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Abstract 
Propagation models are the foundation for radio planning in mobile net-
works. They are widely used during feasibility studies and initial network 
deployment, or during network extensions, particularly in new cities. They 
can be used to calculate the power of the signal received by a mobile terminal, 
evaluate the coverage radius, and calculate the number of cells required to 
cover a given area. This paper takes into account the standard k factors model 
and then uses the differential evolution algorithm to set up a propagation 
model adapted to the physical environment of the Cameroonian cities of 
Bertoua. Drive tests were made on the LTE TDD network in the city of Ber-
toua. Differential evolution algorithm is used as the optimization algorithm to 
deduct a propagation model which fits the environment of the considered 
town. The calculation of the root mean square error between the actual data 
from the drive tests and the prediction data from the implemented model al-
lows the validation of the obtained results. A comparative study made be-
tween the RMSE value obtained by the new model and those obtained by the 
Okumura Hata and free space models, allowed us to conclude that the new 
model obtained is better and more representative of our local environment 
than the Okumura Hata currently used. The implementation shows that Dif-
ferential evolution can perform well and solve this kind of optimization 
problem; the newly obtained models can be used for radio planning in the 
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1. Introduction 

In population-based optimization, many researchers have developed and pro-
posed numerous algorithms with inspiration from nature for solving various op-
timization problems. Genetic Algorithm (GA) cited as an example and proposed 
by authors in [1] and [2] are widely used, Fogel in [3] has presented more details 
about evolutionary computation, Goldberg in [4] has proposed and developed in 
1989 the usage of GA for optimization and machine learning, while author Mit-
chell in [5] has presented and introduction with more details on genetic algo-
rithm. In the same way like GA, Particle Swarm Optimization (PSO) was pro-
posed by Kennedy and Eberhart in [6] and [7], in [8], the same authors have 
presented the point related to the explosion, stability and convergence in mul-
ti-dimensional complex space of PSO. Authors in [9] have presented a proposal 
for “Dynamic Diversity Enhancement in Particle Swarm Optimization algorithm 
for preventing from premature convergence”, with the objective of improving 
PSO initial implementation parameters. Same as PSO and GA, Artificial Bee 
Colony (ABC) was proposed by authors in [10] and [11], and in [12] the same 
authors have presented the On the performance of artificial bee colony, while 
authors in [13] proposed “a comparative study of artificial bee colony algo-
rithm”, W. Gu, M. Yin and C. Wang in [14] proposed a Self adaptive artificial 
bee colony for global numerical optimization with the aim of improving the ap-
plication field of ABC. All these algorithms are widely used and some variants of 
these algorithms are being developed and proposed by authors. A new phys-
ics-inspired metaheuristic optimization algorithm based on the motion of ions 
in nature called Ion Motion Optimization (IMO) was published in 2015 [15] and 
is gradually tested and used for many kinds of optimization problems. These al-
gorithms have advantages and disadvantages compared to each other and may 
show different performances when solving discrete and continuous problems. 

As DE is a newly developed algorithm proposed by Storn and Price in [16] 
and [17], through this work we test and evaluate its capability to solve propaga-
tion model optimization problem which aims to build an appropriated propaga-
tion model related to a specific of environment for network planning and dep-
loyment. The objective of this study is to integrate the use of the DE algorithm in 
the resolution of a real problem in the field of telecommunications, which is op-
timizing propagation models. Based on the hypothesis that the standard propa-
gation models currently implemented in Cameroon have been developed in oth-
er countries and therefore do not accurately reflect the characteristics of the  
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physical environment of Cameroonian cities; DE, a new population-based al-
gorithm would be appropriated to optimize the Okumura Hata propagation 
model for different types of deployment like mobile network, digital television, 
NB-IoT for smart metering solution like the one propose by authors in [18]. 

This work is not the first to focus on the optimization of propagation models. 
Indeed, several people from various backgrounds have already addressed the is-
sue, each tackling a specific aspect of the problem or part of the network. For 
example, Deussom Eric and Tonye Emmanuel [19] worked on “New Propaga-
tion Model Optimization Approach based on Particles Swarm Optimization Al-
gorithm”; Deussom Eric and Tonye Emmanuel [20] worked on “Propagation 
model optimization based on Artificial Bee Colony algorithm: Application to 
Yaoundé town, Cameroon; Deussom eric et al. has used Social Spider Algorithm 
in [21] for Propagation Model Optimization. Deussom Eric and Tonye Emma-
nuel have also proposed other methods for propagation model optimization in 
[22], in [23] the same authors proposed a solution for propagation model opti-
mization based on GA; in [24] the same authors used Newton second order al-
gorithm to optimize propagation model and linear regression in [25]. 

