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Abstract 
Mobile network operators are facing many challenges to satisfy their sub-
scribers in terms of quality of service and quality of experience provided. To 
achieve this goal, technological progress and scientific advances offer good 
opportunities for efficiency in the management of faults occurring in a mo-
bile network. Machine learning techniques allow systems to learn from past 
experiences and can predict, solutions to be applied to correct the root cause 
of a failure. This paper evaluates machine learning techniques and identifies 
the decision tree as a learning model that provides the most optimal error rate 
in predicting outages that may occur in a mobile network. Three machine 
learning techniques are presented in this study and compared with regard to 
accuracy. This study demonstrates that the appropriate machine learning 
technique improves the accuracy of the model. By using the decision tree as a 
machine learning model, it was possible to predict solutions to network fail-
ures, with an error rate less than 2%. In addition, the use of Machine Learning 
makes it possible to eliminate steps in the network failure processing chain; 
resulting in reduced service disruption time and improved the network 
availability which is a key network performance index. 
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1. Introduction 

Mobile network operations have grown enormously and rapidly over the past 
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two decades. If satisfaction on the side of subscribers based on the services pro-
vided by these mobile networks is appreciable, this is due to a maintenance team 
of engineers in the back office who are responsible (full-time) for ensuring the 
maintenance of the network and the usage of new network management tech-
niques that call on artificial intelligence applied to network management and 
maintenance [1]. Some vendors like Huawei have modified their initial man-
agement platform to virtualization based solution which includes the network 
analysis module based on machine learning [2]. It will be interesting to explore, 
through this work, the usage of machine learning algorithms that can contribute 
to the optimization of an LTE FDD mobile network opened to public services. 

Many authors have been interested in the usage of artificial intelligence and 
other techniques applied to maintenance system. For example, in 2013, HOUN- 
KONNOU worked on a semi-automatic modeling approach based on patterns 
that generically describe the dependencies between the resources used by the 
services of the IMS (IP Multimedia Subsystem) network [3]. Seghier [4] worked 
on “Optimization of the radio parameters of the 4G mobile network by fuzzy 
logic”. He dealt with the optimization of radio parameters in the LTE network, 
by integrating fuzzy logic to help the network to make the decision to perform a 
Hand Over or not. Deussom et al. [5] worked on “Machine learning-based ap-
proach for designing and implementing a collaborative fraud detection model 
through CDR and traffic analysis”. In their work, they used machine learning to 
detect and identify fraud in the mobile network billing system by using the Call 
detail records and traffic. Sultan et al. [6] presented “Call Detail Records Driven 
Anomaly Detection and Traffic Prediction in Mobile Cellular Networks”. Trinh 
et al. [7] worked on “Detecting Mobile Traffic Anomalies through Physical Con-
trol Channel Fingerprinting: A Deep Semi-Supervised Approach”. 

Our analysis of these research works triggered the following striking question: 
Which Machine Learning algorithms can follow the learning of the operations 
carried out by human operators not only to determine the failure that has oc-
curred in the system, but, above all, to propose a solution or the most exact me-
thod of solving the failure? This question leads us to hypothesize that: A Ma-
chine Learning algorithm that learns from past outage processing operations of 
LTE mobile networks can predict new outages, anticipate their processing and 
thus significantly reduce the disruption time and therefore improve the quality 
of service. 

The objective of this work is to evaluate the precision of different machine 
learning algorithms by using data collected from an alarm management system 
and propose a model for predicting solutions to failures (incidents) occurring in 
a mobile network in order to reduce the downtime.  

Specifically, it is a question of proposing a model capable of:  
1) Controlling the failure that has occurred in the system;  
2) Predicting, with a relatively lower error rate, the solution to be applied in 

the event of a failure;  
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3) Reducing the search time for solutions which is currently of the order of 
several minutes, or an hour;  

4) Reducing service disruption times, and  
5) Improving or even increase customer satisfaction (QoE: Quality of Expe-

rience). 
The rest of this article presents, in the next section, the materials and me-

thods, and the machine learning algorithms that will be explored. The fourth 
section deals with the presentation and analysis of result within the experimen-
tation carried out and the results obtained based on data collected on a live 4G 
network working in 1800 MHz and 2100 MHz bands using Huawei U2020 MBB 
management platform. This section will also present the discussions of the re-
sults obtained. Finally a general conclusion and perspectives are provided. 

