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Abstract 
The fifth generation (5G) networks will support the rapid emergence of In-
ternet of Things (IoT) devices operating in a heterogeneous network (Het-
Net) system. These 5G-enabled IoT devices will result in a surge in data traffic 
for Mobile Network Operators (MNOs) to handle. At the same time, MNOs are 
preparing for a paradigm shift to decouple the control and forwarding plane 
in a Software-Defined Networking (SDN) architecture. Artificial Intelligence 
powered Self-Organising Networks (AI-SON) can fit into the SDN architec-
ture by providing prediction and recommender systems to minimise costs in 
supporting the MNO’s infrastructure. This paper presents a review report on 
AI-SON frameworks in 5G and SDN. The review considers the dynamic dep-
loyment and functions of the AI-SON frameworks, especially for SDN sup-
port and applications. Each module in the frameworks was discussed to as-
certain its relevance based on the context of AI-SON and SDN integration. 
After examining each framework, the identified gaps are summarised as open 
issues for future works. 
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1. Introduction 

The fifth-generation (5G) wireless network is a significant evolution of 4G LTE 
networks. 5G is designed to support considerable growth in data and connectiv-
ity in a demanding networked society. There will be more than 50 billion linked 
devices by 2023, according to predictions [1], and 5G network traffic will amount 
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to tens of Exabytes (10006 Bytes) each month. With this traffic, 5G networks are 
estimated to deliver 1000 times the capacity of current cellular systems [2]. 5G 
network realisation will support the massive increase in Machine to Machine 
(M2M) wireless communication systems [1] and the proliferation of applications 
requiring a lot of bandwidth, such as augmented reality, 3D videos, tactile inter-
net, and virtual reality.  

The Internet of Things (IoT) is a crucial component of the 5G infrastructure. 
IoT-based 5G networks are required to have high data rates, low latency, hete-
rogeneous network existence and efficient spectrum management. To achieve 
these requirements, the integration of Artificial Intelligence (AI) is a necessity in 
the 5G ecosystem in analyzing the big data generated by IoT devices. This will 
help extract patterns and predict actions for the network and end devices to 
learn and improve from experience with minimal human intervention automat-
ically. 

This paper presents a detailed review of suggested traffic intelligence gather-
ing interventions in 5G networks. The article further details the categories of the 
study under Artificial Intelligence and Self-Organising Networks (AI-SON) and 
AI-SON integrated into Software-Defined Networks (SDN). This review com-
prehensively explains the merits of Artificial Intelligence and SDN models in 5G 
and suggests new standards for efficient intelligence gathering. All frameworks 
reviewed were redrawn for clarity. 

2. Artificial Intelligence and SON (AI-SON) 

The dynamic resource allocation in 5G networks demands AI-integrated auto-
mation of network management processes. In this regard, Self-Organising Net-
works (SON) have evolved from traditional manual management processes to ca-
ter for the automation gap [3]. The SON is designed for the Radio Access Network 
(RAN) to have self-planning, configuration, management, optimisation and heal-
ing capabilities [4]. Mobile Network Operators (MNOs) will need to deploy wire-
less communications systems that can handle 1000 times the current traffic vo-
lume, one trillion linked devices, a wide variety of use cases, and enhanced spe-
cific performance needs in the future [5] [6].  

The reviewed literature under this section includes SON models for the effec-
tive integration of AI for Big Data analytics to deal with the increasing traffic 
expected from the 5G-RAN deployment by the MNO. 

2.1. AI-Based Framework for 5G Network Planning and Operation 

Pérez-Romero et al. [7] developed a 5G network design and operation infra-
structure based on AI to support the concept of Self-Organised Networks 
(SONs) in perceiving and analyzing the 5G ecosystem intelligently. As illustrated 
in Figure 1, the framework acts on input data from its environment and processes 
it for appropriate network actions to aid the MNO’s decisions validated through 
decision support systems. 
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Figure 1. AI-based framework for 5G network planning and operation [7]. 

