
Journal of Computer and Communications, 2023, 11, 108-136
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2023.115009 May 29, 2023 108 Journal of Computer and Communications

Strengthening the Security of Supervised
Networks by Automating Hardening
Mechanisms

Patrick Dany Bavoua Kenfack, Alphonse Binele Abana, Emmanuel Tonye,
Genevieve Elvira Ndjana Leka

Department of Electrical and Telecommunications Engineering, National Advanced School of Engineering of Yaounde,
University of Yaounde I, Yaounde, Cameroon

Abstract
In recent years, the place occupied by the various manifestations of cyber-
crime in companies has been considerable. Indeed, due to the rapid evolution
of telecommunications technologies, companies, regardless of their size or
sector of activity, are now the target of advanced persistent threats. The Work
2035 study also revealed that cyber crimes (such as critical infrastructure
hacks) and massive data breaches are major sources of concern. Thus, it is
important for organizations to guarantee a minimum level of security to
avoid potential attacks that can cause paralysis of systems, loss of sensitive
data, exposure to blackmail, damage to reputation or even a commercial
harm. To do this, among other means, hardening is used, the main objective
of which is to reduce the attack surface within a company. The execution of
the hardening configurations as well as the verification of these are carried
out on the servers and network equipment with the aim of reducing the
number of openings present by keeping only those which are necessary for
proper operation. However, nowadays, in many companies, these tasks are
done manually. As a result, the execution and verification of hardening con-
figurations are very often subject to potential errors but also highly consum-
ing human and financial resources. The problem is that it is essential for op-
erators to maintain an optimal level of security while minimizing costs, hence
the interest in automating hardening processes and verifying the hardening of
servers and network equipment. It is in this logic that we propose within the
framework of this work the reinforcement of the security of the information
systems (IS) by the automation of the mechanisms of hardening. In our work,
we have, on the one hand, set up a hardening procedure in accordance with
international security standards for servers, routers and switches and, on the

How to cite this paper: Kenfack, P.D.B.,
Abana, A.B., Tonye, E. and Leka, G.E.N.
(2023) Strengthening the Security of Super-
vised Networks by Automating Hardening
Mechanisms. Journal of Computer and
Communications, 11, 108-136.
https://doi.org/10.4236/jcc.2023.115009

Received: March 3, 2023
Accepted: May 26, 2023
Published: May 29, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2023.115009
https://www.scirp.org/
https://doi.org/10.4236/jcc.2023.115009
http://creativecommons.org/licenses/by/4.0/

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 109 Journal of Computer and Communications

other hand, designed and produced a functional application which makes it
possible to: 1) Realise the configuration of the hardening; 2) Verify them; 3)
Correct the non conformities; 4) Write and send by mail a verification report
for the configurations; 5) And finally update the procedures of hardening.
Our web application thus created allows in less than fifteen (15) minutes ac-
tions that previously took at least five (5) hours of time. This allows super-
vised network operators to save time and money, but also to improve their
security standards in line with international standards.

Keywords
Hardening, Supervised Network, Cyber Security, Information System

1. Introduction

The digital and technological revolution is bringing its share of profound
changes to the global economy. Technology is transforming jobs and skills.
Companies, to satisfy their customers, are updating themselves by offering new
up-to-date services in relation to technological developments. However, with
this development, the world also faces an even greater cyber threat. Indeed, the
information systems of organizations are very often victims of cyberattacks
which affect both the company itself, whose activities are disrupted or even
completely interrupted, but also impact, in a certain and sometimes irremediable
way, the whole of its customers. One of the most reliable ways to prevent these
attacks is to strengthen security configurations, also called system hardening or
hardening.

System hardening is a collection of techniques and best practices aimed at re-
ducing the vulnerability of applications, systems, infrastructure, firmware, and
other areas. It is achieved by applying the latest patches and updates as well as
following specific procedures and policies aimed at reducing the attack surface
of the system [1]. The goal of system hardening is to reduce security risks by
eliminating potential attack vectors and condensing the system attack surface.
As a result, attackers and malware have fewer opportunities to penetrate a com-
pany’s IT ecosystem.

Indeed, some companies carry out the hardening of their information systems
still manually, as well as the verification of the hardening is done by the execu-
tion of a script that copies the configuration files. Members of the IS security
team verify that configurations comply with corporate security policies. Howev-
er, these are time-consuming, error-prone tasks that require successive checks.
The work thus described is very costly in terms of human and financial re-
sources, hence the interest in automating the system hardening process as well as
its verification. It is in this perspective that this work fits.

Nowadays there is a plethora of platforms allowing the automation of Har-
dening, like Calcom Hardening Suite, Ansibln, Puppet … etc [2]. Our work aims

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 110 Journal of Computer and Communications

to remedy the weaknesses of the latter by proposing a more flexible device, capa-
ble of adapting to heterogeneous environments and having a better speed of ex-
ecution as well as a lower cost of installation and maintenance.

