
Journal of Computer and Communications, 2022, 10, 125-137
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2022.1012010 Dec. 30, 2022 125 Journal of Computer and Communications

Comparing Machine Learning Algorithms for
Improving the Maintenance of LTE Networks
Based on Alarms Analysis

Batchakui Bernabe1, Deussom Djomadji Eric Michel2,3, Chana Anne Marie1,
Mama Tsimi Serge Fabrice1

1Department of Computer Engineering, National Advanced School of Engineering, UY1, Yaoundé, Cameroon
2Department of Electrical and Telecommunications Engineering, National Advanced School of Engineering, Yaoundé, Cameroon
3College of Technology, University of Buea, Buea, Cameroon

Abstract
Mobile network operators are facing many challenges to satisfy their sub-
scribers in terms of quality of service and quality of experience provided. To
achieve this goal, technological progress and scientific advances offer good
opportunities for efficiency in the management of faults occurring in a mo-
bile network. Machine learning techniques allow systems to learn from past
experiences and can predict, solutions to be applied to correct the root cause
of a failure. This paper evaluates machine learning techniques and identifies
the decision tree as a learning model that provides the most optimal error rate
in predicting outages that may occur in a mobile network. Three machine
learning techniques are presented in this study and compared with regard to
accuracy. This study demonstrates that the appropriate machine learning
technique improves the accuracy of the model. By using the decision tree as a
machine learning model, it was possible to predict solutions to network fail-
ures, with an error rate less than 2%. In addition, the use of Machine Learning
makes it possible to eliminate steps in the network failure processing chain;
resulting in reduced service disruption time and improved the network
availability which is a key network performance index.

Keywords
4G LTE Mobile Network, Machine Learning, Network Maintenance,
Troubleshooting, Decision Tree, Random Forest

1. Introduction

Mobile network operations have grown enormously and rapidly over the past

How to cite this paper: Bernabe, B.,
Michel, D.D.E., Marie, C.A. and Fabrice,
M.T.S. (2022) Comparing Machine Learn-
ing Algorithms for Improving the Main-
tenance of LTE Networks Based on Alarms
Analysis. Journal of Computer and Com-
munications, 10, 125-137.
https://doi.org/10.4236/jcc.2022.1012010

Received: October 26, 2022
Accepted: December 27, 2022
Published: December 30, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2022.1012010
https://www.scirp.org/
https://doi.org/10.4236/jcc.2022.1012010
http://creativecommons.org/licenses/by/4.0/

B. Bernabe et al.

DOI: 10.4236/jcc.2022.1012010 126 Journal of Computer and Communications

two decades. If satisfaction on the side of subscribers based on the services pro-
vided by these mobile networks is appreciable, this is due to a maintenance team
of engineers in the back office who are responsible (full-time) for ensuring the
maintenance of the network and the usage of new network management tech-
niques that call on artificial intelligence applied to network management and
maintenance [1]. Some vendors like Huawei have modified their initial man-
agement platform to virtualization based solution which includes the network
analysis module based on machine learning [2]. It will be interesting to explore,
through this work, the usage of machine learning algorithms that can contribute
to the optimization of an LTE FDD mobile network opened to public services.

Many authors have been interested in the usage of artificial intelligence and
other techniques applied to maintenance system. For example, in 2013, HOUN-
KONNOU worked on a semi-automatic modeling approach based on patterns
that generically describe the dependencies between the resources used by the
services of the IMS (IP Multimedia Subsystem) network [3]. Seghier [4] worked
on “Optimization of the radio parameters of the 4G mobile network by fuzzy
logic”. He dealt with the optimization of radio parameters in the LTE network,
by integrating fuzzy logic to help the network to make the decision to perform a
Hand Over or not. Deussom et al. [5] worked on “Machine learning-based ap-
proach for designing and implementing a collaborative fraud detection model
through CDR and traffic analysis”. In their work, they used machine learning to
detect and identify fraud in the mobile network billing system by using the Call
detail records and traffic. Sultan et al. [6] presented “Call Detail Records Driven
Anomaly Detection and Traffic Prediction in Mobile Cellular Networks”. Trinh
et al. [7] worked on “Detecting Mobile Traffic Anomalies through Physical Con-
trol Channel Fingerprinting: A Deep Semi-Supervised Approach”.