2. Materials and Methods 

In the context of the present work, the research was done by using real data col-
lected on a 4G LTE network in Cameroon using Huawei U2020 MBB. The alarm 
management feature of the U2020 was selected to monitor the network alarms 
and process the alarms based on their severity, types, sources and impact on the 
network (see Figure 1 which presents the appearance of the alarm management 
platform of the U2020). Hence, the target data to be predicted are discrete data. 
Algorithms used for the classification of the collected data, as well as for the pre-
diction of our target are presented and reviewed below: K-nearest neighbour 
(K-NN); decision tree; and random forest algorithms [8]. 
 

 
Figure 1. Structure of U2020 Alarm management system. 
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2.1. The K-Nearest Neighbour (K-NN) 

The K-Nearest Neighbour (K-NN) is a supervised machine learning algorithm 
that needs only one hyper parameter. According to the method, if the majority 
of k samples most similar to one sample (nearest neighbours in the eigenspace) 
belong to a specific category, the sample also belongs to this category [9].  

2.2. The Decision Tree (DT)  

The decision tree is a model that employs a hierarchical representation of the 
data structure in the form of sequences of decisions (tests) for the prediction of 
an outcome or a class [10]. Each individual (or observation), which must be as-
signed to a class, is described by a set of variables which are tested in the nodes 
of the tree. Tests are performed in internal nodes and decisions are made in leaf 
nodes [11]. 

2.3. Random Forests (RF) 

The “Random Forest” algorithm is a classification algorithm that reduces the 
error of predictions from a single decision tree, thus improving their perfor-
mance. For this, it combines many decision trees in a bagging type approach [8]. 
The word “bagging” is a contraction of Bootstrap Aggregation. It is a technique 
used to improve classification, especially those from decision trees. 

In order to train the system to recognize failures and to propose the most op-
timal solution, an approach borrowed from “data science” has been followed. 
Indeed, on a dataset collected from the databases of the operation and mainten-
ance center of a mobile telephone operator for a given period, the three Machine 
Learning algorithms presented above have been executed, with the aim of se-
lecting the algorithm that will give us the best results with minimal error margin. 
Figure 2 shows the framework for determining the most accurate model [12]. 
The process is as follows: 
 Dataset processing; 
 

 
Figure 2. Framework of determination of the right model. 
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 Normalization/coding of variables; 
 Determination of the model and its parameters; 
 Learning; 
 Testing and interpretation of results. 

Figure 2 presents the framework for the determination of the right model. 

3. Presentation and Analysis of Result  
3.1. Environment and Tools Used 

To run machine learning algorithms in our computer, the Python version 3.8 
programming language have been used. It is the reference language used in the 
development of applications for artificial intelligence. The Python distribution 
that is used is the one provided by Anaconda (it contains all the tools and libra-
ries needed to do Machine Learning, namely Numpy, Matplotlib, sklearn, Jupi-
ter, Spider…etc). Package versions are managed by the management system 
conda packets. The Anaconda distribution is used by more than 6 million users 
and includes over 250 popular data science packages suitable for Windows, Li-
nux and MacOS [9] [13].  

3.2. Data Processing 

As seen in the previous section, the dataset refers to the set of examples that the 
machine must study. In the case of this study, the examples to be studied by the 
machine consist of data extracted from U2020 MBB involving operation and 
maintenance platform. These data constitute all the incidents and breakdowns 
occurring in a mobile telephony network, and the parameters which characterize 
them. These parameters are, among other things, the severity of the alarm, its 
identifier, the name of the failures, the type of node (eNodeB) on which the fail-
ure occurred, the site name and the location. Table 1 is an extract of the data 
under consideration. 

The complete dataset is made up of 35,608 rows and 25 columns of which 19 
are of Object type (Object), 5 of Integer type (Int64) and 1 of real type (Float64). 
The following python code lists the columns of the dataset. 

Before implementing the prediction algorithms, some descriptive analysis 
on the data have been first performed with the aid of some tools offered by the 
Anaconda environment through its Numpy and Matplotlib libraries. These 
analyses allowed us to determine, through the variation curve, the level of use 
of the SOLUTION_ID parameter, and the degree of correlation between the 
SOLUTION_ID parameter and the other parameters of the database, and the 
correlation diagram. Figure 3 is a diagram that represents the occupancy size of 
each data type in this dataset: 80% for Object type data, 17% for Integer type da-
ta, and 3% for Real types. 