 
Data acquisition and pre-processing is the first step in the Pérez-Romero et al. 

[7] paradigm. MNOs gather complex data from several systems for managing 
customers, networks, billing, inventory, server management, devices for deep 
packet inspection, and databases tailored to specific applications [8]. The data 
gathered are categorised into: 
● Network data defines network behaviour comprising radio-related measures 

taken by base stations and terminals, consumption data at network setups, 
network routes and nodes, network performance indicators, and QoS mea-
surements. 

● User data comprises subscriber profiles accessing the network, demograph-
ics, pricing and strategies, devices, capacities for subscription, and used ap-
plications. 

● Content data, including information linked to the network’s applications. 
● External data includes data derived from non-MNO sources. 
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These data sources are heterogeneous and pre-processed to eliminate noisy 
and inconsistent data. The data cleaning process includes data integration, selec-
tion and transformation for specific mining. 

As part of the Pérez-Romero et al. [7] paradigm, knowledge discovery is used in 
the second stage to infer conclusions from the pre-processed data and create mod-
els that reflect the pertinent knowledge to guide operational and planning decisions. 

The third stage involves knowledge exploitation. This includes a set of rec-
ommendations to be used with the network and the retrieved information for 
prediction. The framework only allows processes for capacity planning and net-
work operation. The network operation processes include operations performed 
on deployed resources to regulate and optimise network behaviour. Capacity 
planning, on the other hand, entails providing the necessary network resources 
to handle traffic demands.  

The last stage involves the network flexibility enablers. SDN and Network 
Functions Virtualisation (NFV) technologies facilitate the AI-based framework. 
The SDN controller will aid the implementation of insight decisions for the MNOs 
to enforce automatic or manual actions. Through NFV, several tenants can share 
network infrastructure, allowing for flexibility in changing network configura-
tion and architecture. 

2.2. A Data-Driven Framework for Personalised QoE 

A data-dependent framework for improved personalised QoE for 5G networks 
was developed by Wang et al. [9] with a two-step QoE modelling technique to 
capture the link between end users and services and the user’s subjectivity to-
ward a particular service. The proposed architecture: 
● Contains a monitor to capture real-time data about user programs and the 

QoS status 
● Has a data mining engine that forecasts user expectations regarding the ap-

plication in use 
● Maintains a suitable QoE by managing the transmission resources based on 

the QoS state and the projected demand. 
As illustrated in Figure 2, the architecture has two parts; the offline and on-

line parts. The offline component is in charge of training and transforming the 
user profile prediction model. The model is per-user per-service. One compo-
nent of this model is the Subjective Data Collector (SDC). As depicted in Figure 
3, the fundamental component of the data collection component is a mobile 
agent placed on end-user devices for QoS monitoring, contextual monitoring, 
and experience monitoring. 
● The QoS monitoring entity collects data on various technical parameters. 

These parameters include information about the device (such as screen size 
and operating system), the network (including access type, jitter, throughput, 
and delay), and the application (such as application type). 

● The contextual monitoring entity is in charge of gathering the application’s 

https://doi.org/10.4236/jcc.2023.114003


D. K. Dake 
 

 

DOI: 10.4236/jcc.2023.114003 37 Journal of Computer and Communications 
 

context information, which includes the device’s location, mobility, and sen-
sor data. 
 

 
Figure 2. A data-driven architecture for personalised QoE [9]. 
 

 
Figure 3. The structure of the mobile agent [9]. 
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● The experience monitoring entity communicates with users by collecting ex-
plicit feedback through questionnaires. 

The data from the SDC is synchronised by the Data Processing and Storing 
Component (DPSC). The DPSC’s primary duty is to pre-process data before stor-
ing it in databases for mining. The model is trained using the Data Mining Com-
ponent (DMC) to understand user preferences. This forms the system’s central 
component. One or more data mining models are constructed and trained using 
the DPSC data. Subsequently, the online component will make use of the trained 
models. 