Our analysis of these research works triggered the following striking question:
Which Machine Learning algorithms can follow the learning of the operations
carried out by human operators not only to determine the failure that has oc-
curred in the system, but, above all, to propose a solution or the most exact me-
thod of solving the failure? This question leads us to hypothesize that: A Ma-
chine Learning algorithm that learns from past outage processing operations of
LTE mobile networks can predict new outages, anticipate their processing and
thus significantly reduce the disruption time and therefore improve the quality
of service.

The objective of this work is to evaluate the precision of different machine
learning algorithms by using data collected from an alarm management system
and propose a model for predicting solutions to failures (incidents) occurring in
a mobile network in order to reduce the downtime.

Specifically, it is a question of proposing a model capable of:
1) Controlling the failure that has occurred in the system;
2) Predicting, with a relatively lower error rate, the solution to be applied in

the event of a failure;

https://doi.org/10.4236/jcc.2022.1012010

B. Bernabe et al.

DOI: 10.4236/jcc.2022.1012010 127 Journal of Computer and Communications

3) Reducing the search time for solutions which is currently of the order of
several minutes, or an hour;

4) Reducing service disruption times, and
5) Improving or even increase customer satisfaction (QoE: Quality of Expe-

rience).
The rest of this article presents, in the next section, the materials and me-

thods, and the machine learning algorithms that will be explored. The fourth
section deals with the presentation and analysis of result within the experimen-
tation carried out and the results obtained based on data collected on a live 4G
network working in 1800 MHz and 2100 MHz bands using Huawei U2020 MBB
management platform. This section will also present the discussions of the re-
sults obtained. Finally a general conclusion and perspectives are provided.

2. Materials and Methods

In the context of the present work, the research was done by using real data col-
lected on a 4G LTE network in Cameroon using Huawei U2020 MBB. The alarm
management feature of the U2020 was selected to monitor the network alarms
and process the alarms based on their severity, types, sources and impact on the
network (see Figure 1 which presents the appearance of the alarm management
platform of the U2020). Hence, the target data to be predicted are discrete data.
Algorithms used for the classification of the collected data, as well as for the pre-
diction of our target are presented and reviewed below: K-nearest neighbour
(K-NN); decision tree; and random forest algorithms [8].

Figure 1. Structure of U2020 Alarm management system.

https://doi.org/10.4236/jcc.2022.1012010

B. Bernabe et al.

DOI: 10.4236/jcc.2022.1012010 128 Journal of Computer and Communications

2.1. The K-Nearest Neighbour (K-NN)

The K-Nearest Neighbour (K-NN) is a supervised machine learning algorithm
that needs only one hyper parameter. According to the method, if the majority
of k samples most similar to one sample (nearest neighbours in the eigenspace)
belong to a specific category, the sample also belongs to this category [9].

2.2. The Decision Tree (DT)

The decision tree is a model that employs a hierarchical representation of the
data structure in the form of sequences of decisions (tests) for the prediction of
an outcome or a class [10]. Each individual (or observation), which must be as-
signed to a class, is described by a set of variables which are tested in the nodes
of the tree. Tests are performed in internal nodes and decisions are made in leaf
nodes [11].

2.3. Random Forests (RF)

The “Random Forest” algorithm is a classification algorithm that reduces the
error of predictions from a single decision tree, thus improving their perfor-
mance. For this, it combines many decision trees in a bagging type approach [8].
The word “bagging” is a contraction of Bootstrap Aggregation. It is a technique
used to improve classification, especially those from decision trees.

In order to train the system to recognize failures and to propose the most op-
timal solution, an approach borrowed from “data science” has been followed.
Indeed, on a dataset collected from the databases of the operation and mainten-
ance center of a mobile telephone operator for a given period, the three Machine
Learning algorithms presented above have been executed, with the aim of se-
lecting the algorithm that will give us the best results with minimal error margin.
Figure 2 shows the framework for determining the most accurate model [12].
The process is as follows:
 Dataset processing;

Figure 2. Framework of determination of the right model.

https://doi.org/10.4236/jcc.2022.1012010

B. Bernabe et al.

DOI: 10.4236/jcc.2022.1012010 129 Journal of Computer and Communications

 Normalization/coding of variables;
 Determination of the model and its parameters;
 Learning;
 Testing and interpretation of results.

