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Abstract 
Extreme learning machine (ELM) is a feedforward neural network-based 
machine learning method that has the benefits of short training times, strong 
generalization capabilities, and will not fall into local minima. However, due 
to the traditional ELM shallow architecture, it requires a large number of 
hidden nodes when dealing with high-dimensional data sets to ensure its 
classification performance. The other aspect, it is easy to degrade the classifi-
cation performance in the face of noise interference from noisy data. To im-
prove the above problem, this paper proposes a double pseudo-inverse ex-
treme learning machine (DPELM) based on Sparse Denoising AutoEncoder 
(SDAE) namely, SDAE-DPELM. The algorithm can directly determine the 
input weight and output weight of the network by using the pseudo-inverse 
method. As a result, the algorithm only requires a few hidden layer nodes to 
produce superior classification results when classifying data. And its combi-
nation with SDAE can effectively improve the classification performance and 
noise resistance. Extensive numerical experiments show that the algorithm 
has high classification accuracy and good robustness when dealing with high- 
dimensional noisy data and high-dimensional noiseless data. Furthermore, 
applying such an algorithm to Miao character recognition substantiates its ex-
cellent performance, which further illustrates the practicability of the algorithm. 
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1. Introduction 

Extreme Learning Machine (ELM), a brand-new single hidden layer feedforward 
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neural network learning algorithm, was first put forth by Professor Huang of 
Nanyang Technological University in Singapore in 2004 [1]. Since ELM has the 
advantages of short training times and excellent generalization performance, it 
has received extensive attention and investigation from many scholars in the 
fields of pattern classification and data prediction, etc., unlike other convention-
al neural network algorithms (such as BP neural network algorithm [2]). The 
fundamental idea of ELM is to randomly create the input weights and hidden 
layer offsets of the network structure throughout the training phase and preserve 
them unmodified. Then the output weight of ELM is obtained by pseudo inverse 
operation [3]. The whole training process does not need iteration, only the hid-
den layer’s number of neurons and activation function need to be set [4]. At 
present, ELM is being utilized extensively in the detection of diseases [5], the 
understanding of intelligent decision-making [6], and the recognition of traffic 
signs [7]. 

However, it is worth pointing out that the input weights, hidden layer bias, 
and the numbers of hidden layer neurons of the ELM algorithm are uncertain, 
conducting to the disadvantages of high complexity and low stability of the algo-
rithm [8]. In view of this problem, many scholars have carried out a lot of re-
search and experiments. In [9], combining a Memetic Algorithm (MA) and ELM 
to embed the local search strategy into the global optimization framework to 
seek the optimal parameters of the network structure. Moreover, Rong et al. 
proposed the pruned-ELM algorithm [10], which uses statistical methods to 
measure the correlation of hidden nodes and optimizes hidden layer nodes via 
pruning. In [11], a generalized interval-2 type fuzzy neural network establishes 
hidden nodes on the basis of interval-2 type multivariate Gaussian function, rea-
lizes the optimization of ELM hidden layer nodes and achieves good results. Al-
though the aforementioned algorithms can optimize the structure of neurons in 
the hidden layer, the defects that cause a large number of hyperparameters are 
nonnegligible. Hyperparameters are obtained by iterative optimization in the 
process of neural network training, which increases the computational complex-
ity and reduces the real-time stability of the algorithm. To surmount this prob-
lem, a double pseudo-inverse extreme learning machine (DPELM) algorithm is 
proposed in to directly determine the input and output weights of the neural 
network [12], which improves computational efficiency and stability. 