Wang et al. [9]’s architecture’s online component gathers real-time data about 
users and related services. Predictions are made offline using data mining algo-
rithms that have been trained. The online part has three components: 
● Real-Time Data Collector (RTDC). The RTDC captures current user infor-

mation, the user’s services and the network resources. 
● Preference Prediction Component (PPC). A preference predictor is the PPC’s 

central component. The predictor’s job is to process data from PPC using the 
appropriate data mining model trained offline to forecast a specific user pre-
ference. 

● QoE Management Component (QMC): The QMC receives user preferences 
derived from the PPC. The QMC has a QoE controller and calculator. The 
controller is aware of the objective network’s state and system users’ arbitrary 
preferences. It is possible to carry out QoE optimisation, such as maximising 
overall QoE or enhancing QoE equity for all users. With this design, specific 
QoE user optimisation at QMC is also possible. 

2.3. Knowledge Acquisition Framework for 5G Environment 

Monge et al. [10] proposed an automated analytic approach for inferring know-
ledge in 5G networks to determine network conditions and evaluate potential 
circumstances that could interrupt network operations. The framework uses au-
tomatic metrics discovery, pattern recognition, and prediction approaches de-
signed with the Endsley situational awareness paradigm. As depicted in Figure 
4, the intelligent framework consists of successively pipelined architectural ele-
ments: Discovery, Onboarding of use cases, Notification, Pattern Recognition, 
Predictions, Adaptive Thresholding, and Knowledge Inference. 

The discovery component acquires data, represented as facts, collected by 
network sensors in a 5G architecture through surveillance, data collection, and 
connected operations. These monitored metrics are facts obtained as Aggregated 
Data Bundles (ADBs), summarising acquired observations. The Inference En-
gine acquires new knowledge based on the collected facts stored in the working 
memory, enabling the inference of network status conclusions by applying rules 
set in the Knowledge Base. The Knowledge Base is populated with information 
obtained from use case definitions and acts as procedural knowledge and system 
inference. For inferring new knowledge, the Prediction, Pattern Recognition,  
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Figure 4. Knowledge acquisition framework for 5G environment [10]. 

 
and Adaptive Thresholding components generate new factual knowledge inter-
nally. The Prediction and Adaptive Thresholding components of the Monge et 
al. [10] framework permit a situational awareness projection of the network by 
computing predictive metrics and forecasting intervals to enable pro-action 
reactions over the projected scenarios. 

The component for pattern recognition incorporates several AI concepts, in-
cluding machine learning, data mining, and classification. 

2.4. Supervised and Unsupervised Learning Framework 

Fu et al. [11] proposed an AI framework for 5G wireless networks to manage 
network traffic. The paradigm for traffic engineering in the 5G network is based 
on supervised learning and unsupervised learning perspectives.  

As illustrated in Figure 5, the supervised learning framework trains a model 
using training samples labelled by a knowledge base. In classification and regres-
sion scenarios, training data form a mapping between the inputs and desired 
output labels. The trained model then infers reasonably for new inputs. The un-
supervised learning perspective identifies and comprehends the data structure  
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Figure 5. Supervised and unsupervised learning framework [11]. 

 
for a clustering problem to avoid the difficulty in learning from data labels. The 
unsupervised learning for 5G will facilitate data distribution modelling across 
the 5G networks, congestion and traffic conditions scenarios. This helps in sche-
duling and configuration for adaptive network traffic and topology changes in 
5G. 

2.5. A Machine Learning Framework for Resource Allocation 

A machine-learning approach for resource allocation using cloud computing 
was proposed by Wang et al. [12]. As shown in Figure 6, the framework has a  
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Figure 6. A machine learning framework for resource allocation [12]. 

 
cloud component for storing historical data based on scenarios. The historical 
data collected has a lot of attributes, and filtering is relevant to specific resource 
allocation. 

