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Abstract 
When training a stereo matching network with a single training dataset, the 
network may overly rely on the learned features of the single training dataset 
due to differences in the training dataset scenes, resulting in poor perfor-
mance on all datasets. Therefore, feature consistency between matched pixels 
is a key factor in solving the network’s generalization ability. To address this 
issue, this paper proposed a more widely applicable stereo matching network 
that introduced whitening loss into the feature extraction module of stereo 
matching, and significantly improved the applicability of the network model 
by constraining the variation between salient feature pixels. In addition, this 
paper used a GRU iterative update module in the disparity update calculation 
stage, which expanded the model’s receptive field at multiple resolutions, al-
lowing for precise disparity estimation not only in rich texture areas but also in 
low texture areas. The model was trained only on the Scene Flow large-scale 
dataset, and the disparity estimation was conducted on mainstream datasets 
such as Middlebury, KITTI 2015, and ETH3D. Compared with earlier stereo 
matching algorithms, this method not only achieves more accurate disparity 
estimation but also has wider applicability and stronger robustness. 
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1. Introduction 

Stereo matching technology is a fundamental problem in computer vision, 
which aims to obtain depth information of the 3D scene generated by left-right 
stereo image pairs, and has been widely used in fields such as robot navigation, 
autonomous driving, 3D reconstruction, and augmented reality [1]. The core 
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task is to find the matching relationship between corresponding pixels in the two 
images, i.e., to find the corresponding point of each pixel in the right image from 
the left image, and calculate the depth of the scene through the disparity infor-
mation of these matching points. Therefore, the main problems to be solved in 
stereo matching are the correctness and accuracy of the matching points. 

In traditional methods, stereo matching is summarized into four steps [2]: 
cost calculation, cost aggregation, disparity calculation, and disparity optimiza-
tion. In recent years, with the rapid development of deep learning, more and 
more scholars at home and abroad have gradually used deep learning methods 
to replace the four steps in traditional methods, ultimately forming the popular 
end-to-end stereo matching network. The disparity estimation obtained by these 
end-to-end stereo matching networks has greatly improved in underdetermined 
areas such as weak texture and discontinuous regions compared to traditional 
methods. However, the generalization performance of stereo matching networks 
is still the main challenge for applying network structures to real-world scena-
rios. The generalization ability of a model refers to its ability to adapt to new da-
ta after training. The model learns the underlying patterns behind the data, and 
the trained network can also give appropriate output for data with the same pat-
tern. Currently, the common method to achieve generalization ability is domain 
generalization based on domain-invariant features. Existing domain generaliza-
tion methods can be simply divided into three categories: data manipulation [3], 
representation learning [4], and policy learning [5]. Some stereo matching net-
works have already obtained domain-invariant features by performing feature 
matching. DSMNet [6] designs two trainable neural network layers that can 
perform domain generalization well, and by regulating the distribution of the 
learned representations, the network maintains feature invariance to differences. 
CFNet [7] integrates multiple low-resolution dense cost volumes to guide the 
network to learn invariant geometric scene information from different datasets, 
expanding the receptive field for capturing global representations. Reference [8] 
proposes the MS-Net network, which replaces deep learning-based feature ex-
traction with traditional matching functions and confidence measures, shifting 
the learning process from the color space to the matching space to prevent over-
generalization of specific dataset features. The above works transform the input 
to the domain-invariant feature space, reducing dependence on specific features 
in the dataset and exhibiting stronger robustness. 

Based on the research ideas of the above model, this paper proposes a more 
widely applicable stereo matching network. In response to the problem of de-
creasing cross-domain feature consistency, a whitening loss function is intro-
duced during feature extraction. As the loss function decreases, the stereo 
matching network relies less on matching-unrelated information to form feature 
representations, thus extending the stereo matching network to real-world sce-
narios and improving the model’s generalization ability. 

This paper is organized as follows: Section 2 discusses related work; Section 3 
introduces the TUNet architecture and the improved adaptive stereo matching 
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network ATUNet; Section 4 presents experimental results and analysis; and fi-
nally, Section 5 draws conclusions based on the findings. 