Figure 2 presents the framework for the determination of the right model.

3. Presentation and Analysis of Result
3.1. Environment and Tools Used

To run machine learning algorithms in our computer, the Python version 3.8
programming language have been used. It is the reference language used in the
development of applications for artificial intelligence. The Python distribution
that is used is the one provided by Anaconda (it contains all the tools and libra-
ries needed to do Machine Learning, namely Numpy, Matplotlib, sklearn, Jupi-
ter, Spider…etc). Package versions are managed by the management system
conda packets. The Anaconda distribution is used by more than 6 million users
and includes over 250 popular data science packages suitable for Windows, Li-
nux and MacOS [9] [13].

3.2. Data Processing

As seen in the previous section, the dataset refers to the set of examples that the
machine must study. In the case of this study, the examples to be studied by the
machine consist of data extracted from U2020 MBB involving operation and
maintenance platform. These data constitute all the incidents and breakdowns
occurring in a mobile telephony network, and the parameters which characterize
them. These parameters are, among other things, the severity of the alarm, its
identifier, the name of the failures, the type of node (eNodeB) on which the fail-
ure occurred, the site name and the location. Table 1 is an extract of the data
under consideration.

The complete dataset is made up of 35,608 rows and 25 columns of which 19
are of Object type (Object), 5 of Integer type (Int64) and 1 of real type (Float64).
The following python code lists the columns of the dataset.

Before implementing the prediction algorithms, some descriptive analysis
on the data have been first performed with the aid of some tools offered by the
Anaconda environment through its Numpy and Matplotlib libraries. These
analyses allowed us to determine, through the variation curve, the level of use
of the SOLUTION_ID parameter, and the degree of correlation between the
SOLUTION_ID parameter and the other parameters of the database, and the
correlation diagram. Figure 3 is a diagram that represents the occupancy size of
each data type in this dataset: 80% for Object type data, 17% for Integer type da-
ta, and 3% for Real types.

The histogram of the Solution_ID variable presented in Figure 4 let us to have
the percentage of variations of solutions used in the system.

https://doi.org/10.4236/jcc.2022.1012010

B. Bernabe et al.

DOI: 10.4236/jcc.2022.1012010 130 Journal of Computer and Communications

Table 1. An extract of the dataset considered for this study.

Severity
Alarm
ID

Name NE Type Location Information Additional Information
Occurred
On (NT)

Critical 65034
AC Power
Failure

BTS3900
Cabinet No. = 0, Subrack No. = 0, Slot No. = 19,
Port No. = 0, Board Type = UPEU

RAT_INFO = UL,
AFFECTED_RAT = UL,
DID = NULL

08/17/2019
17:24:46

Major 65041
Battery Fuse
Break

BTS3900
Cabinet No. = 0, Subrack No. = 0, Slot No. = 19,
Port No. = 7, Board Type = UPEU

RAT_INFO = UL,
AFFECTED_RAT = UL,
DID = NULL

08/17/2019
17:25:54

Major 26232

BBU Optical
Module
Transmit/Receive
Fault

BTS3900
Cabinet No. = 0, Subrack No. = 0, Slot No. = 1,
Port No. = 0, Board Type = UBBP, Specific
Problem = Receive Power Too Low

RAT_INFO = UL,
AFFECTED_RAT = U,
DID = NULL, Cumulative
Duration(s) = 90

08/17/2019
17:26:25

Major 25888 SCTP Link Fault BTS3900
Link No. = 6, Description = NULL, Peer IP
Address = 10.32.248.251, Service Type = NCP

RAT_INFO = UL,
AFFECTED_RAT = U,
DID = NULL

08/17/2019
17:27:14

Major 25888 SCTP Link Fault BTS3900
Link No. = 7, Description = NULL, Peer IP
Address = 10.32.248.250, Service Type = CCP

