communication system improves with increasing k because the 
DRSN-AE communication system jointly optimizes the channel usage and can 
more flexibly adapt to various signal-to-noise ratio situations. 

Figure 4 shows the performance of the DRSN-AE system at different rates 
compared with the corresponding CNN-AE in the AWGN channel. For exam-
ple, DRSN-AE helps improve the BER performance (n = 1, k = 4) at 10−3 from 
approximately 11 dB to 6 dB providing a 5 dB improvement. Figure 5 depicts 
the BER performance of the DRSN-AE system at different rates compared to the 
corresponding Resnet-AE at AWGN channels. We observe that the BER only 
slightly improves for any SNR. For example, DRSN-AE helps improve the BER 
performance (n = 1, k = 4) from approximately 7 dB to 6 dB, only providing a 1 
dB improvement. We can see that the BER performance of our system is better 
than the CNN-AE system and the Resnet-AE system. The DRSN-AE system in 
this paper outperforms the comparison model in terms of gain for BER in dif-
ferent signal-to-noise ratio ranges. 
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Figure 4. BER performance of the DRSN-AE system at different rates R = 1, 2, 3, 4 
(bits/channel use) compared with the corresponding CNN-AE in AWGN channel. 

 
We now explain the performance of the above different signal-to-noise ratios 

in CNN-AE and Resnet-AE. From [19], it is known that the encoder and decod-
er of the CNN-AE auto-encoder communication system have only three short 
convolutional layers, and although this design scheme can avoid problems such 
as gradient disappearance and gradient explosion, the encoder and decoder de-
signed by the shallow network architecture are localized and limited for the ac-
quisition of information features. While Resnet-AE, with its unique shortcut 
structure, is equivalent to taking the previously processed information directly to 
the present together again, which has the effect of impairment, there is still the 
problem of reduced learning ability because the Resnet network used by the en-
coder and decoder uses the convolutional kernel as the local feature extractor, 
which will ignore some feature information disturbed by noise. In turn, the 
higher-level features learned in the output layer have poor discriminative power 
and are insufficient for accurate signal classification. In deep learning, optimiz-
ing parameters is often time-consuming and essential, but the gradient of error 
loss must be passed back to the previous network layers, making the initial layer 
of trainable parameters less optimal. 

Although our DRSN-AE auto-encoder system is designed to operate under 
low SNR, it can be found in Figures 3-5 that our system can operate at different 
code rates and has high BER gain not only at low SNR but also at high SNR to 
achieve efficient coding (decoding) performance. 

3.2. Block Length Gain of DRSN-AE 

According to Shannon’s finite-length block code information theory, we know 
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that to achieve the minor possible error, the channel coding needs to use the 
longest possible (even infinite) block code sequence for coding. As the block 
length increases, the channel coding can achieve better reliability. We compare 
DRSN-AE with CNN-AE and Resnet-AE, tested at L = 100, as shown in Figure 
6. We compare the BER test experiments at block length (L = 100) with different  

 

 
Figure 5. BER performance of the DRSN-AE system at different rates R = 1, 2, 3, 4 
(bits/channel use) compared to the corresponding Resnet-AE at AWGN channels 

 

 
Figure 6. BER performance of the DRSN-AE under AWGN channel with block length L 
= 100 compared to different models. 
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signal-to-noise ratios. 
In Section 4.1, we use the DRSN-AE system in Figure 1(b) train with a short-

er block length (L = 10). Here we tested the BER on different block lengths (L = 
100) using the same network parameters and verified that the DRSN-AE system 
still has good conception capability at L = 10. It can be seen from Figure 6 that 
at n = 1, k = 4, our DRSN-AE autoencoder communication system still outper-
forms other autoencoder communication systems for block length L = 100. As 
the block length increases, large block lengths (L = 1000) require a large amount 
of training memory, and our system does not achieve better performance on 
large block lengths due to its own hardware memory. Also, we can expect the 
block length gain of DRSN-AE to be saturated when the block length is large, 
because long block lengths require the use of large memory stores and more 
complex structures to train. Furthermore, it is still a worthwhile direction for us 
to focus on how to train learning for larger block lengths. 

3.3. Model Training Convergence 

The DRSN-AE system proposed in this paper is in the AWGN channel, and the 
system’s advantages with other methods at different code rates have been dem-
onstrated in Section 4.1. In this section, we analyze the model adaptation and 
training convergence of the DRSN-AE system. Figure 7 shows the verification 
loss of the DRSN-AE system and the CNN-AE system under the AWGN chan-
nel with k = 4, which is trained using 200 epochs for comparison. 

In [19] the CNN-AE system encoder and decoder are built with three convo-
lutional layers, which have a simple structure and low network complexity so  

 

 
Figure 7. Verification loss of CNN-AE system and DRSN-AE system at epochs = 200 for 
AWGN channel with n = 1, k = 4. 
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that it can achieve faster convergence, but the CNN-AE system is not complete 
for signal feature extraction and will miss some feature information. Meanwhile, 
the DRSN-AE system use dilated convolution technology. We set a parameter to 
adjust the dilation rate, i.e., to fill the convolution kernel with zeros of dilation 
rate −1, so we pick different dilation rates that will have different perceptual 
fields and thus obtain multi-scale information. Moreover DRSN-AE system can 
also achieve fast convergence within epochs = 100, which is not as fast as the 
CNN-AE system, but the DRSN-AE system converges more smoothly. 

Compared with learning the original signal, the DRSN-AE auto-encoder sys-
tem learns the difference of the signal, which simplifies the training process be-
cause of its unique residual unit. Also, in our work, the convergence of our mod-
el with different initialization parameters can reach as good convergence as Fig-
ure 7, which is not shown here. 

From the comparison of the simulation results above, we can obtain that our 
model outperforms the conventional uncoded modulation and has a larger gain 
in intersection with CNN-AE [19]. 

4. Conclusions and Prospects 

This paper presents a deep residual shrinkage network-based autoencoder com- 
munication system that can better extract signal features by using improved re-
sidual units through a data-driven approach without needing specialist know-
ledge in communication. Through the proper design of the residual unit and 
convolutional layers, different dilated convolution techniques are used between 
the different convolutional layers. This can reduce the computational cost of the 
network significantly without losing feature information and preventing the oc-
currence of overfitting. In comparison with other models, our proposed au-
toencoder communication system can achieve good performance under AWGN 
channel. 

In future research, we apply this model to unknown channels by solving the 
gradient problem in channel backpropagation using methods such as the diffu-
sion model or Generative Adversarial Networks (GAN); Also, we will design the 
autoencoder communication system from the perspective of Low-Density Pari-
ty-Check (LDPC) codes to solve the more significant block length coding gain 
problem. 
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