The objectives to be achieved during this work are:
• Automate the execution of the hardening of servers and network equipment

of the information system.
• Automate the verification of the hardening of servers and network equip-

ment of the information system.
• Generate reports of compliance of servers and network equipment of the in-

formation system aligned with the security policy of Orange Cameroon.
• Correct the non-conformities noted during the verification.

2. State of the Art on Hardening
2.1. Definition of Hardening

According to the National Institute of Standards and Technology (NIST), the
official definition of system hardening is: “a process of eliminating a means of
attack by patching vulnerabilities and disabling non-essential services” [1].

System hardening is the process of correcting weaknesses and security vulne-
rabilities in systems. Hardening of systems is achieved by applying the latest
patches and updates as well as following specific procedures and policies aimed
at reducing the attack surface of the system [1].

Hardening can also be considered the process of securing a server or comput-
er system by reducing its attack surface or vulnerability surface and its potential
attack vectors. It is a form of protection against cyberattacks that involves clos-
ing loopholes in the system that cyber attackers frequently use to exploit the sys-
tem and gain access to sensitive user data.

Hardening is therefore not a curative action and must be applied in order to
avoid a problem and not following a problem. Similarly, an entire standard is
not to be taken and applied blindly. However, some “good ideas” can be ex-
tracted and applied. Relying on hardening guides is a good basis for defining the
prerequisites that the company’s machines (client workstations and/or servers)
must meet. By focusing on having these measures in place, a number of mali-
cious acts can already be prevented. The security of the information system is all
the better, as shown in Figure 1.

2.2. Importance of Hardening

Cyber security means such as VPNs, DMZs, anti-viruses, IDS/IPS are perimeter
security solutions. They make it possible to implement barriers to prevent hack-
ers from gaining access to the secure perimeter. However, they do not ensure the
security of systems once there is a potential intrusion. This is where system har-
dening comes in. Indeed, hardening allows us to take into account hypotheses
such as: the intrusion of the perimeter to be protected or the malicious actions of
an employee.

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 111 Journal of Computer and Communications

Figure 1. The different aspects of hardening [1].

If very often some companies do not take the subject of system hardening very

seriously, there are several reasons why they should integrate it into their securi-
ty strategy.

2.3. Types of Hardening

Although the definition of systems hardening applies to an organization’s entire
IT infrastructure, there are several subsets of this idea that require different ap-
proaches and tools [2].
• Network hardening

Network devices are hardened to prevent unauthorized access to a network’s
infrastructure. In this type of hardening, vulnerabilities in the management and
configuration of devices are sought and corrected in order to prevent their ex-
ploitation by malicious actors who wish to gain access to the network. Increa-
singly, hackers are using weaknesses in network device configuration and
routing protocols to establish a persistent presence in a network rather than at-
tacking specific endpoints.
• Server hardening

The process of server hardening involves securing a server’s data, ports, com-
ponents, functions, and permissions. These protocols are executed system wide
on the hardware, firmware and software layers.
• Application hardening

Application hardening focuses on software installed on the network. An im-
portant aspect of application hardening sometimes referred to as software har-
dening or software application hardening is applying patches and updating vul-
nerabilities. Again, patch management through automation is often a key tool in
this approach.

Application hardening also involves updating or rewriting application code to
increase its security, or deploying additional software security solutions.
• Data base hardening

Database hardening focuses on reducing vulnerabilities in digital databases
and Database Management Systems (DBMS). The objective is to strengthen the
repositories of data, as well as the software used to interact with this data.
• Operating system hardening

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 112 Journal of Computer and Communications

Operating system hardening is all about securing a common target of cyberat-
tacks: a server’s operating system (OS). As with other types of software, hardening
an operating system according to Figure 2 typically involves patch management
that can monitor and automatically install updates, patches, and service packs.

2.4. How to Harden?

System hardening is a variable process. When it must be carried out, a list of
hardening controls for the systems to be executed must be established upstream,
taking into account the company’s security policy and referring to the system
hardening standards which are published by the organizations security such as
CIS Center or NIST.

Once the hardening checks have been implemented on the equipment, it is
necessary to check that they have been carried out in accordance with the har-
dening procedure shown in Figure 3.

2.5. Advantages/Disadvantages

Advantages
Hardening of systems brings us to [4]:

• The securing of the system: By reducing the attack surface that cybercri-
minals can use, you will rely on a more secure system both actively and pas-
sively. This is due, among other things, to the fact that you will be able to im-
plement more secure passwords. By reducing the attack surface that cyber-
criminals can use, you will rely on a more secure system both actively and
passively. This is due, among other things, to the fact that you will be able to
implement more secure passwords.

• Performance improvement: Your computers will be able to run faster be-
cause you eliminate unnecessary overhead such as programs, services, users
and ports that you don’t use.