The histogram of the Solution_ID variable presented in Figure 4 let us to have 
the percentage of variations of solutions used in the system. 
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Table 1. An extract of the dataset considered for this study. 

Severity 
Alarm 
ID 

Name NE Type Location Information Additional Information 
Occurred  
On (NT) 

Critical 65034 
AC Power  
Failure 

BTS3900 
Cabinet No. = 0, Subrack No. = 0, Slot No. = 19, 
Port No. = 0, Board Type = UPEU 

RAT_INFO = UL, 
AFFECTED_RAT = UL,  
DID = NULL 

08/17/2019 
17:24:46 

Major 65041 
Battery Fuse 
Break 

BTS3900 
Cabinet No. = 0, Subrack No. = 0, Slot No. = 19, 
Port No. = 7, Board Type = UPEU 

RAT_INFO = UL, 
AFFECTED_RAT = UL,  
DID = NULL 

08/17/2019 
17:25:54 

Major 26232 

BBU Optical 
Module  
Transmit/Receive 
Fault 

BTS3900 
Cabinet No. = 0, Subrack No. = 0, Slot No. = 1, 
Port No. = 0, Board Type = UBBP, Specific 
Problem = Receive Power Too Low 

RAT_INFO = UL, 
AFFECTED_RAT = U,  
DID = NULL, Cumulative  
Duration(s) = 90 

08/17/2019 
17:26:25 

Major 25888 SCTP Link Fault BTS3900 
Link No. = 6, Description = NULL, Peer IP 
Address = 10.32.248.251, Service Type = NCP 

RAT_INFO = UL, 
AFFECTED_RAT = U,  
DID = NULL 

08/17/2019 
17:27:14 

Major 25888 SCTP Link Fault BTS3900 
Link No. = 7, Description = NULL, Peer IP 
Address = 10.32.248.250, Service Type = CCP 

RAT_INFO = UL, 
AFFECTED_RAT = U,  
DID = NULL 

08/17/2019 
17:27:14 

Major 25888 SCTP Link Fault BTS3900 
Link No. = 0, Description = YDE MME, Peer IP 
Address = 10.31.102.1, Service Type = S1-AP 

RAT_INFO = UL, 
AFFECTED_RAT = L,  
DID = NULL 

08/17/2019 
17:27:14 

Major 25888 SCTP Link Fault BTS3900 
Link No. = 70002, Description = DLA MME, 
Peer IP Address = 10.32.202.1, Service Type = 
S1-AP 

RAT_INFO = UL, 
AFFECTED_RAT = L,  
DID = NULL 

08/17/2019 
17:27:14 

Minor 26263 
IP Clock Link 
Failure 

BTS3900 Link No. = 0, Server IP Address = 10.32.101.1 

RAT_INFO = UL, 
AFFECTED_RAT = UL,  
DID = NULL, Cumulative  
Duration(s) = 30 

08/17/2019 
17:27:40 

Warning 26819 

Data  
Configuration 
Exceeding  
Licensed Limit 

BTS3900 - 
RAT_INFO = UL, 
AFFECTED_RAT = L,  
DID = NULL 

08/17/2019 
17:28:18 

Major 29240 Cell Unavailable BTS3900 

eNodeB Function Name = YDE017_Messassi, 
Local Cell ID = 2, Cell FDD TDD indication = 
FDD, Cell Name = YDE_11017_2, eNodeB ID = 
11017, Cell ID = 2, Specific Problem =  
Insufficient license 

RAT_INFO = UL, 
AFFECTED_RAT = L,  
DID = NULL, Cumulative  
Duration(s) = 90 

08/17/2019 
17:28:18 

Major 25880 
Ethernet Link 
Fault 

BTS3900 
Cabinet No. = 0, Subrack No. = 0, Slot No. = 7, 
Port No. = 0, Specific Problem = Ethernet Link 
Fault 

RAT_INFO = UL, 
AFFECTED_RAT = UL,  
DID = NULL 

08/17/2019 
17:24:36 

Major 25880 
Ethernet Link 
Fault 

BTS3900 
Cabinet No. = 0, Subrack No. = 0, Slot No. = 7, 
Port No. = 0, Specific Problem = Ethernet Link 
Fault 

RAT_INFO = UL, 
AFFECTED_RAT = UL,  
DID = NULL 

08/17/2019 
17:31:26 

Major 29240 Cell Unavailable BTS3900 

eNodeB Function Name = 
YDE056_Bastos_ARMP, Local Cell ID = 10, 
Cell FDD TDD indication = FDD, Cell Name = 
YDE_11056W_0, eNodeB ID = 11056, Cell ID = 
10, Specific Problem = External Link Fault 

RAT_INFO = UL, 
AFFECTED_RAT = L,  
DID = NULL 

08/17/2019 
17:25:12 
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Figure 3. Diagram of the variable types listed in our dataset. 