In this study, we will in the first part evaluate and validate the performance of 
the DE algorithm in solving complex problems through drive test data collected 
in the LTE TDD network in 380 - 400 MHZ band of the city of Bertoua and we 
will apply it in the optimization of the Okumura Hata propagation model. 
Through this research work we expand the usage field of DE algorithm by prov-
ing that same as other algorithm, it can optimize propagation model. This article 
will be articulated as follow: in Section 2, the experimental details will be pre-
sented, followed by a description of the methodology adopted in Section 3. The 
results of the implementation of the algorithm, the validation of the results and 
comments will be provided in Section 4 and finally a conclusion will be pre-
sented. 

2. Experimental Details 
2.1. Propagation Environment 

The city of Bertoua (regional capital of east region with a different type of urba-
nization compare to Yaoundé town), is located at a latitude of 4˚34'30" north, 
longitude of 13˚41'04" east, the altitude is 717 m and is the town on which the 
present study is based. We relied on the existing LTE TDD network to make ra-
dio measurements. We selected 3 areas where we consider 03 BTS namely Ber-
toua Lycee, Bertoua central and Bertoua CRTV (Figure 1). 

2.2. Equipment Description 
2.2.1. Simplified Description of eNodeB Used 
In Bertoua town for the considered network, the enodeB used for drive tests is 
provided by Huawei, DBS3900 LTE TDD working in the frequency band of 380 - 
400 MHz. Table 1 presents the radio parameters used on this eLTE network. 

https://doi.org/10.4236/jcc.2023.115005


E. M. Deussom Djomadji et al. 
 

 

DOI: 10.4236/jcc.2023.115005 55 Journal of Computer and Communications 
 

 
Figure 1. Position of the 3 BTS in the town of Bertoua in Cameroon, East region. 

 
Table 1. eNodeB Radio parameters. 

BTS name Sector ID PCI Antennas height Azimuth Tilt 

Bertoua CRTV 0 189 30 25 3 

Bertoua CRTV 1 191 30 143 6 

Bertoua CRTV 2 190 30 240 0 

Bertoua Central 0 184 25 344 6 

Bertoua Central 1 183 25 120 3 

Bertoua Central 2 182 25 240 3 

Bertoua Lycée 0 188 20 300 6 

Bertoua Lycée 1 186 20 80 2 

Bertoua Lycée 2 187 20 195 6 

2.2.2. Other Equipment Parameters 
To perform the drive tests. We used a Toyota pickup vehicle, an HP laptop, 
drive test software namely HUGELAND from the Chinese company Beijing 
Hugeland Technologies Co, a Huawei LTE TDD mobile terminal, a GPS termin-
al, a DC/AC converter to power the PC during the measurement. For the Ber-
toua town, which is a regional capital for east region in Cameroon, we have the 
drive tests done in 3 areas presented in Figures 2-4. Table 2 presents the statis-
tics of RSRP after the drive tests carried in Bertoua. 

3. Methodology 
3.1. Propagation Model 

Many propagation models exist in scientific literature, we present only the 
Okumura-Hata, free space and K factors models on which we relied for this 
work. The distance d is expressed in km and the frequency f in MHz. 

3.1.1. Propagation Model K Factors 
1) Description 
There are many propagation models presented in scientific literature, but this 
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modeling is based on K factor propagation model. The General form of the K 
factors model is given by the following equation. 

 

 
Figure 2. Drive test result of Bertoua CRTV. 

 

 
Figure 3. Drive test result of Bertoua Central. 

 

 
Figure 4. Drive test result of Bertoua Lycée. 
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Table 2. RSRP statistics from drive tests results per BTS site. 