Figure 2. The types of hardening [3].

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 113 Journal of Computer and Communications

Figure 3. The hardening process [3].

• Personalization: your computers will be configured according to your needs
because hardening allows you to change the default settings by the manufac-
turer of each particular software.

• A better control: at the time of the execution of the procedure, you simulta-
neously carry out a complete audit of your system, which leads you to obtain
better control of it.

• Confidentiality: at the time of the execution of the procedure, you simulta-
neously carry out a complete audit of your system, which leads you to obtain
better control of it.

The hardening of the systems will also make it possible to comply with best
practices and avoid configuration errors.

2.6. Hardening Tools

1) Bastille
Bastille is an automatic hardening tool originally geared towards Red Hat and

Mandrake Linux distributions. However, the bastille package provided in Debian
(since Woody) has been modified to provide the same functionality for Debian
GNU/Linux systems. It is a collection of PERL scripts that create a custom secu-
rity configuration based on the answers provided by the administrator to a spe-

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 114 Journal of Computer and Communications

cific set of questions. It also performs an in-depth analysis of the system’s cur-
rent hardening level and its various security flaws, thereby reducing the chances
of system compromise [2].

2) Microsoft SDL Threat Modelling Tool
Microsoft developed this tool with the aim of integrating threat modeling into

the standard software development life cycle. The current version of the tool offers
enhanced features such as better visualization and customization features, updated
threat definitions, and more. Using this tool greatly reduces the effort required to
identify security vulnerabilities and helps users take the necessary steps to counter
them in the early stages of the SDL (software development lifecycle) [2].

3) Ansible
Ansible is an open source IT automation tool that automates provisioning,

configuration management, application deployment, orchestration, and many
other manual IT processes [2]. Unlike simpler management tools, with Ansible
users (system administrators, developers, architects) can use automation features
to install software, automate daily tasks, provision infrastructure, improve secu-
rity and compliance, apply system patches and share their automated processes
with the entire company.

4) CalCom Hardening Automation Suite
CalCom Hardening Automation Suite (CHS) [2] is a hardening automation

platform designed to reduce operational costs and improve infrastructure secu-
rity and compliance. CHS eliminates breakdowns and reduces curing costs by
automating every step of the curing process.

5) Puppet
Puppet is a tool that helps manage and automate server setup. To use Puppet,

it is necessary to define the desired state of the infrastructure systems to be ma-
naged [2]. This is accomplished by writing infrastructure code in Puppet’s Do-
main Specific Language (DSL). Puppet code that will potentially be used with a
wide range of devices and operating systems.

6) Chef Enterprise Automation Stack (EAS)
Chef Enterprise Automation Stack (EAS) is an automation platform enabling

DevSecOps teams to build, deploy, manage and secure any application running
on any infrastructure [5]:
• Align teams through a common set of tools and processes.
• Integrate conformance testing into each stage of the technology lifecycle.
• Ensure consistency, speed and security of application delivery on any infra-

structure.
It is not specific to hardening but can be used for this purpose.
7) CIS-CAT Pro
CIS-CAT Pro Assessor assesses a system’s cybersecurity posture against rec-

ommended policy settings [6]. The tool helps organizations save time and re-
sources by supporting automated content with policy-setting recommendations
based on globally recognized CIS benchmarks. The tool is kept in a location un-
der the control of each member. Whether the organization uses virtual ma-

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 115 Journal of Computer and Communications

chines, in the cloud, in the network or on a local machine, CIS-CAT Pro helps
ensure policy compliance. To allow for the greatest possible portability, CIS-CAT
Pro is a Java application and requires a compatible JRE to run an assessment.
Depending on the evaluation streams chosen by the organization, the JRE can
reside on a target or a network drive.

8) Nessus
The Nessus tool is designed to scan a remote system and analyze various weak

points that a malicious hacker can use to launch an attack. It is one of the most
popular network scanners capable of checking vulnerabilities such as default
password attacks, denial of service (DoS) attacks, etc. Versions after Nessus 3.0
also provide auditing functionality, helping to harden the system against known
threats [2].

2.7. Comparaison between Existing Hardening Tools

A brief comparison of Hardening tools is shown in Table 1.

Table 1. Comparism table of existing Hardening tools.

 Chef Puppet Ansible SaltStack

Architecture Client/Server Client/Server Client/Server Client/Server

Ease of installation Average Average Very easy Average

Language Procedural: specifying
how to perform a task.

Declarative: specifying
only what to do.

Procedural: specifying
how to perform a task.

Procedural: specifying
how to perform a task.

Scalability Scalable Scalable Scalable Scalable

Management Difficult because you
have to learn Ruby DSL.

Difficult because you
have to learn Puppet
DSL.