On the other hand, aiming at high-dimensional or noisy data, single hidden 
layer ELM cannot identify data features well, thus affecting the final data classi-
fication results. Many researchers try to solve this problem by combining the 
ELM algorithm with autoencoder, which can not only reduce the computational 
complexity of deep networks, but also reduce the training time. In [13], Cambria 
et al. propose ELM-AE by combining the advantages of ELM and autoencoder, 
which has good feature representation ability and classification performance. On 
this basis, Sun et al. proposed the discriminant Graph regularized extreme 
learning machine autoencoder (GELM-AE) to improve ELM-AE [14], which can 
extract more abstract high-level features and improve the overall performance of 
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the network model. Inspired by the above research, this paper combines SDAE 
and DPELM, and further proposes a double pseudo-inverse extreme learning 
machine based on sparse denoising autoencoder (SDAE-DPELM) [15]. SDAE is 
an improved autoencoder deep learning algorithm, it adds sparse constraints to 
the autoencoder to optimize the network structure, then better extract the deep 
characteristics of the sample data, and enhance the robustness and regulation 
ability of the algorithm. The algorithm uses the sparse denoising automatic en-
coder to extract features from the input data and takes the extracted features as 
the input data of DPELM, and then carries out network training. The network 
training speed is guaranteed while also improving the feature extraction capabil-
ity and noise immunity of the network. 

2. Relate Work  

In this paper, the proposed algorithm is an extension of ELM algorithm. For 
comparison and connection, this section will briefly review the relevant concepts 
of ELM and the necessary theory of SDAE. It includes the combination of origi-
nal ELM and SDAE. 

2.1. Traditional Extreme Learning Machine  

Given ℵ  randomly distinct sample sets ( ),n nx y , where nx  is the input vec-
tor (sample feature) and ny  is the matching sample label vector, with  

( )T
1 2, , , N

n n n nNx x x= ∈x   , ( )T
1 2, , , M

n n n nMy y y= ∈y   . The ELM network 
has the following parameters: N input neurons, 1K  hidden layer neurons, M 
output neurons, and ( )G ⋅  denotes the activation function in the hidden layer 
neuron. The ELM’s output can be expressed as 

( )
1

1 1 1
1 1

, , ,
K

n k k k n
k

G φ
=

= ∑y xλ ζ                       (1) 

1,2, ,n = ℵ , the k1th neuron of the hidden layer with the weight vector in the 
input layer is represented by ( )1 1 1 11 2, , ,k k k k Nζ ζ ζ= ζ , 

1kφ  is a representation 
of the k1th neuron’s bias. ( )1 1 1 11 2, , ,k k k k Mλ λ λ= λ  represents the vector of 
weights of the k1th hidden layer neuron with the output layer. The above linear 
equations can be written in the matrix from 

,=H YΛ                              (2) 

where Y expresses the training sample’s desired output matrix, and  

( ) ( )
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

ζ ζ

ζ ζ

 

is the randomized matrix mapping. Randomly generated the hidden layer neu-
ron parameters ( ),n nφζ  and their values will remain constant throughout the 
training procedure. Given sample data and a known matrix H , obtain the least 
squares solution Λ  of Equation (2), †= H YΛ , †  represents the pseudo-inverse 
of the matrix. 
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2.2. Sparse Denoising Autoencoder  

The traditional autoencoder (AE) has limited ability to reconstruct input data 
and poor ability to extract data features. Sparse autoencoder (SAE) is improved 
by traidional AE. Unlike AE, it adds sparsity constraint to the error function, so 
that most hidden layer nodes are set to 0, a few hidden layer nodes are not 0, and 
the network is more sparse. In this way, the SAE has good adjustment ability, 
which makes the learning process of the model more similar to that of the hu-
man brain, which is conducive to extracting more representative features and 
improving the classification accuracy of the algorithm. The SDAE is based on 
SAE to degrade the original sample data. Its goals are to reduce noise interfe-
rence, enhance data reconstructions, and increase the algorithm’s robustness. 
Figure 1 depicts the structure of the SDAE network.  

Degradation, sparse coding, and decoding are the three stages of the SDAE 
training process. To construct the degraded data X , the original input data da-
ta X  is first set to 0 with the specified deterioration rate v . Then the de-
graded data X  is sparsely encoded to get the encoded data h . Finally, the en-
coded data h  is decoded by SDAE to obtain the reconstructed data Y . Mini-
mizing the loss function ( ),L X Y  obtains the best feature representation of the 
original data. 

