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Abstract 
In proteomics, b and y ions serve as the backbone ions for peptide sequencing 
in tandem mass spectrometry. Leveraging the existing ion recognition and 
separation methods, this article proposes a novel ion classification approach 
that combines machine learning with graph theory. By incorporating graph 
features, the method achieves higher accuracy and efficiency in ion type rec-
ognition, with the graph features playing a critical role in the classification 
process. Specifically, the method achieves a recall rate of nearly 90% for b and 
y ions, demonstrating its effectiveness in pre-processing de novo sequencing 
and improving its accuracy. The proposed method represents advancement in 
ion classification and has the potential to improve the accuracy and efficiency 
of de novo sequencing. 
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1. Introduction 

As biotechnology advances, proteomics has gained increasing attention, and us-
ing computer technology to address proteomics problems is an important direc-
tion of development. The origin of computational proteomics lies in how to ex-
tract useful information from peptide and protein sequences. 

After protein digestion, a mixture of peptides is obtained, which is then sepa-
rated and enters the mass spectrometer. The mass spectrometer measures the 
mass-to-charge ratio of ions using the principle that differently charged ions of 
different masses move differently in an electromagnetic field, forming a mass 
spectrum. The horizontal axis of the mass spectrum represents the mass-to-charge 
ratio of the detected ions, and the vertical axis represents the intensity of the de-
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tected ions. 
The mass spectrometer first detects the charged ions corresponding to the 

peptide segments, forming a spectrum, where each peak corresponds to a pep-
tide. The mass spectrometer then continues to select the peaks with higher in-
tensities in the primary spectrum for fragmentation, breaking the peptide ions 
into charged fragment ions, forming a tandem mass spectrum [1] [2] [3] [4], as 
shown in Figure 1. 

In secondary mass spectrometry, each peak corresponds to a fragment ion. 
Different types of fragment ions are produced at different positions, including 
N-terminal a, b, c ions and C-terminal x, y, z ions, with b and y ions commonly 
used for determining peptide sequences [5] [6] [7], as shown in Figure 2. 

In the protein sequencing technology based on tandem mass spectrometry, 
database searching and de novo sequencing are two main identification me-
thods. The database searching method searches for peptide sequences that match 
the tandem mass spectra in protein databases, while the de novo sequencing 
method infers peptide sequences directly from the mass spectra. The database 
searching method usually has higher accuracy, but it is limited by the protein 
database availability. For proteins that are difficult to obtain in databases, data-
base searching method cannot be used for sequencing. 

With de novo sequencing method, it is not relying on protein databases, but 
inferring the sequence based on the mass difference between peaks in the mass 
spectrum. Therefore, the quality of the data directly determines the performance 
of de novo sequencing method. When the ion coverage in the mass spectrum is  

 

 
Figure 1. Mass spectrum data acquisition process. 

 

 

Figure 2. Different types of fragment ions formed by fragmentation of the main position 
of the peptide segment. 
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insufficient, the local sequence cannot be inferred correctly; and when the me-
thod is interfered by noise peaks, erroneous local correlations may be estab-
lished. Therefore, preprocessing can be used to select b and y ion peaks, reduce 
the interference of noise peaks, and improve the accuracy of de novo sequenc-
ing, shorten processing time. Therefore, identifying and separating b and y ions 
is a common task in mass spectrometry analysis. In summary, how to improve 
the accuracy of b and y ion identification, and thus improve the accuracy of de 
novo sequencing, is an area worth further research. 

In the process of identifying the development of b and y ions, there are two 
typical methods. In 2005, Bo Yan et al. proposed a graph theory method to solve 
the separation of b and y ions. Taking each spectral peak as a node, the first type 
of edge connects two peaks that may be of the same ion type, and the second 
type of edge connects two peaks that may be of different ion types, turning the 
ion separation problem into a graph partitioning problem. In this paper, a dy-
namic programming algorithm is developed to strictly solve the graph parti-
tioning problem. Through a large number of simulated mass spectrometry and 
19 sets of high-quality experimental tandem mass spectrometry tests, the separa-
tion accuracy of b and y ions reaches 90%. In 2013, James P Cleveland et al. 
proposed a neural network method to identify b and y ions, and generate mul-
tiple specific feature vectors for each spectral peak according to the characteris-
tics of the data. This method improves other preprocessing techniques without 
detailed description of the peptide fragmentation process, which reduces the 
search space of candidate peptides without sacrificing the quality of candidate 
peptides. After preprocessing by this method, the accuracy and recall rate of de 
novo sequencing are higher than those of PepNovo + and pNovo [8] [9] [10] 
[11] [12]. 