BTS Average Maximum Minimum Standard Deviation 

Bertoua Central −98.96 −45.95 −126.00 14.65 

Bertoua CRTV −98.96 −45.95 −126.00 14.65 

Bertoua Lycée −86.88 −44.38 −129.00 14.83 
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K1 constant related to the frequency, K2 constant of attenuation of the distance 
or propagation exponent, K3 and K4 are correction factors of mobile phone 
height; K5 and K6 are correction factors of BTS height, K7 is the diffraction fac-
tor, and Kclutter the correction factor due to clutter type. The K parameter values 
vary according to the type of the landscape and the characteristics of the propa-
gation of the city environment; 

Equation (1) could also be written in the factorized form (Equation (2)) as 
proposed by authors in [26] and [27]. 
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Then propagation model in the form of K factors can be written as 

L K M= ×                           (5) 

This expression will be considered as the factorized form of the propagation 
model. 

3.1.2. Okumura Hata and Free Space Models 
The Okumura-Hata and free space models are special cases of the K factors 
model. The Okumura-Hata propagation model [28] [29] is written by: 

( ) ( ) ( ) ( )69.55 26.16log 13.82log 44.9 6.55log logdB c b bL f h h d E = + − + − −   (6) 

With ( )( )2
3.2 log 11.75 4.97mE h= −  in fact for 1.5 mmh = ,  
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49.19 10 0E −= × ≈  
The free space model on its own is given by the following expression: 

( ) ( )32.45 20log 20logcL f r= + +                  (7) 

The K values for these two models are as follows in Table 3. 

3.2. Propagation Model Optimization Using DE 

DE was proposed almost in the same time as PSO by Storn and Price (1995) for 
global optimization over continuous search space. Its theoretical framework is 
simple and requires a relatively few control variables but performs well in con-
vergence. In DE algorithm, a solution is represented by a D-dimensional vector. 
DE starts with a randomly generated initial population of size N of D-dimen- 
sional vectors. In DE, the values in the D-dimensional space are commonly 
represented as real numbers. Again, the concept of solution representation is 
applied in DE in the same way as it is applied in GA and PSO. The key difference 
of DE from GA or PSO is in a new mechanism for generating new solutions. DE 
generates a new solution by combining several solutions with the candidate so-
lution. The population of solutions in DE evolves through repeated cycles of 
three main DE operators: mutation, crossover, and selection. However, the op-
erators are not all exactly the same as those with the same names in GA. 

3.2.1. The Phases of the Differential Evolution Algorithm 
1) Initialization of the population 
The first phase of DE is the initialization of the population. We can see this 

phase as the beginning of the universe (of the algorithm) with the appearance of 
the first species. Here, our species are the set of potential solutions to the prob-
lem we are trying to solve. The idea is to find the best one. With the DE algo-
rithm, any group of solutions of the same generation is called population. And 
the population generated during the initialization phase is called initial popula-
tion. It is generated randomly. A generation is nothing but an iteration of the 
algorithm. It is important to define the data structure used with the DE algo-
rithm. This data structure is called Chromosome. A chromosome is nothing 
more than a collection of genes. The genes are descriptive elements of each solu-
tion in the population. 

2) Evaluation 
Once our initial population is generated, the second phase of the algorithm is 

evaluation. It is in this phase that we will determine the quality of each solution 
(chromosome). To do so, we will have to define a function to estimate this qual-
ity called “fitness function”. This function must take a solution (chromosome) as  

 
Table 3. K values for the Okumura-Hata model and free space. 

Model K1 K2 K3 K4 K5 K6 

Okumura Hata 69.55 + 26.16log(f)−E 44.9 0 0 13.82 −6.55 

Free space 32.45 + 20log(f) 20 0 0 0 0 
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input and determine at which point it is optimal. This function is always defined 
by the creator of the algorithm and depends strongly on the problem studied. 
Then, this fitness/aptitude function is applied on all the chromosomes of the 
population and for each chromosome we record the value returned. This value is 
called score. The evaluation phase actually consists in comparing each chromo-
some score with the threshold convergence value defined beforehand. 

3) Mutation 
In the mutation stage, in order to create new individuals, individuals are mod-

ified by introducing more genetic material into the population. The role of mu-
tation is to add diversity and avoid being trapped in local optima. In the case of 
DE, a new individual is created by adding a scaled differential term to a base 
vector (individual). This mechanism, also called “differentiation”, is the main 
feature separating DE from other evolutionary algorithms: 

iW Fα β= + ×  with:                      (8) 

• iW ; i-th element of the mutated population; 
• α; the base vector; 
• k pX Xβ = − ; the differential term 
• F is the scaling factor. 