The calculation formula of sparse coding and decoding process is shown in 
Equation (3):  

 ( ) ( ) ( ) ( ), ,g fg s w b y f s w b′ ′= = + = = +h X X h h            (3) 

where w and b are the sparse coding weight matrix and offset vector, respectively, 
and ( )s ⋅  is the activation function; typically, a sigmoid function is used. w′  
and b′  are the decoding weight matrix and offset vector, respectively. Given 
the training set ( ) ( ){ }

1
,

Ni i

i
D x y

=
= , the SDAE’s overall loss function is:  

 

 
Figure 1. Network structure diagram of SDAE. 
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( ) ( ) ( )
2

2
2 1

1 ˆ, , .
K

k
D k

L x y J x y KL
N

η ρ ρ
=

= +∑ ∑              (4) 

In Equation (4), the first part ( ) 2
2

1,
2

J x y x y= −  is the square difference  

error term. η  is used to control the weight of the sparse penalty term and can 
take any value between 0 and 1, and 2K  represents the number of hidden layer 
nodes. 

The Kullback-Leibler Divergence (KL) method is used for sparse penalty, as 
shown in Equation (5):  

 ( ) ( )
2

2 2

1ˆ lg 1 lg ,
ˆ ˆ1k

k k

KL ρ ρρ ρ ρ ρ
ρ ρ

   −
= + −      −   

          (5) 

where ( )( )2 21

1ˆ N
k k ii a x

N
ρ

=
= ∑ , represents the average activation value of all  

training samples on hidden layer neuron 2k , and 
2ka  is the activation value on 

hidden layer neuron 2k . To achieve the effect that most of the neurons are in-
hibited, ρ  is generally yielded to a value close to 0. If ρ  takes the value 0.03, 
then by this constraint, the average activation value of each implicit layer neuron 

2k  of the self-encoder will be close to 0.03. 

3. SDAE-DPELM Algorithm Design 
3.1. DPELM Learning Algorithm  

This section focuses on the weight determination method of the improved ELM. 
The DPELM consists of N (input neurons), 1K  (hidden layer neurons) and M 
(output neurons), which is similar to classic ELM. DPELM algorithm is shown 
in Figure 2. By further analyzing the traditional ELM principle, we can rewrite 
Equation (1) as the following equation:  

 ( ) ,G= −Y ZXΛ Φ                        (6) 

where [ ]1 2, , , M ×ℵ
ℵ= ∈Y y y y  , [ ]1 2, , , N×ℵ

ℵ= ∈X x x x  ,  
[ ]1 2, , , Kφ φ φ ×ℵ

ℵ= ∈ Φ , Λ  is the output weight matrix and Z  is the input 
weight matrix,  
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Theorem 1. Assume that activation function ( )G ⋅  is strictly monotonous. 
The bias Φ  and output weights Λ  are generated from interval randomly, the 
ideal input weights ( )( )1G−= +Z Y XΛ Φ† † . 
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Figure 2. DPELM network structure diagram. 

 
The bias Φ  and output weights Λ  are generated from interval randomly, 

Prove: Simultaneously left multiply both sides of Equation (6) by Λ†  to get  

 ( ) ( )† † .G G= − = −Y ZX ZXΛ Λ Λ Φ Φ                (7) 

Then, solve the inverse function of the above equation, we have  

( )1 ,G− = −Y ZXΛ Φ†  

where ( )1G− ⋅  is the inverse function of ( )G ⋅ . The above equation can be re-
written as follows  

 ( )1 .G−= +ZX YΛ Φ†                        (8) 

Finally, we right multiply in both sides of the above equation by †X  to obtain  

( )( )1 ,G−= +ZXX Y XΛ Φ† † †  

that is,  

( )( )1 .G−= +Z Y XΛ Φ† †  

The proof is finished. 
The best output weight is determined using the pseudo-inverse approach once 

the optimal Z  has been found. The formula ( )( )†
G= −Y ZXΛ Φ  can be 

used to determine the value of Λ . 