Since learning from a massive amount of raw data with several attributes re-
quires a lot of memory and processing resources, feature selection is essential to 
exclude irrelevant attributes. This forms part of the pre-processing of this frame-
work, with an estimated 70% - 90% of training set data. A supervised learning 
algorithm is applied on the training set to uncover hidden similarities in histori-
cal data. Then, a predictive model is built to determine resource allocation for 
future unforeseen events. One class is created from all training feature vectors 
with the same solution, and each class has its inner solution. The resource allo-
cation framework is changed into a multi-class classification problem. Two pro-
cedures are used to construct a predictive model. The first is to forecast the class 
for hypothetical future situations, and the second is to analyze test set data to 
assess the prediction model. 

Using the backhaul lines, the Base Station (BS) receives the constructed pre-
dictive model and the related solutions for all classes. At the BS, new feature 
vectors formed will serve as inputs into the predictive model used to allocate the 
radio resources. The feature vector will be gathered and temporarily stored at BS 
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before being forwarded to the cloud to update the dataset 

2.6. BDD Network Optimisation Framework 

As illustrated in Figure 7, Zheng et al. [13] proposed a Big Data-Driven (BDD) 
paradigm for network optimisation in 5G that encompasses Big Data gathering, 
storage management, data analytics, and network optimisation. Big Data sources 
from the framework include User Equipment (UEs), Radio Access Networks 
(RAN), Core Networks (CN), and Internet Service Providers (ISPs). MNOs un-
der the proposed framework require a scalable huge storage infrastructure to 
administer acquired multi-source, heterogeneous, real-time and massive data.  

Zheng et al. [13] BDD framework has a Big Data analytics module that moni-
tors and analyses real-time data across users, mobile networks and service pro-
viders. Resource allocation can be used in conjunction with MNO Analytics dep-
loyment to forecast where and how users will utilise the mobile network, which 
could lead to potential traffic congestion at specific places. The operators can 
devote extra resources to addressing the peak traffic and preserving user QoE 
with the help of anticipated information from data analytics. 

2.7. SELFNET 

SELFNET [14] uses actuators to prevent potential issues and sensors to keep 
track of specific network information. 

As depicted in Figure 8, the SON Autonomic Layer provides network intelli-
gence. It consists of two sublayers: Monitor and Analyser Sublayer and Autonomic  
 

 
Figure 7. Proposed BDD network optimisation framework [13]. 
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Figure 8. Endsley vs. SELFNET autonomic layer [14]. 

 
Management Sublayer. The Monitor and Analyser Sublayer, which follows the 
Endsley Situational Awareness Principles, comprises Monitoring and Discovery, 
Aggregation and Correlation and Analyser modules. These modules are linked 
to the Perception, Comprehension and Projection functions of Endsley prin-
ciples. The Analyser module infers data from monitored metrics based on the 
knowledge provided by the Monitoring and Aggregation phases of the SON Au-
tonomous Layer. After intelligence is received from the Analyser module, the 
Autonomic Management Sublayer of the SON Autonomic Layer activates Diag-
nosis, Decision Making, and Action Enforcement policies.  

The brain of SELFNET, as depicted in Figure 9, is the Analyser module ar-
chitecture, which is responsible for information collecting and permits proactive 
network infrastructure responses. The SELFNET Analyser consists of eight fun-
damental components. Sets 4, 5, 6, and 8 are associated with reasoning, 1 and 3 
with projection, and 7 with the administration of use cases. 

3. AI-SON Integrated in Software-Defined Network (SDN) 

SDN is an essential and growing network architecture that decouples network 
control from data forwarding by direct programming [15]. By decoupling the 
control plane from the data plane, SDN provides better network programming 
control [16] [17]. There are three distinct levels: 
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Figure 9. Analyzer module architecture [14]. 

 
● Application Layer: Software applications reside in this layer and communi-

cate with the control layer 
● Control Layer [18]: As the SDN’s central hub, the controller receives requests 

from the application layer, maintains a logical perspective of the entire net-
work, and manages network devices using industry-standard protocols. 
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● Data-plane Layer: These infrastructure components can be programmed with 
standardised interfaces in an SDN. 

The researchers in this section proposed the possible integration of AI-SON as 
a component in SDN architecture at the Application, Control or Data-plane 
Layer.  