The differential term is defined as the difference of two distinct vectors, cho-
sen randomly, the base vector is also chosen randomly, and in order to achieve 
good convergence speed and probability, Price and Storn in [17] published 
(2005) state that all vectors used in the mutation step must be distinct. 

4) Crossover 
In this step, a population diversity improvement operation is applied. Using 

two populations (current and mutated), a new test population is created. Gener-
ally, two crossover variants are used in the DE algorithm: binomial [Equation 
(9)] and exponential. 

( ),
,

,

; if 0,1

otherwise
i j r

i j
i j

W rand C
U

X

 <= 
  

• ,i jU ; trial vector; 
• ,i jW ; mutant vector; 
• ,i jX ; i-th element of the actual population. 

A control parameter (Cr) is used to control which components of each indi-
vidual are copied and how many components of each individual are copied. It 
can take values in the range [0, 1], its optimal value being influenced by the type 
of problem and the type of crossover [30]. 

5) Selection and stopping criteria 
In the final step of the algorithm, a mechanism for selecting the individuals 

forming the next generation is used. The classical version of DE uses a one-to- 
one competition, with the trial and the current individuals being compared ac-
cording to their objective values. Those with the lowest value (when considering 
a minimization problem) are selected to form the next generation. 
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Figure 5. Flowchart of DE implementation. 

3.2.2. Using of DE for Okumura-Hata Model Optimization 
Figure 5 presents the flowchart of DE implementation. 

1) Generation of the initial population 
The search space is between the standard Okumura-Hata model and the free 

space propagation model which characterizes a propagation without obstacle. 
Now let us see how to generate the initial population. 

The starting population that is generated is made up of different spiders jK  
randomly generated, meeting certain criteria of integrity on the values of the 
different j

iK  for i = 1:6. Let F be the population. Then  

1 2 3 4 5 6 1:
j j j j j j

j N
F K K K K K K

=
  = ; Where N is the population size. The popula-

tion is generated as follows: 
Begin 

K1el = 32.4 + 20 × log10(Fc); 
K1ok = 69.55 + 26.16 × log10(Fc); 

for i = 1: N 
K1 = K1el + (K1ok − K1el) × rand (1); 
K3 = −2.49 + 2.49 × rand (1); 
K4 = rand (1); 
K5 = −13.82 + 13.82 × rand (1); 
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K6 = −6.55 × rand (1); 
K2 = 20 − (K6 × log10(Hb)) + ((36.8 - 20) × rand (1)); 
P (i,:) = [K1 K2 K3 K4 K5 K6]; 

End for 
End; 

This pseudo code is very important because it defines integrity constraints for 
each of the parameters K1, K2, K3, K4, K5 and K6. In this code, K1ok represents 
the parameter K1 in the Okumura-Hata model; K1el represents the parameter 
K1 in the free space model. P is the matrix representing the population generat-
ed and the size of the population corresponds to the number of distances meas-
ured. The initial population generated is an N × 6 matrix that is N rows and 6 
columns. Then value of N corresponds to the number of distances measured and 
the value 6 represents the 6 parameters of the vector K = [K1 K2 K3 K4 K5 K6]. 

2) Distances and pathloss calculation 
Table 4 presents the filtering criteria apply to driv tests data before running 

the proposed algorithm. 
However, it is important to remember that the value of the measured losses 

(LM) is not obtained explicitly from the radio measurements. It is obtained 
through the calculation of the link budget. The total power of an eNodeB is 
equally distributed over all available block resources, NRB = 5 × B, with B the 
available spectrum width in MHz. If the total power of eNodeB is PeNodeB in W, 
the power per subcarrier will be: 

( )
eNodeB

sub-carrier w
sub-carrier

P
P

N
=                       (9) 

With ( )sub-carrier w 12RBN N= ∗ . 
Each RB consists of 12 LTE sub-carriers. It is the power per subcarrier that is 

used in the link budget calculation. 