3.2. Combination Method of SDAE and DPELM  

The DPELM algorithm’s network structure is straightforward, and it can quickly 
classify data. However, the classification performance of the data will be consi-

https://doi.org/10.4236/jcc.2022.1011010


L. Luo et al. 
 

 

DOI: 10.4236/jcc.2022.1011010 144 Journal of Computer and Communications 
 

derably impacted whenever the DPELM algorithm works with high-dimensional 
and noisy data. SDAE is capable of capturing characteristic representations of 
input data. Due to the increased sparsity constraint in SDAE, the network can 
better learn the structural features of the input data and thus better describe the 
input data. Therefore, we consider combining SDAE with DPELM. SDAE is re-
sponsible for extracting the input data required by DPELM, and then DPELM 
classifies the sample data. In addition to successfully reducing noise interference 
and enhancing algorithm robustness, it may also simplify the network topology 
and boost classification performance. Figure 3 depicts the SDAE-DPELM algo-
rithm’s network structure.  

Below is a description of the SDAE-DPELM training process in full.  
● Step 1: The sample data X  is degraded into X . Gradient descent training 

is carried out for SDAE to make the input data of the network equal to the 
output data. When the error function L is below the set threshold, SDAE 
training is finished.  

● Step 2: After the SDAE training process, we obtain the hidden layer data h  
from the SDAE network. h  is the result of a high level of abstraction of the 
original input layer sample data and network parameters. Due to the degra-
dation of the original input and the addition of sparsity constraints to the 
network, the essential characteristics of the input data can be better reflected 
and the algorithm is more robust.  

● Step 3: In this part, we take the extracted h  as input layer sample data of 
DPELM classification algorithm, and use DPELM classification algorithm for 
classification processing. We conducted supervised training on these labeled 
sample data and obtained the fina classification results. At this point, the en-
tire SDAE-DPELM algorithm training is finished.  

 

 
Figure 3. SDAE-DPELM network structure diagram. 
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4. Experimental Results and Analysis 
4.1. Introduction of Experimental Environment and Experimental  

Dataset  

In this section, aimed at examining the performance of our proposed algorithm, 
we will select the MINIST dataset on UCI for multiple experiments. The experi-
mental hardware consists of an Intel(R) Core(TM) i9-10850K CPU 3.60 GHz 
with 16 GB of memory, 64-bit Windows 10, and Matlab 2016(a) as the experi-
mental software.  

4.2. Analysis and Determination of Network Structure  

The number of input layer nodes N and output layer nodes M are fixed during 
process of neural network training, which corresponds to the number of training 
data dimensions and classes, respectively. Therefore, the key to neural network 
structure determination lies in the number of hidden layer nodes K1. To deter-
mine K1, scholars usually use the trial and error method to change the network 
structure according to certain standards for repeated experiments and then use 
the network structure with the best performance. This paper needs to conduct 
comparative experiments on performance impact. The different number of hid-
den layer nodes will affect the objectivity of model performance comparison. In 
SDAE-DPLEM neural network, it is divided into two stages: SDAE feature ex-
traction and DPELM classification. The number of hidden nodes is different at 
different stages, so it has different effects on the performance of the network 
structure. Since it is challenging to count the hidden layer nodes K1 and K2 in 
both phases at once, the following experiments are used in this study to incre-
mentally count the hidden layer nodes in each phase. 

Firstly, this paper selected the MINIST dataset to train ELM and observe the 
relationship curve between ELM hidden layer node K1 and classification perfor-
mance in the training set and test set. The value range of K1 is [100, 2000]. The 
performance trend is shown in Figure 4(a). 