3.1. SDN-Based Intelligent Model for HetNet 

Sun et al. [19] proposed an SDN-based smart framework for efficiently manag-
ing the heterogeneous network (HetNet) infrastructure and resources. In this 
paradigm, the control plane is independent of the data plane [20], with SDN re-
cognising the network as an operating system to abstract applications from the 
hardware. As depicted in Figure 10, Sun et al. [19] framework has one feature 
with the same infrastructure as 4G LTE, consisting of a core network (CN) and a 
RAN. The system’s CN has three components: the Serving Gateway (S-GW), the 
Mobility Management Entity (MME), and the Packet Data Network (PDN) Ga-
teway (P-GW). 

Pico, Femto, and macrocell BSs form the evolved-universal terrestrial radio 
access network (E-UTRAN), a type of RAN. The framework incorporates SDN 
with a high-level abstract to which underlying network resources are mapped 
automatically with 5G core networks. With Sun et al. [19] architecture, the 
E-UTRAN and the eNBs are virtually implemented and managed centrally by  
 

 
Figure 10. Proposed system model of intelligent SDN [20]. 
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SDN controllers. The SDN controller is deployed physically on centralised serv-
ers to abstract present resource utilisation and intelligently operate network 
parts via APIs. 

3.2. Self-Healing Framework for SDN 

A Self-Healing design, depicted in Figure 11, was presented by Sánchez et al. 
[21] to guarantee the continuous operation of all service nodes. Using network 
observations to execute recovery activities, the Self-Healing framework affects 
the three SDN planes and the service plane. 

SDN [21] 
The proposed framework interacts with the SDN architecture by: 

● End-to-end service reconfiguration  
● Dynamically orchestrating SDN applications in response to faults or chang-

ing conditions 
● Using the SDN controller to reprogramme the data plane  
● Acting directly on the data plane to set configurations while performing ma-

nual installation that the controller cannot accomplish independently. 
When a service fails, the application, control, and data plane symptoms are 

retrieved to look for correlations. 

3.3. Cellular SDN (CSDN) 

Bradai et al. [22] proposed a Cellular SDN (CSDN) architecture that uses SDN 
and NFV for dynamic resource orchestration as illustrated in Figure 12. This 
architecture streamlines network management and control by creating flexible, 
 

 
Figure 11. Self-Healing framework for SDN [21]. 
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Figure 12. CSDN architecture [22]. 

 
open, and programmable new services. The CSDN design incorporates intelli-
gent services, enabling Mobile Service Providers (MSPs) to implement subscrib-
er policy and profile-aware service provisioning. 

The MSP relies on data analytics to make decisions to realize intelligent ser-
vices. A context data repository (CDR) includes network data, user profiles, and 
usage data. In addition, network data such as traffic load, bandwidth availability, 
wireless channel information, and network health data are collected. Together 
with the network data, these constitute the user-centric and network-centric data 
necessary for intelligent resource allocation and provisioning. 

As depicted in Figure 13, the CSDN model is augmented with an extra know-
ledge layer that enables the MSP to obtain insight into the network’s intelligent 
vision and user actions. As illustrated in Figure 14, the Knowledge plane con-
sists of three functional blocks and two interfaces. The data acquisition block 
enables the collection of data from either the network or an application running 
in the CSDN application layer. 

The next step involves data analysis for valuable insights to the network oper-
ator for comprehensive decision. The data organisation and management block 
follow this to facilitate knowledge exploitation. 

3.4. Intelligent IoT-Based 5G Ecosystem 

Javaid et al. [23] presented a firmware-based approach for integrating intelli-
gence into IoT devices. The IoT-based 5G ecosystem depicted in Figure 15 enables 
the application of AI techniques to Big Data for prediction and real-time analy-
sis. They proposed the integration of intelligence at the application level for proac-
tive and real-time decisions during runtime. Introducing AI into the firmware’s 
essential components provides a secure environment for the execution of  
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Figure 13. Detailed CSDN architecture [22]. 