In summary, based on the existing ion type identification and separation me-
thods, combined with graph theory and neural network methods to extract 
commonalities, new ion type identification methods can be developed. This can 
be used for effective preprocessing in de novo sequencing to improve the accu-
racy of de novo sequencing. 

2. Model and Feature Engineering 
2.1. Model 

GBDT (Gradient Boosting Decision Tree) is a popular machine learning model, 
which utilizes decision trees to iteratively train and obtain the optimal model. 
The model has advantages such as good training effects and being less prone to 
overfitting. LightGBM (Light Gradient Boosting Machine) is a framework that 
implements the GBDT algorithm. It supports efficient parallel training, and can 
achieve faster training speed, lower memory consumption, and better accuracy 
[13] [14] [15]. The machine learning-based LGB (LightGBM) model can be used 
for the classification and identification of b and y ions. As an efficient decision 
tree algorithm, it can handle large-scale and high-dimensional data, and there-
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fore has wide applications in mass spectrometry analysis. 
In this article, we employ the LightGBM machine learning model to achieve 

classification of ions. By tuning the model’s parameters, including the depth of 
decision tree, learning rate, and regularization parameters, we enhance the mod-
el’s generalization ability and classification performance while maintaining its 
accuracy. Furthermore, we utilize the feature_importance method and conduct 
comparative experiments to identify the crucial features that significantly con-
tribute to the model. These features are then retained to further improve the 
model’s performance. The approach significantly reduces the training time of 
the model without compromising its accuracy. 

2.2. Label Selection 

The quality can be calculated based on the known sequence and modification 
information. The specific formula for calculating the mass of the neutral parent 
ion (Mass(p)) is as follows: given the recorded mass-to-charge ratio (m) and 
charge (zp) of the parent ion, Mass(p) can be calculated. If the amino acid com-
position of a known prefix or suffix subsequence of the peptide is known, the 
theoretical mass-to-charge ratios of other related fragment ions can be obtained 
[16] [17] [18]. Let P = {AAi} be a subsequence of the peptide, and let z be the charge 
of the fragment ion and massAa be the molecular weight of a certain amino acid re-
sidue. When P is a prefix sequence, the mass-to-charge ratio of the b ion can be 
calculated using formula (2.1), and then the corresponding mass-to-charge ratio of 
the y ion can be calculated using formula (2.2). 

( )1 2len
b AAi protonimz mass z mass

=
= + ∗∑              (2.1) 

( ) 2 2y b protonmz Mass p mz z z mass = − ∗ + ∗ ∗            (2.2) 

Actual matching of b and y ions: According to the theoretical mass-to-charge 
ratio of y ions, the mass-to-charge ratio of the actual fragment ions in each spec-
trum is matched in turn. The actual fragment ions that are matched within the 
error range and have the smallest mass-to-charge ratio error with the theoretical 
y ions are the actual matching y ions, which are also the labels required for this 
experiment. 

2.3. Feature Engineering 

In the process of b, y ion classification based on the Light GBM model, it is ne-
cessary to select features with discriminative power for training and classifica-
tion. Therefore, selecting appropriate features has a crucial impact on the train-
ing and classification performance of the model. In general, feature design needs 
to be considered comprehensively based on the features of the mass spectrome-
try data and experimental data. Different feature combinations should be se-
lected for different datasets and problems to obtain better classification perfor-
mance. 

For the handcrafted features extracted from the data, we chose a set of qualita-
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tive features related to the secondary spectrum matching. Based on each sec-
ondary spectrum and its number of peaks, peak matching continuity, peak 
matching intensity, and peak matching mass deviation, we searched and calcu-
lated features such as fragment ion mass-to-charge ratio peaks, relative intensity 
peaks, intensity ratio peaks, isotope peaks, and mass difference peaks. Table 1 
lists all the features that were calculated, and in the following text, we provide a 
detailed explanation of the most important representative features. 

2.3.1. Features of mz 
To extract comprehensive information of the mass-to-charge ratio and differen-
tiate between different ion types, statistical features including mean, standard 
deviation, maximum value, and minimum value are calculated for each peak’s 
mass-to-charge ratio data. 

2.3.2. Features of Intensity 
Normalization of intensity values is necessary because different ions have different 
intensity values, which need to be normalized for comparison. For each spectrum, 
the maximum intensity value is found, and normalization is performed on a spec-
trum-by-spectrum basis. After normalization, the intensity becomes a relative 
value, highlighting the b and y ions with significant intensity in the spectrum, 
making them distinguishable from other ions. 