 

 
Figure 4. Histogram of the Solution_ID variable. 

 
The analysis of correlations through a heatmap makes it possible to represent 

correlations (or relationships) between variables graphically as seen in Figure 5 
[14]. The closer the value is to 1 (dark red color), the more positive and strong 
the correlation is. Conversely, the closer the correlation is to −1 (dark blue), the 
more the correlation is negative and strong [13]. 

One can observe from the results that the variable Solution_ID is negatively 
correlated to Severity_ID, Alarm_ID; ID_Source, Log Serial Number and 
Equipment Alarm Serial Number. 

3.3. Creation of Training and Test Sample 

After the descriptive analysis of our data, it is a question of defining the sample 
of data on which our learning should be performed, as well as the test sample 
data. As part of our work, 70% of the data has been used for learning and 30% 
for testing. The following python codes were used to generate these sub datasets: 
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Figure 5. Heatmap of correlations between variables. 

 
#creation of 4 datasets: 
# - x_train contains 70% of x 
# - y_train contains the Solution_ID associated with x_train 
# => x_train and y_train will train the algorithm 
# 
# - x_test contains 30% of x 
# - y_test contains the Solution_ID associated with x_test 
# => x_test and y_test will evaluate the performance of the algorithm once 

trained on the train 
from sklearn.model_selection import train_test_split 
x_train,x_test,y_train,y_test=train_test_split(dff,Y,test_size=0.30,  

random_state=2020). 

3.4. Learning and Building Prediction Models  

After the creation of the data sets for training and for testing, it was then a ques-
tion of applying a learning model on them. As it is said previously, the data to be 
predicted being discrete data, that is phased with a classification problem (un-
supervised learning), and not a regression one (supervised learning). It is re-
minded that the best classification model will be selected amongst the KNN, the 
Decision Tree and the Random Forest algorithms. The next section will present 
the results obtained after the implementation of each method and the data set. 
[15]. 

3.5. Results and Discussions 

Here are presented the results obtained after the implementation of the three 
machine learning methods above on the dataset obtained from the Huawei 
U2020 MBB platform. 
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3.5.1. Prediction with the K-NN Algorithm 
The algorithm has been imported from the sklearn library using the following 
code: 

from sklearn.neighbors import KNeighborsClassifier 
Then the KNN model is created, having randomly 10 neighbours. The fol-

lowing line shows the appropriate python code: 
model_KNN = KNeighborsClassifier(n_neighbors=10) 
And the learning on of the dataset started. The python code to invoke for this 

is the following: 
model_KNN.fit(x_train, y_train) 
For different values of the neighbour number K, different prediction error 

values got out as seen in Table 2. 
By optimizing the score on the test data in graphical representation, the best 

prediction is obtained for K = 1. Figure 6 represents the evolution of KNN test 
scores as a function of the number of neighbours K. The abscissa axis contains 
the number of neighbours K to be considered, while the ordinate axis returns the 
value of the corresponding error rate. 

Thus for K = 1, the K-nearest neighbour algorithm predicts the solution to be 
applied to the system with the least error of 10.85%. 

3.5.2. Prediction with the Decision Tree 
To do this, the import of the algorithm concerned is done from the sklearn li-
brary via the following python code: 

from sklearn.tree import DecisionTreeClassifier 
Then, the creation of a decision tree is done with a depth of 1 via the following 

code: 
model_DT = DecisionTreeClassifier(random_state=40, max_depth=1) 
And the learning on of the training dataset started. The following code is ex-

ecuted: 
model_DT.fit(x_train, y_train) 
After the classification test, the accuracy error is 0.602873. In order to optim-

ize this error, the evolution curve of the error is plotted as a function of the 
depth of the tree. The result obtained indicates the optimal error for a maximum 
depth of 13 as illustrated in Figure 7. The graph has as abscissa, the values of the 
depth of the tree, and as ordinate, the value of the error of prediction observed 
by the algorithm. 

Thus, after running the decision tree model with a maximum depth of 13, a 
prediction of the solutions to be applied is obtained with an optimal error rate of 
1.4365%. 