 

 
Figure 14. Knowledge plane of CSDN [22]. 
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Figure 15. IoT-based 5G ecosystem [23]. 

 
applications to make informed judgments. As illustrated in Figure 16, AI is in-
corporated at the firmware level for data structuring and API runtime manage-
ment with a keen understanding. 

This design integrates 5G ecosystem intelligence at the application platform as 
a service (aPaaS), which encompasses operating system and middleware, com-
munication patterns, and network infrastructure coexistence. The intelligent IoT 
with firmware can communicate via IoT switches and the cloud via an IoT ga-
teway.  

3.5. Future Intelligent Network Framework 

Xu et al. [24] proposed a Future Intelligent Network (FINE) framework based on  
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Figure 16. Intelligent IoT-based 5G ecosystem [23]. 

 
SDN and NFV technologies. The framework relies on Deep Packet Inspection 
(DPI) Systems [25] for data collection, including the running state of network 
equipment, resource usage and the quality of services. This serves as Big Data for 
the FINE framework and is shown in Figure 17. The DPI is installed on each 
network component, and the information collected by the DPIs is transmitted to 
the Big Data module of the FINE framework. 

As depicted in Figure 18, the system architecture of the FINE framework 
consists of three planes: the Intelligence Plane, the Agent Plane, and the Business 
Plane. The FINE framework’s basic layer of the Intelligence Plane gets Big Data 
from DPI systems. 

As shown in Figure 19, the Intelligence Plane is responsible for providing in-
telligence for the entire FINE. This plane is composed of the basic layer, the core 
layer, the platform layer, the application and terminal layer and the solution 
layer. The basic layer receives the big data and the network status data of all the 
equipment, applications and services by relying on the network base and com-
puting base. The core layer in FINE provides intelligent algorithms in the intel-
ligent plane. This forms the kernel of the FINE framework. 
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Figure 17. An SDN/NFV with DPI [24]. 
 

 
Figure 18. A system architecture of FINE [24]. 

 
The platform layer provides an intelligent plane for realising the intelligent 

logic of AI ability and behaviour. These include intelligent perception, machine 
mind and intelligent action. This layer helps in identifying and analysing pre-
dicted trends from the core layer. The application and terminal layer provide 
functionalities needed by the solution layer. Such functionalities includes load  
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Figure 19. The Intelligence plane of the FINE framework [24]. 

 
balancing, security and energy saving. These realisations are identified in soft-
ware and hardware. The solution layer is in charge of designing policies and re-
lated activities in managing the network. 

The Agent Plane of the FINE framework serves as communicators amongst 
the different planes by sending intelligent control instructions. The Business 
Plane is in charge of executing services orchestrated by the intelligence plane. 
The Business Plane sends instructions to the Controller of SDN through Agents 
in the Agent Plane. 

3.6. Big Data Analytics and Machine Learning Integrated in SDN  
and NFV 

Le et al. [26] integrated machine learning algorithms at the forwarding layer of 
SDN to effectively cluster and forecast traffic behaviours of cells. The K-mean 
algorithm was used to cluster similar cells with the same traffic behaviour. A 
traffic forecasting model for each cluster using various ML algorithms was pro-
posed to predict future traffic behaviours. As shown in Figure 20, the frame-
work has an intelligent computing environment close to the RAN to support  
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Figure 20. Big data analytics and machine learning ıntegrated in SDN and NFV [26]. 

 
Mobile Edge Computing (MEC). It is used to develop enhanced services such as 
Content Delivery Networks (CDN) and IoT applications.  

The framework operates in building SON by: 
● Collecting and storing mobile traffic and other information from all network 

sources. 
● Using ML algorithms to extract and analyze the collected data to develop op-

timised models. 
● Apply the models to configure the SDN controller and RANs components. 