It can be seen from Figure 4(a) that the classification accuracy tends to in-
crease incrementally as hidden layer node K1 increases. Considering the com-
pactness of the ELM algorithm network structure and the cost of training time  
 

 
Figure 4. Influence of hidden layer node number on classification performance. (a) ELM Hidden layer node K1; (b) SDAE hidden 
layer node K2; (c) DPELM hidden layer node K1.  
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burden, 1500 nodes are determined to be the ideal number of ELM hidden layer 
nodes K1. Then, SDAE hidden layer nodes K2 is determined by trial and error 
method again. The variation trend of the classification accuracy of the algorithm 
SDAE-ELM with SDAE hidden layer nodes K2 is shown in Figure 4(b). 

In Figure 4(b), after SDAE hidden layer nodes K2 increases, the classification 
accuracy of SDAE-ELM gradually increases. When K2 gets to 800, the classifica-
tion accuracy is higher, and then there will be a small fluctuation in this range. 
While ensuring high classification accuracy, to reduce the complexity of time 
and space, the convergence of the network needs to be considered. Therefore, K2 
is determined to be 800. 

As can be seen from the Figure 4(c), when DPELM hidden layer nodes K1 is 
less than 400, the classification accuracy of DPELM increases rapidly and reach-
es the highest point at 400. However, with the increasing DPELM hidden layer 
nodes K1, the classification accuracy of DPELM begins to decline. In conclusion, 
in the following experimental analysis and comparison, the optimal DPELM 
hidden layer nodes K1 is set to 400. 

Finally, the optimal network structure 784-800-400-M of SDAE-DPELM is 
determined. Where 784 is the input layer nodes N of the data set and M is the 
number of categories, that is, the output vector. 

4.3. SDAE-DPELM Numerical Comparison Experiment  

SDAE-DPELM is compared to existing DPELM and SDAE-ELM to validate the 
algorithm’s overall performance. Concretely, SDAE-DPELM is compared with 
DPELM to verify the impact of SDAE (sparse denoising autoencoder) on model 
accuracy, and the relevant results are shown in Figure 5(a). Similarly, SDAE- 
ELM is used to verify the superiority of double pseudo inverse and the related 
results are depicted in Figure 5(b). Noteworthy, the four algorithms have N = 
784 nodes in the input layer and M = 10 nodes in the output layer, whose net-
work structures are 784-K1-10, 784-800-K1-10,784-K1-10, 784-800-K1-10, respec-
tively, where 800 is hidden layer nodes K1. 
 

 
Figure 5. Curve of classification accuracy of DPELM, SDAE-ELM and SDAE-DPELM with hidden layer nodes K1. 
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Obviously, SDAE-DPELM is more accurate than DPELM in any number of 
hidden nodes from Figure 5(a). As can been seen from Figure 5(b), when K1 is 
large enough, the identification accuracy of SDAE-ELM in data set MINIST can 
be close to that of SDAE-DPELM, but too many hidden nodes will lead to more 
complex network structure and increase the burden of network training time. 
Therefore, this shows that SDAE-DPELM algorithm is effective by altering the 
conventional weight calculation approach. 

As shown in Figure 6(b), when Gaussian noise (G.N.) is added to the MINIST 
dataset, the classification accuracy of the four models does not decrease signifi-
cantly. The accuracy of data classification by SDAE-DPELM is still around 96%. 
At the same time, when the number of nodes is small, SDAE-DPELM can 
quickly reach a high value of classification accuracy. However, when salt and 
pepper noise (S&P.N.) is added to the data, the classification accuracy of the four 
models decreases to different degrees. SDAE-DPELM reduced classification ac-
curacy by about 3%. Nevertheless, no matter what noise is added, the classifica-
tion accuracy of SDA-DPELM is better than the other three models at any node 
between 0 and 1500. This indicates that SDAE-DPELM has better anti-noise 
than the other three models. 

