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Abstract 
With the implementation of supervised machine learning techniques, wind 
turbine maintenance has been transformed. A wind turbine’s electrical and 
mechanical components can be automatically identified, monitored, and de-
tected to predict, detect, and anticipate their degeneration using this method 
of automatic and autonomous learning. Two different failure states are simu-
lated due to bearing vibrations and compared with machine learning classifier 
and frequency analysis. A wind turbine can be monitored, monitored, and 
faulted efficiently by implementing SVM. With these technologies, downtime 
can be reduced, breakdowns can be anticipated, and aspects can be imported 
if they are offshore. 
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1. Introduction 

The use of renewable sources of electricity is becoming more popular due to 
global warming and increased energy consumption. Wind production has in-
creased by about 60% in the past few years, and researchers have developed new 
techniques to maintain wind power infrastructure. The use of advanced moni-
toring and fault diagnosis can enhance the reliability, safety, and profitability of 
wind turbines. Historically, wind turbines have been maintained by performing 
spectral analysis and fault tree analyses [1]. 

With the advancements in digital and mobile technology as well as smart and 
data-driven technologies, artificial intelligence (AI) is becoming a more popular 
option. A growing amount of data is available to the industry right now, which 
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has many implications, including scheduling [2], maintenance management [3], 
and quality improvement [4]. 

As a result of new hardware and cloud-based solutions, machine learning has 
had an even greater impact in these areas [5]. The cause of vibrations is usually 
either a mechanical or electrical failure. Vibrations can also indicate gear and 
bearing failures. Since the bearing surface position adjusts continuously with re-
spect to the load, due to rotation speed, bearings are subject to wear largely due 
to their rolling elements. As a result of new hardware and cloud-based solutions, 
machine learning has had an even greater impact in these areas [6]. The cause of 
vibrations is usually either a mechanical or electrical failure. Vibrations can also 
indicate gear and bearing failures. Since the bearing surface position adjusts 
continuously with respect to the load, due to rotation speed, bearings are subject 
to wear largely due to their rolling elements. In addition to geometric imperfec-
tions, vibrations may be caused by component failing, cage failure, and imbal-
ance and misalignments. In several studies [7], spectral analysis has been used to 
detect structural failures and rotating machine failures by detecting bearing fail-
ures caused by mechanical failures. Wind turbine generators and their structures 
have been studied using various diagnostic techniques in the past [8]. Machine 
Learning was found to work perfectly and to continue to work perfectly accord-
ing to AI [9]. However, there are some limitations and drawbacks to this kind of 
methodology. Through a series of maintenance methodologies, the function of a 
malfunctioning component can be detected, detected, and classified automati-
cally. Machine learning reduces response times and virtually eliminates errors, 
according to [10], while data management and analysis allow for flexible off-
shore implementation and feedback learning, as per [11]. 

To successfully implement AI methods on a real system without causing cost-
ly errors, they must be validated. By analysing and preventing failures, AI me-
thodologies protect you from all kinds of failures that you desire to monitor. 
Developing new techniques, performing studies, etc., using prototypes or test 
benches is useful when validating fault diagnosis techniques, as well as under-
standing how these systems work. A broken wind turbine can cause considerable 
losses due to two reasons: first, the cost of replacing them, and second, the loss 
of energy as they cannot be produced during peak energy times. In offshore 
wind farms, especially those that are subject to high repair and maintenance 
costs, the use of fault detection and diagnosis techniques is essential if the ma-
chine is to be stopped early if it has a fault. In addition, as the costs of downtime 
and defective products decline, managing maintenance activities efficiently be-
comes an increasingly important task. In comparison to existing systems, a pro-
totype is developed to detect, supervise, and anticipate failures through the ap-
plication of algorithms designed to anticipate and prevent problems. In this ar-
ticle, an algorithm for monitoring and diagnosing faults in a prototype wind 
turbine using vibration analysis is presented. The algorithm for detecting differ-
ent bears failures autonomously. This study begins with a review of the litera-
ture, followed by an analysis of the data collection and data set, followed by an 
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assessment of the classification results. The study concludes with some mea-
ningful conclusions. 

2. Research Methodology 

A vibration in bearings in a wind turbine can be diagnosed and monitored using 
different methods, and each bearing can have a variety of characteristics. As a 
result, the general characteristics of any bearing may not necessarily correspond 
to the fault characteristics. Based on the vibration measurements of another 
bearing, this study demonstrates how machine learning can improve accuracy 
and predict possible failures. 

2.1. Machine Learning 

Machine learning techniques for wind turbine fault detection mainly address 
two tasks: detecting anomalous behaviour and classifying faults. In addition to 
improving the system’s performance and security, this technique allows correc-
tive measures to be taken very quickly in the event of a failure or an anticipated 
issue. The most common machine learning method, by far, is supervised ma-
chine learning [12], and there is an unsupervised method. When you use super-
vised learning, you already know the output. With unsupervised learning, you 
do not know the outcome. The process is the same on the way in and out. Unlike 
supervised learning, unsupervised learning relies only on the input data and bi-
nary logic that all systems use. No references are used at all. 

The first step in applying any type of learning is to classify the data. This 
problem can be solved by applying different classification algorithms, which 
identify an object by fusing the functionality of the object with a number of cat-
egories or classes from the input information it provides. 