2. Related Work 
2.1. Stereo Matching Networks Based on Deep Learning 

In recent years, with the rapid development of Convolutional Neural Network 
(CNN) [9], as well as the significant improvement in computing power of vari-
ous hardware devices with technological advancement, more and more scholars 
at home and abroad have been using deep learning methods to reduce the phe-
nomenon of mismatching in the ill-posed areas of stereo matching algorithms. 
Scholars have used CNN to replace individual steps in traditional binocular ste-
reo matching algorithms, dividing deep learning-based binocular stereo match-
ing algorithms into non-end-to-end stereo matching algorithms and end-to-end 
stereo matching algorithms [10]. 

Compared with traditional stereo matching algorithms, non-end-to-end ste-
reo matching algorithms can obtain good disparity effects in complex scenes, 
greatly promoting the development of stereo matching algorithms. However, 
non-end-to-end stereo matching algorithms only use local information for cost 
computation, lacking global information, which makes them still challenging in 
occlusion, low texture, and repetitive texture areas. Meanwhile, non-end-to-end 
stereo matching algorithms use a series of cascaded post-processing steps to refine 
disparities, which makes the training process complicated and difficult to directly 
optimize the entire stereo matching process. Therefore, using end-to-end stereo 
matching algorithms has become a research hotspot in stereo matching algorithms 
in recent years. 

The end-to-end stereo matching algorithm inputs a pair of left-right stereo 
images into a convolutional neural network and directly outputs accurate dis-
parity after training. In 2016, Mayer et al. [11] proposed the first end-to-end ste-
reo matching network which is called DispNet, which used a convolutional 
neural network to extract features, obtained the feature correlation mapping 
between the left and right feature maps, and output disparity of different resolu-
tions in multiple transposed convolution layers. They also contributed a large 
dataset called Scene Flow, generated through synthetic techniques, for network 
training. Du et al. [12] input foreground segmentation information into the 
AMNNet network together, improving the generalization performance of the 
stereo matching network. PSMNet [13] proposed using spatial pyramid pooling 
and dilated convolution to expand the receptive field, which can combine global 
environmental information into image features. At the same time, they repeated 
the stacked 3D hourglass network from coarse to fine and fine to coarse to in-
crease the utilization rate of global information. Cai et al. [8] pointed out that 
the poor generalization performance of the stereo network is caused by the net-
work’s strong dependence on image appearance and suggested using combina-
tions of matching functions for feature extraction. 
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The stereo matching algorithm based on the end-to-end deep learning 
framework consists mainly of four modules: feature extraction, cost volume 
construction, cost aggregation, and disparity regression, which is consistent with 
the basic process of traditional stereo matching algorithms. In traditional stereo 
matching algorithms, manually designed feature descriptors such as SIFT [14] 
and SURF [15] are usually used for feature extraction. Although these feature 
descriptors cannot solve problems in specific scenes (such as textureless areas, 
overexposed areas, and repetitive problem areas), they rarely affect the disparity 
calculation effect due to dataset transformations. Therefore, the feature extrac-
tion layer in the deep learning framework can be considered as a key factor in 
improving the cross-dataset generalization ability of stereo matching networks. 
The feature extraction layer captures the style information of images by extract-
ing the correlation between feature channels, which has been further explored in 
style transfer, image-to-image translation, and other fields. Recently, a selective 
whitening method was proposed in literature [16] to remove sensitive style in-
formation in the dataset, thereby reducing the learning of significant features in 
the dataset, where the style information selection depends on manually designed 
photometric transformations. Inspired by selective whitening, this paper chooses 
information that is sensitive to changes in stereo viewpoints, not just dependent 
on photometric transformations. This is because in the left and right views of 
stereo matching, the image transformation is not only photometric, but also in-
volves changes in the scene, etc. 

2.2. Factors Affecting the Generalization Ability of  
Stereo Matching 

The key to enhancing the generalization ability of stereo matching networks is to 
improve their adaptation ability from one dataset to another. Generally speak-
ing, there are significant differences in color, contrast, texture, and scene be-
tween stereo images before and after cross-dataset, which can cause the training 
dataset features learned by deep stereo matching networks to not be well adapted 
to other datasets, ultimately resulting in erroneous matching results when the 
network estimates disparities for other datasets. 