RAT_INFO = UL,
AFFECTED_RAT = U,
DID = NULL

08/17/2019
17:27:14

Major 25888 SCTP Link Fault BTS3900
Link No. = 0, Description = YDE MME, Peer IP
Address = 10.31.102.1, Service Type = S1-AP

RAT_INFO = UL,
AFFECTED_RAT = L,
DID = NULL

08/17/2019
17:27:14

Major 25888 SCTP Link Fault BTS3900
Link No. = 70002, Description = DLA MME,
Peer IP Address = 10.32.202.1, Service Type =
S1-AP

RAT_INFO = UL,
AFFECTED_RAT = L,
DID = NULL

08/17/2019
17:27:14

Minor 26263
IP Clock Link
Failure

BTS3900 Link No. = 0, Server IP Address = 10.32.101.1

RAT_INFO = UL,
AFFECTED_RAT = UL,
DID = NULL, Cumulative
Duration(s) = 30

08/17/2019
17:27:40

Warning 26819

Data
Configuration
Exceeding
Licensed Limit

BTS3900 -
RAT_INFO = UL,
AFFECTED_RAT = L,
DID = NULL

08/17/2019
17:28:18

Major 29240 Cell Unavailable BTS3900

eNodeB Function Name = YDE017_Messassi,
Local Cell ID = 2, Cell FDD TDD indication =
FDD, Cell Name = YDE_11017_2, eNodeB ID =
11017, Cell ID = 2, Specific Problem =
Insufficient license

RAT_INFO = UL,
AFFECTED_RAT = L,
DID = NULL, Cumulative
Duration(s) = 90

08/17/2019
17:28:18

Major 25880
Ethernet Link
Fault

BTS3900
Cabinet No. = 0, Subrack No. = 0, Slot No. = 7,
Port No. = 0, Specific Problem = Ethernet Link
Fault

RAT_INFO = UL,
AFFECTED_RAT = UL,
DID = NULL

08/17/2019
17:24:36

Major 25880
Ethernet Link
Fault

BTS3900
Cabinet No. = 0, Subrack No. = 0, Slot No. = 7,
Port No. = 0, Specific Problem = Ethernet Link
Fault

RAT_INFO = UL,
AFFECTED_RAT = UL,
DID = NULL

08/17/2019
17:31:26

Major 29240 Cell Unavailable BTS3900

eNodeB Function Name =
YDE056_Bastos_ARMP, Local Cell ID = 10,
Cell FDD TDD indication = FDD, Cell Name =
YDE_11056W_0, eNodeB ID = 11056, Cell ID =
10, Specific Problem = External Link Fault

RAT_INFO = UL,
AFFECTED_RAT = L,
DID = NULL

08/17/2019
17:25:12

https://doi.org/10.4236/jcc.2022.1012010

B. Bernabe et al.

DOI: 10.4236/jcc.2022.1012010 131 Journal of Computer and Communications

Figure 3. Diagram of the variable types listed in our dataset.

Figure 4. Histogram of the Solution_ID variable.

The analysis of correlations through a heatmap makes it possible to represent

correlations (or relationships) between variables graphically as seen in Figure 5
[14]. The closer the value is to 1 (dark red color), the more positive and strong
the correlation is. Conversely, the closer the correlation is to −1 (dark blue), the
more the correlation is negative and strong [13].

One can observe from the results that the variable Solution_ID is negatively
correlated to Severity_ID, Alarm_ID; ID_Source, Log Serial Number and
Equipment Alarm Serial Number.

3.3. Creation of Training and Test Sample

After the descriptive analysis of our data, it is a question of defining the sample
of data on which our learning should be performed, as well as the test sample
data. As part of our work, 70% of the data has been used for learning and 30%
for testing. The following python codes were used to generate these sub datasets:

https://doi.org/10.4236/jcc.2022.1012010

B. Bernabe et al.

DOI: 10.4236/jcc.2022.1012010 132 Journal of Computer and Communications

Figure 5. Heatmap of correlations between variables.