Based on the model generated by the ML algorithms, the network’s Key Per-
formance Indicator (KPI) is matched with its requirements. If the network 
behavior achieves the expected performance, the new network parameters 
(NPs) will be used. Otherwise, relearn data based on new identified problems. 
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3.7. Artificial Intelligence Integrated Intrusion Detection Systems  
(IDS) for SDN 

Li et al. [27] proposed an intelligent IDS with machine learning algorithms for 
SDN 5G architecture [28]. 5G-enabled IoT devices’ surge in data traffic will lead 
to an uprising of novel attacks on networks. As shown in Figure 21, the archi-
tecture has three layers: Forwarding Layer, Management & Control Layer and 
Data & Intelligence Layer. The traffic monitoring and capturing are controlled 
by the Open Flow Entities (OFs), a component of the Forwarding Layer. The 
OFS, based on the instructions of the Controller, blocks malicious network flows  
 

 
Figure 21. A machine learning IDS for software-defined 5G network [27]. 
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uploaded to the Control Layer. A critical component of this architecture is the 
Data & Intelligence Layer. This intelligence centre makes further analysis and 
judgment of the network using machine learning algorithms. 

The machine learning module of the Intelligent Center comprises Random 
Forest [29], K-means [30] and Adaboost [31] algorithms that enable the centre 
to perform feature selection and traffic classification. The feedback is forwarded 
to the Controller to make informed decisions. The informed decision is a com-
prehensive analysis determining whether the network is under attack. One other 
aspect of this architecture is the Big Data Center. This auxiliary module helps 
keep historical records and knowledge of intrusions to facilitate classifier train-
ing and decision-making. The data is periodically collected and updated.  

A summary of each literature and technique is depicted in Table 1. 
 

Table 1. Summary of AI-SON Techniques in 5G and SDN. 

LITERATURE 5G SDN NFV 
GENERIC AI 
TECHNIQUE 

SPECIFIC AI 
TECHNIQUE 

Pérez-Romero et al. [7] ✓   
● Classification 
● Prediction  

Wang et al. [9] ✓     

Monge et al. [10] ✓   
● Pattern Recognition 
● Prediction  

Fu et al. [11] ✓   
● Prediction 
● Clustering  

Wang et al. [12] ✓   
● Prediction 
● Classification  

Zheng et al. [13] ✓     

SELFNET [14] ✓   
● Pattern Recognition 
● Prediction  

Sun et al. [19] ✓ ✓    
Sánchez et al. [21] ✓ ✓    
Bradai et al. [22] ✓ ✓    
Javaid et al. [23] ✓ ✓    

Xu et al. [24] ✓ ✓ ✓ 

● Artificial Neural 
Network 

● Swarm Intelligence 
● Brain-inspired  

Intelligence 

 

Le et al. [26] ✓ ✓ ✓   

Li et al. [27] ✓ ✓  
● Classification 
● Clustering 

● K-means 
● Adaboost 
● Random Forest 
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4. Open Issues 

The research on intelligence model design in 5G and SDN has created gaps that 
need further analysis for an ideal model to be established. The intelligence de-
sign dynamics, especially in the SDN framework based on the extensive review, 
have exposed the following issues. 

4.1. Feature Selection 

Feature selection is an important concept in Machine Learning that hugely im-
pacts the performance of a model [32] [33]. The best attributes that contribute 
most to a predicted variable’s accuracy are maintained in feature selection. 
When irrelevant features are removed, overfitting [34] [35] [36] and model 
training time [37] [38] are significantly reduced. Most feature selection algo-
rithms [39] [40] [41] handle large dimensionality and a huge number of in-
stances that deals with data without class labels. MNOs have extremely hetero-
geneous data sources that require appropriate feature selection algorithms for 
accurate model design. The classifier built based on the selected features will in-
crease accuracy in network load predictions and customer recommender sys-
tems.  