In order to verify the phenomenon of erroneous disparity estimation due to 
large image differences before and after cross-dataset in the model, this paper 
uses the mainstream PSMNet network model for cross-domain feature visualiza-
tion. First, PSMNet is trained to convergence on the Scene Flow dataset, and 
then the results of the feature extraction layer from different datasets are visua-
lized and compared in testing. As shown in Figure 1, two sets of stereo image 
pairs from the Scene Flow and KITTI 2015 datasets were selected, and they were 
transmitted to the PSMNet network to obtain their feature visualization results. 

The output of the feature extraction part of the PSMNet network is a feature 
tensor of size C × 1/4 H × 1/4 W, where C is the number of feature channels. By 
analyzing the feature differences before and after cross-domain comparison in 
the same channel dimension, the information difference of the features can be  
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Figure 1. Feature visualization. 

 
observed. In order to more intuitively observe the feature transformation, this 
paper uses the method of mean [17] to determine the feature differences of the 
network before and after cross-domain. The specific method of the mean me-
thod is as follows: first, calculate the mean of each feature of the network on the 
first dataset, which can be calculated by averaging the output of the network; 
then, use the trained network to perform forward propagation on the second 
dataset and record the output of each feature to further calculate the mean of 
each feature in the second dataset; finally, compare the mean of each feature in 
the first and second datasets, if the mean of a certain feature in the first dataset is 
significantly different from that in the second dataset, then it indicates that the 
feature has differences on different datasets. In each channel, the mean on the 
pixel dimension (H, W) is defined as the following formula: 
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( ) 1 H W
p hwh wu x FV

HW
= ∑ ∑                    (1) 

where, H and W represent the pixel-wise positions, H represents the height of 
the pixel dimension, W represents the width of the pixel dimension, and ε  is a 
small constant added to avoid division by zero in the denominator. 

In the generalization experiment, we randomly selected the left images from 
105 pairs of stereo images in Scene Flow and KITTI 2015 datasets, and then cal-
culated the mean values of the two datasets in the same channel. As shown in 
Figure 2, the black line represents the mean distribution of channel 1 in Scene 
Flow dataset, and the blue line represents the mean distribution of channel 1 in 
KITTI 2015 dataset. The mean value curves show that for a group of images with 
low sensitivity to color changes, the feature means are relatively close. Con-
versely, for a group of images with high sensitivity to color changes, the feature 
means vary greatly. To better explain this, we refer to larger changes as “sensitive 
changes” and smaller changes as “insensitive changes”. Examples of sensitive 
and insensitive changes are shown in Figure 3. 

 

 
Figure 2. Characteristic channel average curve. 

 

 
Figure 3. Feature changes. 
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3. Method 
3.1. Transformer-Based Iterative Update Stereo Matching Network 

Transformer-based Iterative Update Stereo Matching Network (TUNet) frame-
work is shown in Figure 4. The extracted left and right feature maps are trans-
formed into a more easily matched feature that is related to context and position 
through feature transformation. The cost volume is constructed through simi-
larity calculation and then iteratively updated through GRU to obtain the dis-
parity estimation result. 

3.1.1. Feature Transform Module 
During feature extraction, a pair of stereo images Il and Ir are input to two fea-
ture extraction networks with weight sharing. The architecture of the feature ex-
traction network consists of a series of residual layers and subsampled layers that 
extract left and right feature at different resolutions. Then, the attention me-
chanism from the Transformer algorithm [18] is added to aggregate global con-
textual information by using alternate self-attention and cross-attention layers, 
so that the feature maps processed by the Transformer can produce dense 
matching in low texture areas. Meanwhile, relative positional encoding is added 
to the feature vectors to greatly enhance the position dependency of the feature 
maps. Linear Transformers [19] are used to reduce computational complexity 
during the alternate calculation process of self-attention and cross-attention. 

3.1.2. Disparity Iterative Update Module 
The disparity update is performed using Gated Recurrent Unit (GRU) [20], 
which is a type of recurrent neural network (RNN) [21] unit used for modeling 
sequential data. The specific steps are as follows: starting from the initial dispar-
ity of 0 0d = , the disparity estimation is performed by producing an update di-
rection d∆  in each iteration, which is fed into the next iteration to compute 
the current disparity estimation: 1 1k kd d d+ += ∆ + . The disparity estimation is 
calculated by inputting the left feature maps, correlations, and the updated hid-
den state into the GRU, which updates the hidden state and further predicts the 
new disparity based on the updated hidden state. 