2.3.3. Features of Graph 
Firstly, graph structures can be used to describe the relationships, feature extrac-
tion, and anomaly detection among ions in ion classification, which can improve 
the accuracy and robustness of ion classification, and also help analyze and visual-
ize the relationships between ions. The spectral peak quality connection graph is 
an important feature that clearly displays the correlations between fragment ions. 
The construction method of mass spectrometry connection graphs can model the 
topological structure between ions in different ways, such as adjacency matrices 
and adjacency lists, to obtain more accurate topological information. 

Therefore, this graph structure feature, which combines the principle information 
of the mass spectrum connection graph and establishes the association between 

 
Table 1. Pattern features for model. 

Feature Value 

mz N, D 

Intensity N, D 

Relative-intensity-ratio N, D 

Isotopologue D 

Gragh-node D 

Gragh-Acid mass D 

N specifies a normalized quantity, D specifies a discretized quantity. 
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peaks, has become a strong feature that can find more accurate candidate peaks 
and improve the overall performance of the model, thereby improving the recall 
rate of b and y ion identification. 

Following the graph theory method of constructing graphs, if the difference 
between the distance between two peaks and the molecular weight of one amino 
acid residue falls within the set error range, an edge is created between the two 
peaks. 

Let spectra be ( ){ } 1
, peaksn

k k k
S m i

=
=  (mk represents the mass of the kth peak and 

ik represents the intensity of the kth peak, npeaks refers to the number of peaks in a 
spectrum.), SA be the matrix of differences between peaks,  

( ) { } 23

1

n
k k k

MASS AA AA =

=
= , n = 23 represent the set of amino acid residues, in-

cluding 20 standard residues and 3 modified residues. The process of calculating 
the adjacency matrix is expressed using Equations (2.3)-(2.6): 

( ) ( )k kA abs SA MASS AA= −                  (2.3) 

1,

0,
ij

k
ij

a
A

a

ε

ε

≤=  >
                      (2.4) 

s kA A= ∑                          (2.5) 

sA A E= +                         (2.6) 

Using formula (2.3), the absolute value of the peak difference matrix is calcu-
lated with the error matrix for each amino acid residue. If the error is within the 
given ε, the corresponding element is marked as 1; if it exceeds the range, it is 
marked as 0. Then, all the matrices are added to obtain the adjacency matrix of 
the current spectrum. The same dimension identity matrix E is added to incor-
porate the vertex self-information of the peak, which avoids the situation where 
the peak is isolated in the graph construction, i.e., there is no adjacent ion peak 
of the same type in the spectrum due to the break of adjacent positions, and 
there is no edge connected to it. 

Previously, we discussed how the B and Y ions in the spectrum form a se-
quence based on the mass difference of amino acid residues, as shown in Figure 
3. Once the graph is constructed, Y and B ions in the spectrum are connected in 
a path based on the mass of the amino acid residues, forming a connected path 
as shown in Figure 4. The greater the abundance of B/Y ions in the spectrum, 
the more complete the connected path will be. To extract a feature from this, the 
mass constraint relationship is used to identify the longest path in the graph 
through depth-first search (DFS). The amino acid mass of the nodes on the 
longest path is then used as the node feature, while the other node features are 
left empty. 

After constructing the connections between the peaks through graph con-
struction, the information of the longest edge is extracted as a hand-crafted fea-
ture and fed into the existing model for learning. Essentially, this feature fuses  
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Figure 3. The labeled B-/Y-ions in tandem mass spectrometry. 

 

 
Figure 4. B-/Y-ion connection path constitutes a sequence. 

 
the information from the mass spectrum connection graph and searches for the 
longest path, providing more accurate candidates for identifying b and y ions, 
thereby improving the recall rate of b and y ion identification. 

After the graph is constructed, node degree can also be used as a feature to 
extract. For each node in the spectrum, its degree (i.e. the number of adjacent 
nodes) is calculated. For b and y ions, which connect adjacent amino acid re-
sidues, they typically connect to more nodes. Recording the degree and posi-
tion of nodes as features can extract key nodes at critical positions. Therefore, 
by calculating the degree of nodes, it can better distinguish b, y ions from oth-
er ions. 

https://doi.org/10.4236/jcc.2023.113008


X. M. Li 
 

 

DOI: 10.4236/jcc.2023.113008 106 Journal of Computer and Communications 
 

2.3.4. Summary of Features 
After considering all the feature designs, to further improve the identification of 
b and y ions, we need to return to the graph structure. We will add the previous-
ly designed features of mass-to-charge ratio peaks, fragment ion relative intensi-
ty peaks, isotope peaks, and mass difference peaks to the features of the nodes in 
the spectrum peak connection graph. By establishing the association between 
peaks, they become strong features. The relationships between nodes after con-
necting the edges will also be used as features. In summary, all features are in-
cluded in the model for training, and the model outputs the classification of ion 
types. 