 

 
Figure 6. Influence of hidden layer nodes K1 on classification accuracy of four algorithms under different noise conditions. (a) No 
noise. (b) G.N. (c) S&P.N. (d) G.N. and S&P.N. 
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4.4. Robustness Analysis of SDAE-DPELM Algorithm  

SDAE-DPELM degenerates the original data samples, and its purpose is to elimi-
nate noise interference and extract more essential features, thereby improving 
the robustness of the model. To verify the robustness of the SDAE-DPELM algo-
rithm, different proportions of white Gaussian noise were added to the MNIST 
data set to compare the classification accuracy of the algorithm. The added 
Gaussian noise is subject to N(0, 0.01), N(0, 0.02), N(0, 0.03), N(0, 0.04), N(0, 
0.05). In order to enhance the persuasiveness of the experiment, this experiment 
is carried out under the condition that the sparsity parameter ρ  is 0.03, 0.05, 
and 0.07. The experimental results are shown in Figure 7. 

It can be seen from Figure 7 that the classification accuracy of the algorithm 
slightly decreases when different proportions of white Gaussian noise are added 
to the dataset. However, when the sparsity parameter E takes different values, 
the variation range of classification accuracy is still less than 2%, which indicates 
that the data with certain noise will not significantly affect the classification ac-
curacy of SDAE-DPELM. 

4.5. Stability Analysis of SDAE-DPELM Algorithm  

To verify the stability of the SDAE-DPELM algorithm, this section compares the 
mean, variance and range of SDAE-DPELM and ELM. Gradually increase the 
number of neurons in the hidden layer of the algorithm, and each time increase 
50 neurons to observe the change of classification accuracy. Because the results 
of each classification of traditional ELM will have certain differences due to the 
different random initialization weights. In order to ensure the objectivity of al-
gorithm comparison results and not be interfered by random values, during the 
experiment, every 50 hidden layer neurons are added, the ELM algorithm and  
 

 
Figure 7. Comparison of SDAE-DPELM accuracy in the MINIST dataset of white Gaus-
sian noise with different proportions. 
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SDAE-DPELM algorithm are required to run 10, 20 and 50 times respectively. 
The average accuracy of the test set is taken as the final classification result of 
each algorithm. The experimental results are shown in Table 1.   

It can be seen from the results in Table 1 that the classification performance 
of SDAE-DPELM algorithm is higher than that of the original ELM no matter 
whether it has been tested 10 times, 20 times or 50 times. In order to further 
analyze the stability of SDAE-DPELM algorithm, the range and variance com-
parison experiments between SDAE-DPELM and ELM are conducted again ac-
cording to the above methods. 

The variance value and the range value reflect the discrete degree of the out-
put results of the two algorithms, which can be used to judge the stability of the 
algorithm output. The greater the dispersion, the more unstable the algorithm is. 
On the contrary, the smaller it is, the better the stability of the algorithm is. As 
can be seen from Figure 8, the variance and range of the proposed algorithm in 
MINIST dataset are smaller than those of the traditional ELM algorithm, indi-
cating that the stability of the proposed algorithm is better than that of the tradi-
tional ELM algorithm. 

 
Table 1. Comparison of ELM and SDAE-DPELM classification average accuracy (%). 

Nodes ELMtimes=10 SDAE-DPELMtimes=10 ELMtimes=20 SDAE-DPELMtimes=20 ELMtimes=50 SDAE-DPELMtimes=50 