Very easy Very easy

Interoperability High High High High

Availability in the cloud Amazon Amazon/Azure None None

Protocole of
communicattion

Kife tool SSL SSH SSH

Environnement(s) Ubuntu, Linux,
Windows, Solaris …etc.

GNU/Linux, Mac OS X
et Windows.

GNU/Linux, Mac OS X
and Windows.

Linux, Unix and
Windows.

Strong points -Integrates well with Git,
which provides strong
version control;
-A large collection of
recipes is available.

-Strong community
support from Puppet
Labs;
-Well-developed
reporting mechanism.

-There is no need to
install the agent on
systems that require
configuration;
-YAML is extremely easy
to understand and learn.

6Extremely easy to use
once set up;
-A good reporting
mechanism that allows
easy visualization of all
operations.

Weak points -Considerable learning
time is required if one is
not comfortable with
Ruby.

-For performing
advanced tasks, a good
knowledge of Ruby is
required;
-The main server does
not have much control.

-Execution speed is often
slower than other tools;
-YAML is not as powerful
as most other languages.

-The installation phase
is a little more difficult;
-A relatively new web
interface that is much
less developed than
other tools.

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 116 Journal of Computer and Communications

3. Materials, Tools and Methods
3.1. Material

The architecture of our supervised networks consists of servers with the operat-
ing system Red Hat version 7.x and Windows Server 2019, Cisco brand routers
and switches, laptop computers

3.2. Development Tool, Libraries and Programming Languages
Used

3.2.1. Justification of the Choices
The type of tool that we decided to make to meet the needs is a web application
developed using the Python language using the Django framework. To connect
remotely to the equipment, we used the SSH protocol using the Paramiko Py-
thon library.

The choice of this library is justified by [6]:
• Lines of code are relatively short;
• The python code is of low complexity to understand;
• The python code is of low complexity to understand;
• The ease of Paramiko to integrate into an application.

3.2.2. The Development Tools
Table 2 summarizes the main development tools used [7]:

Table 2. Development tools used.

Name of the tool Description and functionality

Pycharm

JetBrains’ PyCharm is a comprehensive integrated development
environment that includes a highly automated toolchain to
improve developer productivity. As the name suggests, the
PyCharm IDE targets Python programmers.

Visual studio code Visual Studio Code is a simplified code editor, which is free and
developed in open source by Microsoft. It works on Windows,
macOS and Linux. There is support for several programming
languages, including C, C#, C++, CSS, HTML, Java, JavaScript,
JSON, Markdown, PHP, Powershell, Python, TypeScript, YAML.

GNS3 GNS3 (Graphical Network Simulator) is an open source software
that allows you to simulate complex networks while being as close
as possible to the operation of real networks. This software
provides an intuitive graphical user interface for designing and
configuring virtual networks.

VMWare

VMware is a virtualization and cloud computing software
provider. With VMware server virtualization, a hypervisor is
installed on the physical server to allow multiple virtual machines
(VMs) to run on the same physical server.

Git Git is a development tool used for source code management. It is
a free and open-source version control system used to efficiently
manage small to very large projects.

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 117 Journal of Computer and Communications

3.2.3. Programming Language
Table 3 summarizes the main programming languages used [7]:

Table 3. Programming languages used.

Name of the
language

Description and functionality

Python

Python is an interpreted, cross-paradigm, cross-platform programming
language. It promotes structured, functional and object-oriented
imperative programming. The latter is equipped with strong dynamic
typing, automatic memory management by garbage collection and an
exception management system; works on most computer platforms, from
smartphones to mainframes. It is designed to maximize programmer
productivity by offering high-level tools and easy-to-use syntax.

Django Django is an open-source python framework dedicated to web 2.0
development. It’s “The web framework for perfectionists under pressure”.
It is oriented for developers who need to produce a solid project quickly.
As it is always complicated to start from scratch, Django offers a solid
project base.

HTML

It is a language used to compose web pages. We speak of markup
language and not of programming language, because the purpose of
HTML is to frame the different elements present in a page (images, titles,
paragraphs, etc.) with tags to allow them to be formatted secondarily. (via
a style sheet) and to make sense.

CSS

CSS stands for Cascading Style Sheets. It is a style language whose syntax
is extremely simple but its performance is remarkable. Indeed, CSS is
concerned with the formatting of content embedded with HTML.

JavaScript

It’s a programming language that allows you to create dynamically
updated content, control multimedia content, animate images, and
everything else you can. The JavaScript language is mainly used to
improve the ergonomics of a website and/or a user application interface.

3.2.4. Libraries
Table 4 summarizes the main libraries used [7].

3.3. Method
3.3.1. Functionalities
The main features of our app are:
• Harden configurations of one or more devices: the user performs a set of

hardening procedures on the devices;
• Verify that the hardening configurations have been executed correctly: the

user executes the commands to verify the different hardening procedures;
• Manage hardening controls: user add, modify or remove one or more controls;
• Manage procedures: user adds procedures;
• Manage procedures: user adds procedures;

3.3.2. Nonfunctional Analysis
The technical constraints to which the application is subject are as follows:

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 118 Journal of Computer and Communications

Table 4. Libraries used.