#creation of 4 datasets:
- x_train contains 70% of x
- y_train contains the Solution_ID associated with x_train
=> x_train and y_train will train the algorithm

- x_test contains 30% of x
- y_test contains the Solution_ID associated with x_test
=> x_test and y_test will evaluate the performance of the algorithm once

trained on the train
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(dff,Y,test_size=0.30,

random_state=2020).

3.4. Learning and Building Prediction Models

After the creation of the data sets for training and for testing, it was then a ques-
tion of applying a learning model on them. As it is said previously, the data to be
predicted being discrete data, that is phased with a classification problem (un-
supervised learning), and not a regression one (supervised learning). It is re-
minded that the best classification model will be selected amongst the KNN, the
Decision Tree and the Random Forest algorithms. The next section will present
the results obtained after the implementation of each method and the data set.
[15].

3.5. Results and Discussions

Here are presented the results obtained after the implementation of the three
machine learning methods above on the dataset obtained from the Huawei
U2020 MBB platform.

https://doi.org/10.4236/jcc.2022.1012010

B. Bernabe et al.

DOI: 10.4236/jcc.2022.1012010 133 Journal of Computer and Communications

3.5.1. Prediction with the K-NN Algorithm
The algorithm has been imported from the sklearn library using the following
code:

from sklearn.neighbors import KNeighborsClassifier
Then the KNN model is created, having randomly 10 neighbours. The fol-

lowing line shows the appropriate python code:
model_KNN = KNeighborsClassifier(n_neighbors=10)
And the learning on of the dataset started. The python code to invoke for this

is the following:
model_KNN.fit(x_train, y_train)
For different values of the neighbour number K, different prediction error

values got out as seen in Table 2.
By optimizing the score on the test data in graphical representation, the best

prediction is obtained for K = 1. Figure 6 represents the evolution of KNN test
scores as a function of the number of neighbours K. The abscissa axis contains
the number of neighbours K to be considered, while the ordinate axis returns the
value of the corresponding error rate.

Thus for K = 1, the K-nearest neighbour algorithm predicts the solution to be
applied to the system with the least error of 10.85%.

3.5.2. Prediction with the Decision Tree
To do this, the import of the algorithm concerned is done from the sklearn li-
brary via the following python code:

from sklearn.tree import DecisionTreeClassifier
Then, the creation of a decision tree is done with a depth of 1 via the following

code:
model_DT = DecisionTreeClassifier(random_state=40, max_depth=1)
And the learning on of the training dataset started. The following code is ex-

ecuted:
model_DT.fit(x_train, y_train)
After the classification test, the accuracy error is 0.602873. In order to optim-

ize this error, the evolution curve of the error is plotted as a function of the
depth of the tree. The result obtained indicates the optimal error for a maximum
depth of 13 as illustrated in Figure 7. The graph has as abscissa, the values of the
depth of the tree, and as ordinate, the value of the error of prediction observed
by the algorithm.

Thus, after running the decision tree model with a maximum depth of 13, a
prediction of the solutions to be applied is obtained with an optimal error rate of
1.4365%.

3.5.3. Prediction with Random Forest
To perform prediction with random forest, algorithm from the sklearn library is
imported via the following python code:

from sklearn.ensemble import RandomForestClassifier

https://doi.org/10.4236/jcc.2022.1012010

B. Bernabe et al.

DOI: 10.4236/jcc.2022.1012010 134 Journal of Computer and Communications

Then, the creation of a random forest of 300 trees is done using the following
code:

model_RF=RandomForestClassifier(n_estimators=300, random_state=2020)
Learning on our training dataset was then performed with the following py-

thon code:
model_RF.fit(x_train, y_train)
By running this model, with the number of trees = 300, a predicted solution is

obtained with an error rate of 1.8437%. This rate remained optimal because after
optimization, the number of trees to be used in this model was 303, still with an
error rate of 1.8437%.

At the end of the experimentation that was carried out in the previous para-
graphs, the machine learning model chosen is the decision tree. Indeed, this
model is retained because it predicts the optimal solution of a failure occurring
in the network with an accuracy of 1.4% as presented in Table 3.