( )
( )
sub-carrier eNodeB MS

FadingPenetration Loss
M

I r

L P G G

Lf M M P

= + +

− + + + −∑
        (10) 

With: penetration, 

sub-carrierP  is the sub-carrier power in dBm; 
GeNodeB, GMS—the gains of the base station and mobile station in dBi; 

Lf∑ —the sum of other losses; Mi is the interference margin. 

3.2.3. Evaluation of the Model 
1) Evaluation function 
Here, we have to minimize the Euclidean distance between the measured  

 
Table 4. Filtering criteria [2]. 

Criterion Distance (m) Power (dBm) 

Minimum 100 −110 

Maximum 10,000 −40 
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values of the propagation loss and those predicted by the propagation model. Let 
{ } 1:j j N

L L
=

=  the set of measured values; where N represents the total number 
of measurement points of L. jK  is a possible solution vector to our optimiza-
tion problem and iM  the column vector defined by equation. The evaluation 
function of the particles jK  will be: 

( )( )2

cost 1

1min j
ii

N
if L K M

N =

 = − × 
 

∑               (11) 

2) Acceptation criterion for an optimized propagation model 
RMSE is a quadratic scoring rule that measures the average magnitude of the 

error. An optimized propagation model is accurate if the square root of the 
mean square error between the actual and prediction measurements is less than 
8 dB. 

( )( )2

1

1RMSE i
N j

ii L K M
N =

= − ×∑                (12) 

4. Results 

The parameters set for the implementation of DE on the data obtained in the 
city of Bertoua, are the following: 
• N = 60, the number of chromosomes in the population at each generation; 
• T = 50, the maximum number of iterations; 
• Tc = 0.7, the probability of crossing; 
• F = 0.6, the scaling factor. 

The model will be considered accurate if the RMSE between the measurement 
campaign data and the predicted data is less than 8 dB (RMSE < 8d B). We ob-
tained different results for each target area. These results are represented by 
curves with the following legend: 
 The black graph represents the path losses measured in the field; 
 The red graph represents the losses obtained from the model optimized by 

DE; 
 The green graph represents the losses obtained from the model optimized by 

linear regression; 
 The blue graph represents the losses obtained from the Okumura-Hata mod-

el; 
 The yellow graph represents the losses obtained from the free space model. 

1) Results in Bertoua CRTV 
Figure 6 shows the output of the three reference models including the actual 

measurements. The Okumura-Hata, free space and the new model are compared 
with the measured data. It is clearly seen that the new model is more accurate 
than the other models. Moreover, we note a complete and perfect superposition 
with the model obtained by the linear regression. This demonstrates the reliabil-
ity of this new model. 

Table 5 below shows a comparison of the RMSE value for each of the models 
considered. 
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Figure 6. Actual Bertoua CRTV vs predicted measurements. 

 
Table 5. Comparison of RMSE for Bertoua CRTV. 

Area Results K1 K2 K3 K4 K5 K6 RMSE 

Bertoua 
CRTV 

DE 122.43 41.89 0 −4.25 −13.82 −6.55 6.2647 

RL 125.42 41.89 −2.49 0 −13.82 −6.55 6.2647 

Okumura-Hata 137.00 44.90 0 0 −13.82 −6.55 17.2081 

Free-space 83.99 44.90 0 0 0 0 21.4445 

 
We note that the RMSE < 8 dB for the new DE-optimized model, in contrast 

to the RMSEs obtained with the Okumura-Hata and free-space models which 
are well above 8 dB. This confirms the accuracy of the new model and demon-
strates that our optimization was well done. Figure 7 below shows the evolution 
of the RMSE per iteration. After 20 iterations, we notice the convergence of the 
algorithm. 

2) Results in Bertoua Central 
Figure 8 presents the results for the case of Bertoua Central and Table 6 

shows the different value of K parameters obtained and the value of the RMSE. 
Figure 9 below shows the evolution of the RMSE by iteration. After 16 itera-

tions, we notice the convergence of the algorithm. 
3) Results in Bertoua Lycée 
Table 7 presents the k values obtained and the RMSE for each propagation 

model. 
Figure 10 presents the results obtained in Bertoua lycée area, while Figure 11 

shows the evolution of the RMSE by iteration. After 17 iterations, we notice the 
convergence of the algorithm. 