4.2. Big Data Module 

Big Data refers to a large, diverse collection of data that is huge in volume and 
grows exponentially with time [42] [43]. IoT devices are expected to generate a 
large amount of structured and unstructured data that must be analysed by the 
MNO [44]. Various devices create this heterogeneous data, leading to the four 
V’s phenomenon, Volume, Velocity, Variety and Value of the data [45]. One as-
pect of the AI-SON model for 5G and SDN is the Big Data module, which helps 
in data acquisition, processing, storage and visualisation [46]. The layer in the 
SDN framework to deploy the Big Data module resulting in higher data effi-
ciency and based on feature selection, is of concern. [24] deploys the Big Data 
module at the Application, Control and Infrastructure plane, whiles [22] pro-
posed a knowledge layer on top of the Application layer for Big Data analytics. 
[29] proposed the Big Data module to be implemented at the Infrastructure 
plane. The Big Data module placement in the SDN framework for the highest 
level of data acquisition and linked to the Intelligence module is a research 
problem. 

4.3. Machine Learning Algorithms 

Artificial Intelligence algorithms are broad but generally categorised into Super-
vised Learning [47], Unsupervised Learning [48] and Reinforcement Learning 
[48]. Each machine learning technique achieves unique results based on the so-
lution expected, the attributes and the dataset in building the machine learning 
model [49]. Classification [50] [51] [52] [53] and Regression [54] [55] [56] [57] 
[58] algorithms are suitable for Supervised Learning whiles Clustering [59] [60] 
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[61] [62] algorithms for Unsupervised Learning. Reinforcement learning algo-
rithms [61] [62] are suitable for automation of systems. AI-SON model for 5G 
and SDN requires Machine Learning algorithms that adapt based on the dataset 
and the feature selection algorithm. The self-learning module implemented 
should select the best algorithms based on the accuracy of the predicted va-
riables. There is a link between the attributes identified for transient load predic-
tion from IoT-based devices and the selected algorithms in building a model by 
the MNOs.  

4.4. Intelligence Module with Recommender Systems 

The engine for AI-SON model for 5G and SDN is an intelligence module that 
predicts transient load, tracks patterns occurrence and provides recommender 
systems [63] to IoT-based clients. The intelligence module must provide QoS 
[64] to the MNO based on efficient predictor variables and QoE [64] to the 
IoT-based clients through Recommender Systems. In AI-SON model, building 
the intelligence module on either the client or server is a research issue [9] [13]. 
In AI-SON for SDN, the layer to build the intelligence module is another chal-
lenge [24] [26]. The location of the intelligence module and the big data module 
will affect the accuracy of predictions and the efficiency in resource utilisation by 
the MNOs and IoT-based clients. The design of the knowledge base that serves 
as feedback compared to new intelligence is a research challenge since the know-
ledge base needs some tested machine learning algorithms to determine the best 
knowledge catalogue [65] to compare with the new intelligence.  

5. Conclusions 

Several AI-SON integrated SDN has been reviewed in this study. The fast emer-
gence of 5G networks coupled with a network architecture shift to SDN has ne-
cessitated a research direction in designing AI-SON models to cater to the ex-
ponential data growth. The AI-SON models identified from this review are suit-
able for 5G networks, and some are adapted to the SDN framework. Most of the 
researchers from this review created the Big Data and Intelligence modules in 
their frameworks and acknowledged the importance of A-I algorithms for effi-
cient data analytics. The reviewed literature specific to the SDN framework iden-
tified the creation of the Big Data and Intelligence modules in either the Appli-
cation plane or the Forwarding plane. 

The review shows that most researchers have not proposed specific AI algo-
rithms to test the Big Data gathered from internal or external sources. When 
done, this will help identify suitable machine learning algorithms for their mod-
els based on the data sources and feature selection criteria. In addition, clus-
ter-intelligent recommender systems, when proposed, will help in Pattern Pre-
diction (PP), Quality of Experience (QoE), Quality of Service (QoS) and Service- 
Level Agreement (SLA) analysis for end-users. This personalised user experience 
will gather predictive intelligence for IoT devices based on QoE and SLA. 
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AI-SON integrated SDN is vital in reducing the cost of 5G implementation to 
Mobile Network Operators (MNOs). The expected exponential growth in data 
will require the MNOs to either increase infrastructure or adopt advanced AI in 
network analysis for predictions. 
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