 

 
Figure 4. Network architecture of TUNet algorithm. 
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3.2. Improved Adaptive Recurrent Iterative Update Stereo 
Matching Network 

Building on the TUNet stereo matching network in Section 3.1, this paper intro-
duces an adaptive recurrent iterative updating stereo matching network—ATUNet, 
through incorporating a whitening loss module in the feature extraction module. 
By suppressing feature consistency, the model’s generalization performance is 
improved. 

3.2.1. Whitening Loss Module 
Stereo matching networks typically use Batch Normalization (BN) [22] to nor-
malize features. During training, BN uses batch-wise statistics to normalize fea-
tures, while during inference, it uses the statistics of the entire training dataset. 
This leads to the over-reliance of stereo matching networks on the training da-
taset, making them more sensitive to dataset shifts. To extend feature consisten-
cy across different datasets, Instance Normalization (IN) [23] layers are used to 
replace some BN layers. Unlike BN layers, the IN layer normalizes each sample 
across its channel dimension, thus avoiding any dependence on the data. For 
each sample C H WX × ×∈ , the IN layer normalization process is as follows: 

( )1ˆ
i i i

i

X X µ
σ

= −                        (2) 

In the equation above, iu  and iσ  represent the mean and variance, respec-
tively, and C represents the index of the feature channel. Although the IN layer 
normalizes features within the local neighborhood, it does not consider the cor-
relation between different channels. To further improve the consistency of fea-
ture representation, the whitening loss module can remove the redundancy be-
tween features by suppressing the feature covariance components that are sensi-
tive to changes in color and other factors in the dataset, as shown in Figure 5. 

Firstly, feature extraction is performed, and then the extracted features are 
subjected to the following computation: 

Setp 1: compute the feature vector covariance matrix ( )X̂Σ : 

( ) ( )( )T1ˆ ˆ ˆX X X
HW

Σ =                      (3) 

Setp 2: calculate the feature covariance matrix ( )ˆ l
n XΣ  between the left im-

age feature vector variance ( )ˆ r
n XΣ  and its corresponding right image feature 

vector variance ,i jV : 
 

 
Figure 5. Whitening loss. 
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where covariance matrix ,i jV  between the i-th and j-th channels represents the 
sensitivity to viewpoint changes. If the covariance elements between the left and 
right features have high variances, these elements are considered to be compo-
nents that are sensitive to viewpoint changes, that is, the correlation between the 
two features is high. Therefore, these covariance elements should be considered 
in the whitening loss. To obtain these values, the k-means [24] method can be 
used to cluster the covariance matrix ,i jV  and calculate the selective mask. 

Setp 3: compute the selective mask ,
C C

i jM ×∈

 : 

,
,

1,
0, other

i j p
i j

V
M

δ∈
= 


                        (5) 

3.2.2. Whitening Loss Module 
Compute whitening loss on the left image feature vector variance: 

( )
11

1 ˆ ˆW lL X M Mγ
γ

Γ

=

= Σ
Γ∑



                    (6) 

where M̂  is an upper triangular matrix, Γ represents the number of layers for 
loss calculation, and γ represents the corresponding intermediate layer. 

Finally, the loss function of the stereo matching network with the introduced 
whitening loss is calculated as follows: 

disp WL L L= +                          (7) 

where dispL  is the disparity loss function, which is calculated using the smooth 
L1 loss, as shown in Equation (8): 

1
1

N
disp N i

gt i
i

L d dγ −

=

= −∑                      (8) 

By introducing whitening loss, the stereo matching network can not only re-
duce its dependence on irrelevant information but also further improve the con-
sistency and generalization of its feature representation. Since the differences 
between left and right stereo images are usually limited to specific physical fea-
tures, such as diffuse reflection of light, the network model can learn these gene-
ralized physical features from limited training data. This enables the network to 
better adapt and perform when facing new datasets and scenes, thereby improv-
ing its reliability and stability in practical applications. In addition, the introduc-
tion of whitening loss can also help the network learn more discriminative fea-
tures, further enhancing its matching performance and accuracy. 