Name of the library Description and functionality

SQLite

SQLite is a library written in the C language that offers a relational
database engine accessible by the SQL language. SQLite largely
implements the SQL-92 standard and ACID properties. Unlike
traditional database servers, such as MySQL or PostgreSQL, its
particularity is not to reproduce the usual client-server scheme but
to be directly integrated into programs.

Paramiko Paramiko is used to program the sending of commands to network
equipment via the SSH protocol. Using this library, users send
commands that the network device will execute as if they had been
entered into its CLI console from a keyboard directly attached to
it. The result of these commands will be retrieved by the Python
script which can display them on the administrator’s screen.

Ajax

Ajax is mainly used to bring interactivity within web pages while
saving server resources. Indeed, Ajax allows to communicate with
the server using Javascript code in the background while the page
is displayed on the screen. Thus the content of the page can be
modified without it being necessary to transit and display the
entire page. Ajax is particularly used for updating forms and
shopping carts on most websites.

Boostrap

Bootstrap is a free and open-source web development framework.
It is designed to ease the process of developing responsive and
mobile-focused websites by providing a collection of syntaxes for
design patterns.

• The interfaces of our application must be ergonomic and user-friendly;
• Availability: our application must be available at all times for use by entitled

users, and must be easily accessible via any device;
• Security: Our application contains personal and sensitive information, so it

must comply with the rules relating to the security of computer systems;
• Reliability: The results provided by the application must be reliable and effec-

tively reflect the state of the database at the time of its interrogation, that is to
say during the update of the data.

3.3.3. Flowchart of the Methodological Steps
The approach adopted for the realization of our solution is illustrated in Figure 4.

3.3.4. Tool Modelization
1) Use case diagram
The use case diagram in Figure 5 of our solution looks like this.
2) Sequence diagrams
Sequence diagrams for performing and verifying curing are shown in Figure 6

and Figure 7, respectively.

3.3.5. Class Diagram
The class diagram of our solution is shown in Figure 8 below.

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 119 Journal of Computer and Communications

3.4. Conception Tool
3.4.1. Challenges
The main challenges to be overcome in order to be able to design an automatic
hardening management tool respecting the methodology described above are the
following:

Figure 4. Flowchart of methodological steps.

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 120 Journal of Computer and Communications

Figure 5. HardeningApp use case diagram.

Figure 6. Sequence diagram of the “Execute hardening” use case.

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 121 Journal of Computer and Communications

Figure 7. Sequence diagram of “verify hardening” use case.

Figure 8. Class diagram.

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 122 Journal of Computer and Communications

• Create a hardening tool capable of hardening the configurations of several
servers and network equipment at the same time and this in a reasonable
time;

• Create a tool that checks that the configurations have been executed on one
or more network devices at the same time in a reasonable time;

• Realize a tool that is able after the execution of the verification process to re-
cover the controls that are not compliant and bring them back to the ex-
pected value;

• Send a verification report in.csv format by email after the execution of the
hardening verification;

• Send confirmation messages by email after the execution of each routine;
• Allow to take a.csv file containing the parameters of different controls and

add them to the list of controls of the application.
• Edit and delete controls;
• Update curing procedures.

3.4.2. System Architectures
1) Overall architecture of the solution
We propose to implement an architecture consisting of the following ele-

ments: an application server in which the backend, the webview and our para-
miko library are hosted; an email server that hosts the API that allows us to send
emails; the Active directory where all the user information of our tool and the
database are stored.

Figure 9 below illustrates the overall architecture of our solution.
Functioning

• The active directory communicates with the application server via keycloak
to authenticate users.

• The user via HTTP calls communicates with the webview of the application
to be able to perform all the routines offered by the application.

• The webview interacted with the backend through http calls as well.

Figure 9. Overall Solution Architecture.

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 123 Journal of Computer and Communications

• Once the requests are sent to the backend, the latter is responsible for ex-
ecuting them.
o If it is a hardening or a verification, the backend is responsible for ex-

ecuting the various commands on the remote equipment thanks to pa-
ramiko which sends the commands that the equipment will execute.

o Whether adding, removing or modifying a control; once the query is
passed to the backend, it executes it and asks the database to save the
changes.

• Once the requests are made, emails are sent to the users. This work is done
by the Orange Cameroon Swagger Microservices API consumed by our ap-
plication.

2) Logical solution architecture
Figure 10 below presents the software architecture of our solution. It high-

lights the software and protocols we used along with their versions.

4. Results and Comments
4.1. Structural Architecture of the Application

Following the methodology presented above, we were able to set up an automat-
ic hardening management tool called HardeningApp. The structural architecture
of it is shown in Figure 11 below.