Table 2. Value of precision error for different values of the neighbour number K.

K Error

1 0.108585

2 0.120801

5 0.148286

10 0.170682

Table 3. Test results and performance metrics.

Model used Meta-parameter value Precision error

K-Nearest Neighbor (K-NN) Number of neighbor K = 1 10.8585%

Decision tree Shaft depth p = 13 1.4365%

Random forest Number of trees n = 303 1.8437%

Figure 6. Evolution of KNN test scores as a function of the number of
neighbour K.

https://doi.org/10.4236/jcc.2022.1012010

B. Bernabe et al.

DOI: 10.4236/jcc.2022.1012010 135 Journal of Computer and Communications

Figure 7. Evolution of DT test scores as a function of tree depth.

The results obtained from our experimentations allow us to predict the faults

and incidents and the solutions to be applied with a fairly low error rate of <2%.
The system not subject to machine learning offered more or less exact fault solu-
tions, depending on the level of expertise of the engineer in charge of mainten-
ance. So, for maintenance engineer with no experience, it is more difficult to
maintain the network, and the down time can be big, thereby reducing the net-
work availability and customers’ satisfaction. The work carried out and explored
in the method section here shows us that the exploitation of machine learning in
the maintenance of mobile networks has brought great efficiency. However,
these works present only the detection of faults, and not their resolution. With
the advent of expert systems, the problem began to be addressed, but was sty-
mied by the fact that these systems very quickly become obsolete in the face of a
dynamic and extended environment. The use of the decision tree as a supervised
learning model thus enables the system to learn the solutions of past failures in
order to predict those to come. The methodical learning offered by Machine
Learning models therefore brings a step forward towards the intelligent
processing of mobile network maintenance work. Also, once the failure has been
diagnosed, the solution to be applied will be directly proposed in order to be im-
plemented.

4. Conclusions

Customers consuming mobile telephony services are increasingly demanding,
not only in terms of their quality, but also in terms of their availability. Opera-
tors are therefore called upon to multiply their efforts and performances in order
to guarantee not only the quality of service, but also the quality of experience by
reducing the downtime of services. The use of Artificial Intelligence techniques,
in particular Machine Learning, considerably reduces the service disruption
time. Three machine learning techniques are presented in this study and com-
pared with regard to accuracy. Only one hyper parameter has been varied for
each technique so that the design process is simplified. This study demonstrates

https://doi.org/10.4236/jcc.2022.1012010

B. Bernabe et al.

DOI: 10.4236/jcc.2022.1012010 136 Journal of Computer and Communications

that the appropriate machine learning technique improves the accuracy of the
model. By using the decision tree as a machine learning model, it was possible to
predict solutions to network failures, with an error rate less than 2%. In addition,
the use of Machine Learning makes it possible to eliminate steps in the network
failure processing chain; resulting in reduced service disruption time and im-
proved the network availability which is a key network performance index.

Out of the panoply of machine learning solutions or algorithms available, it
was a question for us to determine the model that will provide the expected re-
sult with the lowest possible error rate. Also, it is deduced that with the decision
tree model, failure solutions could be predicted with an accuracy error of less
than 2%. This reduces the time taken by the engineers who, after consulting the
alarm management system, must analyze the fault and find the appropriate solu-
tion. The use of machine learning solution, therefore, constitutes an effective de-
cision support tool in the sense that not only the failure analysis time is reduced,
or even eliminated, but the proposed solution is the right one at least at 98%.

However, improvements could always be made to this model with the aim of
further reducing the accuracy error rate and getting closer to 0%. Moreover, re-
search work could be undertaken with the aim of producing an end-to-end
Self-Healing solution for mobile networks.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Paquette, G. (2002) Modélisation des connaissances et des compérences. Presse de

l’Université du Québec, Québec.

[2] Jean-Paul Pallois, M.D. (2018) IA: Rendre les réseaux mobiles intelligents. IA
Technologies d’apprentissage, n° %14/2018.
https://www.semanticscholar.org/author/Jean-Paul-Pallois/134200585

[3] HOUNKONNOU (2013) Semi-Automatic Modeling Approach Based on Patterns
or “Patterns”.