4) Summary of results 
In the 3 area above, the RMSE obtained by the new model built using the  

https://doi.org/10.4236/jcc.2023.115005


E. M. Deussom Djomadji et al. 
 

 

DOI: 10.4236/jcc.2023.115005 64 Journal of Computer and Communications 
 

 
Figure 7. Evolution of RMSE by iteration. 

 

 
Figure 8. Actual Bertoua Central vs predicted measurements. 

 
Table 6. Comparison of RMSE for Bertoua Central. 

Area Results K1 K2 K3 K4 K5 K6 RMSE 

Bertoua 
central 

DE 120.44 38.73 1.6368 2.04 −13.82 −6.55 7.1049 

RL 126.99 38.73 −2.49 0 −13.82 −6.55 7.1049 

Okumura-Hata 137.0 44.9 0 0 −13.82 −6.55 15.8720 

Free-space 83.99 44.9 0 0 0 0 20.7063 
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Figure 9. Evolution of RMSE per iteration. 

 

 
Figure 10. Actual Bertoua Lycée vs predicted measurements. 

 
Table 7. Comparaison des RMSE pour Bertoua Lycée 

Area Results K1 K2 K3 K4 K5 K6 RMSE 

Bertoua 
Lycée 

DE 125.56 41.51 −0.07 −6.98 −13.82 −6.55 7.6717 

RL 127.95 41.51 −2.49 0 −13.82 −6.55 7.6717 

Okumura Hata 137.00 44.90 0 0 −13.82 −6.55 15.3309 

Freespace 83.99 44.90 0 0 0 0 22.9364 
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Figure 11. Evolution of RMSE per iteration. 

 
Table 8. Final chromosome selected as new propagation model. 

 Method K1 K2 K3 K4 K5 K6 

Solution Differential Evolution 122.81 40.71 0.53 −3.06 −13.82 −6.55 

 
Differential Evolution algorithm is always less than 8 dB compare to the one 

of Okumura Hata and free space where the RMSE values are greater than 15 dB, 
this shows that the proposed model is more accurate compare to the standard 
model of Okumura Hata and free space. The solutions thus obtained for each 
area represent the best chromosomes of the population obtained after 50 genera-
tions (Gmax = 50). Moreover, in the 3 area considered, we obtained a fast con-
vergence of the algorithm after less than 20 iterations, while running the algo-
rithm 50 times, this also shows that DE can have a fast convergence and will 
need less processing time and resources. For the whole city of Bertoua, by re-
taining only the chromosomes having given an RMSE < 8 dB, we can deduce an 
average chromosome (average value of the chromosomes retained by district). 
The final result and the corresponding formula are given in Table 8. 

The final expression of the propagation model that we propose for the city of 
Bertoua is therefore the following: 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

122.8135 40.7096 log 0.5303 3.0606 log

13.82 log 6.55 log log
m m

b b

L d H H

H H d

= + × + × + − ×

+ − × + − × ×
  (19) 

This study also showed that linear regression, although the most used optimi-
zation method by authors around the world; justified by the number of publica-
tions related to it, only allows the optimization of two parameters out of a set of 
six parameters (the other four being assumed constant). However, the new ap-
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proach presented allows, if needed, to optimize up to six parameters. 

5. Conclusion 

At the end of our study, the objective was to show that DE can optimize propa-
gation model used for network planning and that a propagation model adapted 
to a targeted environment can be obtained by combining the standard K factor 
model with 6 coefficients, radio measurements collected in this environment and 
an appropriate processing, in this paper, the processing is based on DE algo-
rithm. The city of Bertoua was chosen as the case study. To do so, we exploited 
the data from Drive Test carried out in 3 districts of downtown Bertoua, then we 
took into account the generic model with 6 coefficients, to which we applied the 
Differential Evolution algorithm. In order to evaluate the new model obtained, 
we compared its RMSE to that of the Okumura-Hata and free space models. The 
results obtained after our optimization in the 3 areas were very satisfactory. With 
the new model, we obtained an RMSE lower than 8 dB in the 3 areas, contrary to 
the Okumura-Hata and free space models whose RMSE were largely above the 8 
dB threshold. These results therefore validated the new model and justified its 
accuracy. The Differential Evolution optimization algorithm thus proved to be a 
powerful algorithm for propagation model optimization. 
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