Our HardeningApp is structured as follows:
• The authentication interface: it is the entry page of the application on which

the user authenticates;
• The home page: on this page the user to the application supervision data;

Figure 10. Logical architecture of our solution.

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 124 Journal of Computer and Communications

Figure 11. HardeningApp structural architecture.

• The hardening interface. Here the user enters into the application the para-
meters corresponding to the equipment to carry out the hardening;

• The verification interface. In this page, the user checks that the hardening has
been carried out by entering the parameters of the equipment on which he
wishes to check the hardening. This has a sub-page that can be accessed once
the verification process has been completed:
o The non-conformance correction interface where the user is presented

with all control commands that have not been executed correctly and the
user has the possibility to re-execute them.

• The control interface. On this page the user accesses all the controls regis-
tered in the application. He can modify them, delete them or add other con-
trols. This page consists of the following sub-pages:
o The detail interface: on which the user has access to all the characteristics

of the selected control and can thus modify them;
o The interface for adding a control. The user can add a control by filling

in the different characteristics of the control in the add form;
o The interface for adding several controls. The user adds multiple con-

trols by importing a CSV file that includes all the characteristics of the
controls to be added.

• The log interface. On this page the user has an overview of all the activities
carried out on the application. In the case of hardening verification, he can
download the verification report.

4.2. Tool Presentation
4.2.1. Home Page Interface
If the CUID and password are correct, the user goes to the home page. Figure 12
illustrates the login page.

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 125 Journal of Computer and Communications

Legend: This tab presents the active account on the application. It includes the CUID of the logged in person, their role

and the log out button. This section corresponds to the menu that gives us access to the other pages of the application.
 On this part of the page we find the name of the application and its logo. In this section, for each type of operation

that can be performed on the application, the number of executions is entered. In this part of the application, we find a
graph which allows you to know the number of operations carried out on the application each month.

Figure 12. HardeninApp home interface.

4.2.2. Hardening Interface
Once the user clicks on the menu hardening button from the home page, he is
taken to the hardening page represented by Figure 13 and Figure 14.

Once the execution of the various hardening checks is complete, a confirma-
tion email is sent to the user. Figure 15 shows an example email after perform-
ing hardening on HardeningApp.

Depending on the user or the device, it may be necessary to change the ssh
account. To do this, the user clicks on the edit SSH account button and is then
redirected to the edit account page shown in Figure 16.

4.2.3. Verification Interface
From the home page or from any other page, the user click on the verification
button and he is directed to the verification page illustrated by the Figure 17 and
Figure 18.

1) This part of the verification page is identical with the exception of the Ex-
ecute button the hardening in this case is Exexcute the verification.

2) This page section consists of:
• The loading bar that indicates execution percentage of the verification com-

mands in a scalable manner;

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 126 Journal of Computer and Communications

Figure 13. Hardening interface 1.

Legend: This part represents the form to be entered to carry out the hardening on an equipment. It consists: IP address

fields: the user can enter one or more IP addresses of equipment of the same type; From the equipment type field: the user chooses
between the different types of equipment (Red Hat Server, Windows Server, Router and Switch); From the procedure field: the
user chooses the procedures to be carried out among the different procedures corresponding to his type of equipment; From the
email field: the user enters his email address; Execute hardening button: it allows to start the hardening process on the equipment
whose IP address has been entered; Clear All button to clear all previously filled in fields; This part of the hardening page
features: The loading bar that shows in a scalable way the percentage of execution of the hardening commands; The total indica-
tions of orders and number of orders carried out which respectively represent the total number of orders to be executed and the
number of orders which have actually been carried out; The OK button to stop the hardening process and possibly start another
one.

Figure 14. Hardening interface 2.

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 127 Journal of Computer and Communications

Figure 15. Example of email sent after performing a hardening.

Figure 16. SSH account edit interface.

• The total indications of commands, the number of commands run and the

number of non-conformities which respectively represent the total numebr
of commands to be executed, The number of command that has been run
and the number of commands that has not been executed with respect to the
procedure;

• The Go button at the non-conformities gives access to the page for correcting
the non-conformities.

Once the execution of the verification process for the hardening is finished, A

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 128 Journal of Computer and Communications

Figure 17. Verification interface 1.

Figure 18. Verification interface 2.

confirmation mail is send containing a verification report. Figure 19 represent
an example of mail after the realization of the hardening verification on Harde-
ningApp.

On the following Figure 20 we have an example of verification report:

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 129 Journal of Computer and Communications

Figure 19. Example of mail sends once verification is finished.

Legend: Shows the verification report heading which is a file in the CSV format. It is made up of: The IP address of the device on
which the verification has been done; Implemented control codes; Procedures belonging to controls; Expression of some imple-
mented controls; The status K.O or O.K with the condition that the control commands are well executed or not; Comments to be
filled by ITN Security teams.