[4] Chahineze, S. (2016) Optimization of the Radio Parameters of the 4G Mobile Net-
work by Fuzzy Logic.

[5] Deussom, E., Matemtsap, M.B., Tchagna, K.A., et al. (2022) Machine Learning-
Based Approach for Designing and Implementing a Collaborative Fraud Detection
Model through CDR and Traffic Analysis. Transactions on Machine Learning and
Artificial Intelligence, 10, 46-58. https://doi.org/10.14738/tmlai.104.12854

[6] Sultan, K., et al. (2018) Call Detail Records Driven Anomaly Detection and Traffic
Prediction in Mobile Cellular Networks. IEEE Access, 6, 41728-41737.
https://doi.org/10.1109/ACCESS.2018.2859756

[7] Trinh, D.H., et al. (2019) Detecting Mobile Traffic Anomalies through Physical
Control Channel Fingerprinting: A Deep Semi-Supervised Approach. IEEE Access,
7, 152187-152201. https://doi.org/10.1109/ACCESS.2019.2947742

[8] Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.

https://doi.org/10.4236/jcc.2022.1012010
https://www.semanticscholar.org/author/Jean-Paul-Pallois/134200585
https://doi.org/10.14738/tmlai.104.12854
https://doi.org/10.1109/ACCESS.2018.2859756
https://doi.org/10.1109/ACCESS.2019.2947742

B. Bernabe et al.

DOI: 10.4236/jcc.2022.1012010 137 Journal of Computer and Communications

https://doi.org/10.1023/A:1010933404324

[9] Mint, M. (2018) Machine Learning Made Easy.
https://thenewstack.io/machine-learning-made-easy/

[10] Bénard, A.
https://blog.ysance.com/algorithme-n1-comprendre-ce-quest-un-arbre-de-decision
-en-5-min

[11] O’Neil, C. (2019) Weapons of Math Destruction.
https://en.wikipedia.org/wiki/Weapons_of_Math_Destruction

[12] Saint-Cirgue, G. (2019) Apprentissage supervisé.
https://machinelearnia.com/apprentissage-supervise-4-etapes

[13] Vieille, M.-J.
https://www.lovelyanalytics.com/2020/06/08/random-forest-tutoriel-python

[14] Jakobson, G. (1993) Alarm Correlation. IEEE Network, 6, 52-59.
https://doi.org/10.1109/65.244794

[15] Amini, M.-R. (2015) Apprentissage Machine de la théorie à la pratique, Eyrolles.
https://hal.archives-ouvertes.fr/hal-01211214

https://doi.org/10.4236/jcc.2022.1012010
https://doi.org/10.1023/A:1010933404324
https://thenewstack.io/machine-learning-made-easy/
https://blog.ysance.com/algorithme-n1-comprendre-ce-quest-un-arbre-de-decision-en-5-min
https://blog.ysance.com/algorithme-n1-comprendre-ce-quest-un-arbre-de-decision-en-5-min
https://en.wikipedia.org/wiki/Weapons_of_Math_Destruction
https://machinelearnia.com/apprentissage-supervise-4-etapes
https://www.lovelyanalytics.com/2020/06/08/random-forest-tutoriel-python
https://doi.org/10.1109/65.244794
https://hal.archives-ouvertes.fr/hal-01211214

	Comparing Machine Learning Algorithms for Improving the Maintenance of LTE Networks Based on Alarms Analysis
	Abstract
	Keywords
	1. Introduction
	2. Materials and Methods
	2.1. The K-Nearest Neighbour (K-NN)
	2.2. The Decision Tree (DT)
	2.3. Random Forests (RF)

	3. Presentation and Analysis of Result
	3.1. Environment and Tools Used
	3.2. Data Processing
	3.3. Creation of Training and Test Sample
	3.4. Learning and Building Prediction Models
	3.5. Results and Discussions
	3.5.1. Prediction with the K-NN Algorithm
	3.5.2. Prediction with the Decision Tree
	3.5.3. Prediction with Random Forest

	4. Conclusions
	Conflicts of Interest
	References