4. Experiments 

In this experiment, the proposed stereo matching network model was trained 
only on the Scene Flow dataset, and then tested on the KITTI 2015, Middlebury, 
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and ETH3D datasets to evaluate its cross-dataset generalization ability. The 
network was built using the PyTorch framework on an NVIDIA RTX A6000 48 
G, and the stereo matching network model was trained using a batch size of 8 
and the Adam optimizer ( 1 0.9β = , 2 0.999β = ). Prior to training, the input 
images were randomly cropped to 512 × 256. Finally, the network was trained 
for 15 epochs on the Scene Flow dataset with a learning rate of 0.001. 

4.1. Datasets 
4.1.1. Scene Flow 
The Scene Flow dataset contains high-resolution images and the optical flow and 
depth information between adjacent frames of multiple indoor and outdoor 
scenes. Each scene includes approximately 40 adjacent frames with a resolution 
of 1024 × 436 pixels. These frames were captured at a frame rate of 15 frames per 
second. Each scene in this dataset contains various types of objects such as ve-
hicles, pedestrians, buildings, etc., with diverse directions and speeds of move-
ment. Therefore, this dataset is very useful for testing the motion and depth es-
timation capabilities of various types of objects in different scenes. 

4.1.2. KITTI 2015 
The KITTI 2015 dataset contains image sequences of multiple real-world scenes, 
each captured by a stereo camera setup comprising of left and right cameras. 
The dataset includes approximately 200 sequences, each of which contains 
high-resolution images and accurate depth and optical flow information col-
lected by a system of sensors such as laser scanners and cameras. The images in 
the dataset cover various scenes, including city streets, highways, rural roads, 
etc., and exhibit diverse movements and shape changes of objects such as ve-
hicles, pedestrians, buildings, etc. 

4.1.3. Middlebury 
The Middlebury dataset provides image sequences of various resolutions, in-
cluding Full, Half, and Quarter resolutions, which can be used to test and eva-
luate algorithms of different accuracy. The images in the dataset cover various 
scenes, including indoor, outdoor, natural, and artificial scenes, where objects 
exhibit diverse features such as shape, size, motion, and color. Additionally, this 
dataset also provides multiple evaluation metrics, such as flow and disparity er-
ror, flow and disparity visualization, which can be used to assess the accuracy 
and performance of algorithms. 

4.1.4. ETH3D 
The ETH3D dataset includes multiple sets of image sequences captured by mul-
tiple cameras, including 27 stereo image pairs for training and 20 stereo image 
pairs for testing. Each sequence contains complete camera intrinsic and extrinsic 
parameters and highly accurate 3D point cloud information. Additionally, the 
dataset provides depth maps, surface normal maps, and surface texture maps in 
various formats, which can be used to test and compare different 3D reconstruc-
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tion algorithms. 

4.2. Feature Generalization Analysis 

In order to verify the generalization ability of the model, this paper defines the 
mean of the same feature channels extracted by the model in different datasets as 
the feature similarity. The formula for this is: 

m S RD µ µ= −                          (8) 

where Sµ  represents the response difference of the mean, and Rµ  and mD  
represent the feature means of two different datasets, respectively. 

This paper randomly selected 100 images from the Scene Flow and KITTI 
2015 datasets and used different methods to visualize response differences. The 
results are shown in Figure 6, where the horizontal axis represents the number 
of 32 feature channels, and the vertical axis represents the response difference 
amplitude. The smaller the amplitude of the response difference, the closer the 
mean of the information extracted by the feature extraction module in the two 
datasets. 

From Figure 6, it can be seen that different stereo matching models have sig-
nificant fluctuations in response differences across different datasets. Among 
them, the stereo matching model with the addition of the whitening loss module 
has response differences that fluctuate up and down by no more than 0.5 across 
datasets, and its fluctuation curve is relatively smoother compared to the cur-
rently popular PSMNet and the Iterative Stereo Matching Network. 

4.3. Contrast Experiment 

To evaluate the effectiveness of the whitening loss module, three methods for 
improving generalization ability, including instance normalization, domain 
normalization, and the whitening loss module, were added to the model in Sec-
tion 3.1 for experimental comparison. The threshold error matching rate was 
used as the evaluation method, where the threshold was 3PX for the KITTI 2015  

 

 
Figure 6. Response difference. 
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dataset and 2PX for the Middlebury dataset. As shown in Table 1, ATUNet with 
the added whitening loss module achieved a 35.05% improvement in accuracy at 
3PX on the KITTI 2015 dataset and a 14.6% improvement in accuracy at 2PX on 
the Middlebury dataset compared to the original TUNet model. Compared with 
the other two methods for improving generalization ability, introducing the 
whitening loss module into the original model helps the model to better gene-
ralize to other datasets. 