Figure 20. Example of verification report.

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 130 Journal of Computer and Communications

4.2.4. Terminal of the Server
Once the execution process of hardening and of verification are run, respectively
the execution of hardening commands and verification commands begins at the
same time at the server level. Figure 21 and Figure 22 show us the commands
that run there during hardening and hardening verification, respectively.

4.2.5. Correction of Non-Conformities Interface
Once the execution of the hardening verification process has been completed,
the user has the possibility of executing once again the commands which during
the realization of the hardening have not been executed correctly. To do this, the

Figure 21. Terminal of a server when running hardening.

Figure 22. Terminal when running verification.

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 131 Journal of Computer and Communications

user clicks on the Go to non-conformities button. The page it is redirected to is
as shown in Figure 23.

4.2.6. Control Interface
On this page, the user has access to all the controls registered in the application
as shown in Figure 24.

To add several controls at the same time as shown in Figure 25 and Figure
26, the user must click on the button and upload a CSV file containing all the
parameters of the controls to be added the following figures illustrate the process
of adding several controls.

Once the controls have been added, they can be found in the list of controls
present in the application.

4.2.7. Log Interface
Once the user clicks on the log button on the menu, he is redirected to the page
shown in Figure 27.

Legend: This part represents the form to be entered to execute the commands for non-compliant controls on one or more

equipment. It consists: -IP address fields: it includes the IP address(es) filled in during the verification already filled in; -From the
type of equipment field: it includes the type of equipment chosen during the verification already filled in; -From the commands
field: it contains all the commands of the non-compliant controls; -The Execute button: it allows you to start the process of ex-

ecuting commands on the equipment whose IP addresses are entered; -Clear all button to clear all previously filled in fields;

Consist of: -The loading bar that shows in a scalable way the percentage of execution of the hardening commands; -The total in-
dications of orders and number of orders carried out which respectively represent the total number of orders to be executed and
the number of orders which have actually been carried out; -The OK button to stop the hardening process and possibly start
another one.

Figure 23. Non conformity correction interface.

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 132 Journal of Computer and Communications

Legend: On this tab, the user can search controls based on code, equipment type, procedure and default setting. It is also

possible to add one control or several at a time. This part is made up of the list that groups together all the controls and

their parameters.

Figure 24. HardeningApp control interface.

Figure 25. Interface for adding multiple controls.

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 133 Journal of Computer and Communications

Figure 26. AV2106 control in the list of controls.

Legend: On this tab, user can search logs based on date, IP address, procedure and user. This part consists of the

list which includes all the logs and their parameters, namely the date of the operation, the user who carried it out, the IP address of
the equipment on which it is carried out, the procedures used, the type of routine (hardening, verification and addi-
tion/removal/modification of a control), the type of equipment and possibly a verification report that the user can download.

Figure 27. HardeningApp Log Interface.

4.2.8. Checking Configuration Files
Once the hardening configurations had been executed and verified, we executed
a script on the test server which returned the configuration files that we
browsed.

Figure 28 proves that the “Make sure address space randomization (ASLR) is
enabled” check is applied because the kernel.randomize_va_space parameter is
set to 2.

Figure 29 shows us that the control:
• “Ensure password expiration is 90 days” is enforced because PASS_MAX_

DAYS is set to 90;
• “Make sure the minimum number of days between password changes is

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 134 Journal of Computer and Communications

Figure 28. Address Space Randomization Value (ASLR).

Figure 29. Value of parameters related to passwords.

configured” is not correctly applied because the PASS_MIN_DAYS parame-
ter is set to 0 instead of 1.

• “Make sure the minimum length of a password is 8” is not correctly enforced
because the PASS_MIN_LEN parameter is set to 5 instead of 8.

• “Ensure password expiration warning days are 7” is applied because the
PASS_WARN_AGE parameter is set to 7.

Figure 30 shows us that the “Make sure the warning message is configured”
check is executed correctly because the message in the warning banner is cor-
rectly configured.

Figure 31 shows us that the “Make sure SELinux mode is enforced” check is
executed because the SELinux is in “enforcing” mode.

5. Conclusion

The main objective of the work that we had to carry out was to strengthen the
security of information systems by automating hardening mechanisms. We
started by presenting the basic notions relating to hardening, then a methodo-
logical approach was adopted for the realization of this work by using automat-
ing the mechanisms of hardening of IS by a Web application. Through this, we

https://doi.org/10.4236/jcc.2023.115009

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 135 Journal of Computer and Communications

Figure 30. Warning message in ssh banner.

Figure 31. SELinux status.

were able to achieve the objectives defined at the start by making the choices of
development tools, the hardening standards appropriate to our context, but also
by setting up the architectures and design diagrams essential to the realization of
our tool.