50 72.745 95.974 72.357 96.063 72.529 95.888 

100 81.096 95.932 81.499 95.982 81.431 95.946 

150 84.849 95.986 85.021 96.131 84.817 96.018 

200 86.494 96.045 86.712 96.247 86.777 96.146 

250 88.003 96.124 88.066 96.320 88.071 96.248 

300 88.968 96.190 88.982 96.359 88.980 96.288 

350 89.699 96.234 89.730 96.358 89.677 96.296 

400 90.430 96.243 90.323 96.361 90.294 96.290 

450 90.738 96.199 90.732 96.353 90.794 96.283 

500 91.229 96.167 91.259 96.340 91.156 96.263 

550 91.608 96.119 91.495 96.316 91.510 96.246 

600 91.828 96.133 91.833 96.315 91.848 96.241 

650 92.210 96.132 92.287 96.320 92.142 96.237 

700 92.430 96.128 92.485 96.317 92.397 96.237 

750 92.703 96.124 92.716 96.316 92.653 96.236 

800 92.793 96.134 92.911 96.316 92.893 96.236 

850 93.096 96.132 93.122 96.321 93.070 96.228 

900 93.253 96.133 93.267 96.315 93.295 96.231 

950 93.421 96.130 93.404 96.315 93.437 96.229 

1000 93.719 96.140 93.635 96.317 93.577 96.231 
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Figure 8. Variation of range and variance of ELM algorithm and DPLEM algorithm. (a) t = 10. (b) t = 20. (c) t = 50. (d) t = 10. (e) 
t = 20. (f) t = 50. 

4.6. Recognition of Xiangxi Block Miao Characters Based on  
SDAE-DPELM  

Xiangxi block Miao script is a written symbol created by Miao literati in the late 
Qing Dynasty to record, sort out and create Miao songs, which is still widely 
used in the Xiangxi Miao area. Xiangxi block Miao character recognition is to 
automatically recognize Miao characters written on a paper carrier by using 
computer and image processing technology, which is of great practical signific-
ance for the digital preservation of Miao characters. This section will use the new 
neural network SDAE-DPELM algorithm proposed in this paper to further ex-
plore the application of Xiangxi block Miao text recognition. 

In this paper, we randomly select some characters from the Miao language li-
brary for the experiment. To make it easier for readers to read, we selected a 
portion from the original data set, as shown in Figure 9.  

This experiment uses the chosen Miao character dataset to examine the high-
est correct recognition rate that both algorithms can obtain with the number of 
neurons in the hidden layer between 1 and 1000 to validate the performance of 
SDAE-DPELM in Miao language recognition.    

The experimental results are shown in Table 2. The network structure of the 
SDAE-DPELM algorithm is more condensed than that of the original ELM algo-
rithm, and it also achieves superior classification performance even with fewer 
hidden layer nodes. It is worth mentioning that the network structure of SDAE- 
DPELM algorithm given in Table 2, in which the input vector of the first layer is 
2704, is the feature vector obtained by scaling the original Xiangxi square cha-
racter picture and then extracting its features by LGS operator. The second layer 
of 2375 neurons is a deep feature vector obtained by further deep feature extraction  
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Figure 9. Some Miao characters in the original sample. 
 
Table 2. Performance comparison of two algorithms in Miao character recognition. 

Algorithm Network structure Accuracy of recognition 

ELM 2704-1000-10 90% 

SDAE-DPELM 2704-2375-30-10 80% 

 

 
Figure 10. Comparison of recognition results of two algorithms. (a) ELM Algorithm. (b) SDAE-DPELM Algorithm. 

 
by the SDAE. The following 30 (1000 in SDAE-ELM and ELM algorithm) is the 
number of neurons in the hidden layer required by the classifier. 10 represents 
the dimension of the output vector. Ten different output results can be represented. 

As shown in Figure 10, this paper proposed algorithm can achieve higher ac-
curacy than the original ELM algorithm with fewer hidden layer nodes. This 
provides an effective and practical tool for Xiangxi block Miao character recog-
nition. 

5. Conclusion 

In this paper, a new deep learning algorithm SDAE-DPELM is proposed by 
combining SDAE with DPELM. SDAE is used to extract more representative 
deep abstract features of data, and the extracted features are used as input data of 
DPELM, and then network training is carried out. It not only overcomes the 
disadvantages of ELM’s complex network structure and weak robustness caused 
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by random assignment of hidden layer parameters, but also retains the advan-
tages of ELM’s fast operation speed. The experimental results show that the 
SDAE-DPELM algorithm has good robustness and stability. The practicality of 
SDAE-DPELM is also verified in the application of Miao character recognition. 
At present, the double-pseudo inverse weight determination method is only used 
for the traditional ELM. In future work, we will consider combining this weight 
determination method with ensemble learning to apply to the field of data pre-
diction and image recognition.  
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