To further validate the superiority of the proposed approach, this paper com-
pared the adaptive cyclic iterative updating stereo matching network ATUNet with 
cross-dataset stereo matching networks and other state-of-the-art end-to-end ste-
reo matching networks on three real datasets. It can be seen that among all ste-
reo matching network models, ATUNet achieved a leading performance com-
pared with other Scene Flow pre-trained stereo matching networks and tradi-
tional stereo matching algorithms. As shown in Table 2, the 2 px pixel error rate 
reached 18.1 on the Middlebury dataset, which was 30.06% higher than PSMNet 
and 15.02% higher than DSMNet, the most advanced cross-dataset invariant 
stereo matching network. On the KITTI 2015 dataset, the 3 px pixel error rate 
reached 6.3, which was 68.18% higher than PSMNet and 3.07% higher than 
DSMNet. Figure 7 and Figure 8 show the disparity visualization results of 
ATUNet on the Middlebury and KITTI 2015 datasets. 

4.4. Experimental Test on ETH3D 

In this section, the effectiveness of the proposed method was evaluated on the 
ETH3D stereo matching dataset, and ATUNet was compared with various tradi-
tional and deep learning stereo matching methods. The model was trained only 
on the Scene Flow dataset and then tested on the test set provided by the ETH3D  

 
Table 1. Whitening loss module. 

Methods KITTI 2015 Middlebury 

TUNet model 9.7 21.2 

+Instance normalization layer 8.3 19.1 

+Domain normalization layer 8.1 18.3 

+Whitening loss (ATUNet) 6.3 18.1 

 
Table 2. KITTI 2015 and Middlebury generalization ability. 

Models Middlebury KITTI 2015 

GWCNet 32.5 22.7 

PSMNet 25.9 19.8 

GANet 24.3 11.7 

DSMNet 21.3 6.5 

Our 18.1 6.3 
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Figure 7. Visualization effect on middlebury dataset. 

 

 
Figure 8. Visualization Effect on KITTI 2015 Dataset. 

 
dataset. The ETH3D visualization results are shown in Figure 9, and the evalua-
tion results are shown in Table 3. Among them, ATUNet performed best on the 
ETH3D dataset, with a pixel ratio greater than 0.5 between the estimated and 
true values reaching 6.23%, a pixel ratio greater than 1.0 reaching 2.32%, and an 
average absolute error of 0.16. Compared with the popular GWCNet [25] model 
currently on the market, the pixel ratio greater than 0.5 between the estimated 
and true values was increased by 47.5%, the pixel ratio greater than 1.0 was in-
creased by 36.6%, and the average absolute error was increased by 44.8%. At the 
same time, Table 3 also shows that the proposed ATUNet model with the addi-
tion of the whitening loss module has better generalization performance than the  
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Figure 9. ETH3D training dataset effect diagram. 

 
Table 3. ETH3D evaluation results. 

Models GANet HSMNet GWCNet TUNet ATUNet(ours) 

Training 
datasets 

Synthetic 
datasets 

Synthetic 
datasets 

Scene Flow Scene Flow Scene Flow 

Bad 0.5 26.54 12.13 12.04 7.33 6.23 

Bad 1.0 7.32 4.00 3.66 2.51 2.32 

AvgErr 0.43 0.29 0.29 0.18 0.16 

 
TUNet model. The pixel ratio greater than 0.5 between the estimated and true 
values was increased by 15.0%, the pixel ratio greater than 1.0 was increased by 
7.6%, and the average absolute error was increased by 11.1%. 

5. Conclusion 

This paper proposes a stereo matching model with wider adaptability, which in-
corporates a whitening loss module during feature extraction to improve the 
model’s generalization ability by constraining the variation of sensitive pixels in 
the feature domain. Experimental results show that the improved network model 
has good cross-dataset adaptability and can better transfer the training results to 
other datasets through transfer learning. The proposed method is compared with 
several existing stereo matching algorithms on multiple datasets and effectively 
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reduces the error matching rate while exhibiting a certain level of robustness. 
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