Thus, our application called HardeningApp was born with the following fea-
tures:
• Automatic hardening of servers and network equipment;
• Verification of hardening configurations;
• Updating hardening procedures through adding, removing and modifying

controls.
It appears that the work carried out gives satisfactory results, thus allowing

any administrator of information systems to save time and efficiency in the
management of hardening. All these functionalities are exposed in the f.
• Beyond hardening, build functionality that would provide access to server

terminals and physical network equipment to perform various routines;
• Improve the accuracy of audit reports.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] (2022) Durcissement des systèmes: Introduction.

https://social.technet.microsoft.com/wiki/contents/articles/25992.durcissement-des-
systemes-introduction-fr-fr.aspx

[2] (2022) Best Hardening Tools.
https://www.calcomsoftware.com/best-hardening-tools/

[3] Guide Complet du Durcissement des Systèmes en 2022 (2022).

https://doi.org/10.4236/jcc.2023.115009
https://social.technet.microsoft.com/wiki/contents/articles/25992.durcissement-des-systemes-introduction-fr-fr.aspx
https://social.technet.microsoft.com/wiki/contents/articles/25992.durcissement-des-systemes-introduction-fr-fr.aspx
https://www.calcomsoftware.com/best-hardening-tools/

P. D. B. Kenfack et al.

DOI: 10.4236/jcc.2023.115009 136 Journal of Computer and Communications

https://www.ninjaone.com/fr/blog/guide-complet-du-durcissement-des-systemes-e
n-2022/

[4] (2022) Durcissement ou durcissement De quoi s’agit-il, à quoi sert-il et comment
l’appliquer en informatique?
https://www.informatique-mania.com/linformatique/durcissement/

[5] Chef Enterprise Automation Stack (2022).
https://www.chef.io/products/enterprise-automation-stack#:~:text=Chef%20Enterp
rise%20Automation%20Stack%20(EAS,stage%20of%20the%20technology%20lifecy
cle

[6] (2022) What Is the Difference between Paramiko and Netmiko?
https://fr.linuxteaching.com/article/what_is_the_difference_between_paramiko_an
d_netmiko

[7] Leka, G.E.N. (2022) Design and Production of an Automatic Management Tool
for the Hardening of Servers and Network Equipment. End-of-Study Dissertation
with a View to Obtaining the Design Engineer Diploma in Telecommunications
Engineering at ENSPY, UYI.

https://doi.org/10.4236/jcc.2023.115009
https://www.ninjaone.com/fr/blog/guide-complet-du-durcissement-des-systemes-en-2022/
https://www.ninjaone.com/fr/blog/guide-complet-du-durcissement-des-systemes-en-2022/
https://www.informatique-mania.com/linformatique/durcissement/
https://www.chef.io/products/enterprise-automation-stack#:%7E:text=Chef%20Enterprise%20Automation%20Stack%20(EAS,stage%20of%20the%20technology%20lifecycle
https://www.chef.io/products/enterprise-automation-stack#:%7E:text=Chef%20Enterprise%20Automation%20Stack%20(EAS,stage%20of%20the%20technology%20lifecycle
https://www.chef.io/products/enterprise-automation-stack#:%7E:text=Chef%20Enterprise%20Automation%20Stack%20(EAS,stage%20of%20the%20technology%20lifecycle
https://fr.linuxteaching.com/article/what_is_the_difference_between_paramiko_and_netmiko
https://fr.linuxteaching.com/article/what_is_the_difference_between_paramiko_and_netmiko

	Strengthening the Security of Supervised Networks by Automating Hardening Mechanisms
	Abstract
	Keywords
	1. Introduction
	2. State of the Art on Hardening
	2.1. Definition of Hardening
	2.2. Importance of Hardening
	2.3. Types of Hardening
	2.4. How to Harden?
	2.5. Advantages/Disadvantages
	2.6. Hardening Tools
	2.7. Comparaison between Existing Hardening Tools

	3. Materials, Tools and Methods
	3.1. Material
	3.2. Development Tool, Libraries and Programming Languages Used
	3.2.1. Justification of the Choices
	3.2.2. The Development Tools
	3.2.3. Programming Language
	3.2.4. Libraries

	3.3. Method
	3.3.1. Functionalities
	3.3.2. Nonfunctional Analysis
	3.3.3. Flowchart of the Methodological Steps
	3.3.4. Tool Modelization
	3.3.5. Class Diagram

	3.4. Conception Tool
	3.4.1. Challenges
	3.4.2. System Architectures

	4. Results and Comments
	4.1. Structural Architecture of the Application
	4.2. Tool Presentation
	4.2.1. Home Page Interface
	4.2.2. Hardening Interface
	4.2.3. Verification Interface
	4.2.4. Terminal of the Server
	4.2.5. Correction of Non-Conformities Interface
	4.2.6. Control Interface
	4.2.7. Log Interface
	4.2.8. Checking Configuration Files

	5. Conclusion
	Conflicts of Interest
	References