This paper is based on machine learning and processes mass spectrometry 
data into graph data features. By processing mass spectrometry data into graph 
data, the most important information of fragment ions, which is the relationship 
between peaks, can be directly calculated and determined without the need to 
learn the relationship features between peaks through a deep learning model. 
This overall improves the performance of b and y ion identification and increas-
es the accuracy of de novo sequencing. 

3. Result 
3.1. Dataset 

The dataset was obtained by preprocessing the raw data using pParse to extract 
the tandem mass spectra, resulting in mgf files. Then, pFind was used for a tar-
geted search, with the fasta file downloaded from the Uniprot database used as 
the search database, to parse the information of the spectrum peaks and their 
types. The dataset uses data from the yeast species, which has abundant b and y 
fragment ions and sufficient coverage of ions. The training set, test set a total of 
30,000 spectra. Therefore, this dataset can be used for ion classification. 

Preprocessing certain mass spectrometry data, such as denoising, normaliza-
tion, and feature scaling, can improve the model’s generalization ability and pre-
diction accuracy. However, in mass spectrometry data, it is important to ensure 
sufficient fragment ion information to accurately classify ions. Therefore, in this 
dataset, no preprocessing was performed before classification. 

The label of the number of b, y, and u ions (Unknown ions) calculated from 
the peak types of the tandem mass spectrum and the manually extracted features 
of b, y, and u ions were combined, and the training set was used to train the 
classifier. Training was stopped when the loss on the validation set was mini-
mized, and the posterior probability estimate of b and y ions was output. 

3.2. Evaluation Metrics and Results 

Choosing appropriate metrics depends on the specific requirements of the task. 
In the ion classification task, both high accuracy and high recall are required, 
while controlling false positives and false negatives is also important. Therefore, 
precision and recall were chosen as evaluation metrics. 
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• Precision: the proportion of true positive samples among all samples classi-
fied as positive, i.e. TP/(TP + FP). 

• Recall: The proportion of true positive samples that are correctly classified as 
positive, i.e., TP/(TP + FN). 

The LightGBM model, which has high accuracy and fast speed, was used for 
classification. Since each peak contains isotopic peaks and double peaks that are 
correlated before and after, the original order of the data was not disrupted. Af-
ter training and saving the model, the test set was used for prediction, and me-
trics such as precision and recall were used to evaluate the model. After com-
paring the effects of various groups of results, insignificant features such as noise 
peaks, unknown ions, and intensity levels were discarded, while significant fea-
tures that improved the model’s quality were retained. Due to imbalanced data, 
the precision and recall of b and y ions were calculated separately to better un-
derstand the model’s performance. Finally, based on the trained classifier, the 
maximum probability of output label is compared with the original label result. 
The calculated recall rate and accuracy rate is as follows Table 2. 

We performed a table statistical analysis of the changes in the recall rate of Y ions 
before and after adding graph features, which play a crucial role in the features. 

As shown in Figure 5, it can be seen that graph features are crucial for im-
proving the accuracy of model classification, thus confirming that our approach 
of constructing mass spectral connectivity graphs to obtain features is correct, 
and ion classification must be based on graph structures. 

 
Table 2. Classification results of b-/y-ions. 

 Recall Precision 

Y 90.8% 85.3% 

B 86.4% 82.5% 

 

 
Figure 5. Comparison of y ion recall rate before and after adding graph feature. 
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4. Conclusions 

In this paper, a method of ion classification of common mass spectrometry data 
under machine learning is proposed. Combined with the method of graph 
theory, a spectral peak connection diagram is constructed to identify and sepa-
rate the main by ions to the greatest extent, and the pretreatment steps of pro-
tein sequencing are completed. The key ions are filtered out for sequencing, 
which lays a foundation for improving the accuracy of sequencing. 

This article proposes a machine learning-based classification method that can 
effectively distinguish b, y ions from other ions, especially with the addition of 
new graph features, significantly improving the recall rate of ions and achieving 
good results in this experiment. However, this method also has certain limita-
tions, as it may be affected to varying degrees by factors such as noise and mass 
spectrometry signal intensity in different mass spectrometry data. Therefore, the 
ion selection and improvement should be based on the specific situation of the 
ions in the spectrum. To improve the identification and classification of b and y 
ions using machine learning, it is essential to consider various factors such as 
data quality, feature selection, and model optimization, and to continuously ite-
rate and optimize the method. 
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