3.5.3. Prediction with Random Forest 
To perform prediction with random forest, algorithm from the sklearn library is 
imported via the following python code: 

from sklearn.ensemble import RandomForestClassifier 
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Then, the creation of a random forest of 300 trees is done using the following 
code: 

model_RF=RandomForestClassifier(n_estimators=300, random_state=2020) 
Learning on our training dataset was then performed with the following py-

thon code: 
model_RF.fit(x_train, y_train) 
By running this model, with the number of trees = 300, a predicted solution is 

obtained with an error rate of 1.8437%. This rate remained optimal because after 
optimization, the number of trees to be used in this model was 303, still with an 
error rate of 1.8437%. 

At the end of the experimentation that was carried out in the previous para-
graphs, the machine learning model chosen is the decision tree. Indeed, this 
model is retained because it predicts the optimal solution of a failure occurring 
in the network with an accuracy of 1.4% as presented in Table 3. 

 
Table 2. Value of precision error for different values of the neighbour number K. 

K Error 

1 0.108585 

2 0.120801 

5 0.148286 

10 0.170682 

 
Table 3. Test results and performance metrics. 

Model used Meta-parameter value Precision error 

K-Nearest Neighbor (K-NN) Number of neighbor K = 1 10.8585% 

Decision tree Shaft depth p = 13 1.4365% 

Random forest Number of trees n = 303 1.8437% 

 

 
Figure 6. Evolution of KNN test scores as a function of the number of 
neighbour K. 
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Figure 7. Evolution of DT test scores as a function of tree depth. 

 
The results obtained from our experimentations allow us to predict the faults 

and incidents and the solutions to be applied with a fairly low error rate of <2%. 
The system not subject to machine learning offered more or less exact fault solu-
tions, depending on the level of expertise of the engineer in charge of mainten-
ance. So, for maintenance engineer with no experience, it is more difficult to 
maintain the network, and the down time can be big, thereby reducing the net-
work availability and customers’ satisfaction. The work carried out and explored 
in the method section here shows us that the exploitation of machine learning in 
the maintenance of mobile networks has brought great efficiency. However, 
these works present only the detection of faults, and not their resolution. With 
the advent of expert systems, the problem began to be addressed, but was sty-
mied by the fact that these systems very quickly become obsolete in the face of a 
dynamic and extended environment. The use of the decision tree as a supervised 
learning model thus enables the system to learn the solutions of past failures in 
order to predict those to come. The methodical learning offered by Machine 
Learning models therefore brings a step forward towards the intelligent 
processing of mobile network maintenance work. Also, once the failure has been 
diagnosed, the solution to be applied will be directly proposed in order to be im-
plemented. 

4. Conclusions 

Customers consuming mobile telephony services are increasingly demanding, 
not only in terms of their quality, but also in terms of their availability. Opera-
tors are therefore called upon to multiply their efforts and performances in order 
to guarantee not only the quality of service, but also the quality of experience by 
reducing the downtime of services. The use of Artificial Intelligence techniques, 
in particular Machine Learning, considerably reduces the service disruption 
time. Three machine learning techniques are presented in this study and com-
pared with regard to accuracy. Only one hyper parameter has been varied for 
each technique so that the design process is simplified. This study demonstrates 
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that the appropriate machine learning technique improves the accuracy of the 
model. By using the decision tree as a machine learning model, it was possible to 
predict solutions to network failures, with an error rate less than 2%. In addition, 
the use of Machine Learning makes it possible to eliminate steps in the network 
failure processing chain; resulting in reduced service disruption time and im-
proved the network availability which is a key network performance index. 

Out of the panoply of machine learning solutions or algorithms available, it 
was a question for us to determine the model that will provide the expected re-
sult with the lowest possible error rate. Also, it is deduced that with the decision 
tree model, failure solutions could be predicted with an accuracy error of less 
than 2%. This reduces the time taken by the engineers who, after consulting the 
alarm management system, must analyze the fault and find the appropriate solu-
tion. The use of machine learning solution, therefore, constitutes an effective de-
cision support tool in the sense that not only the failure analysis time is reduced, 
or even eliminated, but the proposed solution is the right one at least at 98%. 

However, improvements could always be made to this model with the aim of 
further reducing the accuracy error rate and getting closer to 0%. Moreover, re-
search work could be undertaken with the aim of producing an end-to-end 
Self-Healing solution for mobile networks. 
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