This leads to a two-phase classification process: 
● Training means supplying a large amount of sample data and correctly clas-

sifying it, and then adjusting the parameters to reach the optimal perfor-
mance. 

● Input data is used to provide an output once the algorithm has been trained. 

2.2. Support Vector Machines 

An SVM is a machine learning algorithm based on statistical learning theory. 
This method works well for classification and regression, such as in fault diag-
nosis, when it uses small samples. It is shown that a linear classifier can separate 
two simple classes. These two types of samples are represented by triangles and 
squares in Figure 1. Two classes can be separated by a hyperplane H. In these 
two classes, the planes 1H  and 2H  (shown in dashed lines) are parallel to H 
and pass-through samples that are closest to H. Margins are calculated by taking 
the distance between 1H  and 2H . In the SVM, linear boundaries are placed 
between two distinct classes 1H  and 2H . The margin is maximized, so the ge-
neralization error is smallest. Support vectors are often used to measure margins,  
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Figure 1. Optimal hyperplane for binary classification by SVM. 

 
and they include the closest points to the margin. A quadratic function is mini-
mized under linear inequality constraints by reducing it to convex optimization 
[13]. Assume we have a training set of samples [( ix ), ( iy )], where i = 1 to N, 
and N represents the total number of samples. To find the separation plane with 
the least generalization error out of each linear separation plane, it needs to de-
termine how to divide the input samples into two classes. It is possible to divide 
the samples into two classes: triangular and square. A triangle class has a ( iy  = 
−1 label. A square class has a iy  = +1 label. For non-separable data, slack va-
riables are not considered (nor P0). Using the following optimization problem, 
you can obtain the hyperplane for f(x) = 0 from the given data. 
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where C is a constant representing the error penalty. Introducing Lagrange mul-
tipliers to the optimization problem above leads to the following result: 
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Using the sequential minimum optimization (SMO) algorithm, the dual prob-
lem that results from SVM derivation can be efficiently solved. SMO breaks 
down the general QP problem into QP subproblems. 

2.3. Binary Classification for Linearly Non-Separable Cases 

Previously, it has been explained how separation hyperplanes are good classifiers 
when the classes are perfectly separable or quasi-perfectly separable. However, 
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the application of a support vector classifier for cases that are clearly not linearly 
separable (most real problems) lacks practical interest. 

One possibility to deal with nonlinear boundaries between classes is to ma-
nually increase the space of predictors by means of polynomial functions or with 
interaction terms. Still, run the risk of ending up with too many predictors. As 
an alternative, there is the use of support vector machines or support vector 
machines (SVM), which are an extension of support vector classifiers that in-
crease dimensionality in a specific way, using kernels, a more computationally 
efficient approach [14]. Kernels are functions that transform a low-dimensional 
space into a higher-dimensional space through complex data transformations. It 
can also be defined as a function that quantifies the similarity between two ob-
servations in a new dimensional space. 

2.3.1. Linear Kernal 

( )¨ ¨1, ,p
i i ij i jjK x x x x

=
= ∑                    (3) 

The linear kernel quantifies the similarity of a pair of observations using Pear-
son’s correlation. With a linear kernel, the obtained classifier is equivalent to a 
support vector classifier. 

2.3.2. Polynomial Kernel 

( ) ( )¨ ¨1, 1 ,
dp

i i ij i jjK x x x x
=

= +∑                 (4) 

A polynomial kernel of degree d (where d > 1) allows for a much more flexible 
decision boundary. When a support vector classifier is combined with a nonli-
near kernel, a support vector machine is obtained. 

2.3.3. Radial Kernal 

( ) ( )( )2
¨ ¨1, exp ,p

i i ij i jjK x x x xγ
=

= − ∑              (5) 

where γ is a positive constant such that the larger it is, the greater the flexibility 
of the SVM. Assuming that the observation x* = x*1...x*p is far from a training 
observation xi in terms of Euclidean distance, then K = x*, xi will be very small, 
which means that xi will not influence f(x*). The radial kernel has a very local 
behaviour, in the sense that only training observations close to a test observation 
will affect its classification [15]. 

It is important to note that more flexibility does not necessarily improve pre-
dictions, as a very flexible model may fit the training data too much. 

2.4. Classification with More Than Two Classes 

There are several extensions to SVMs for classification problems with more than 
two classes (K > 2), two of the most popular being: 
● One versus one. 
● One-versus-all. 
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2.4.1. One-vs-One Ranking 
This method builds (k2) SVMs, corresponding to K(K − 1)/2, comparing a pair 
of classes. A test observation is classified using each of the SVMs, by counting 
the number of times this observation is assigned to each of the K classes [16]. 
The final predicted class will be the one to which the observation has been as-
signed in most SVMs. 

2.4.2. One-vs-All Ranking 
K SVMs are fitted, each time comparing one of the K classes (coded as +1) with 
the rest of the K − 1 classes (coded as −1). Being β0k, β1k, βpk are the parameters 
resulting from the fit of an SVM and x* observation, the observation will be as-
signed to the class for which * *

0 1 1k k pk px xβ β β+ + +  is greater. That is, the 
magnitude of f(x*) indicates how far x* is from the separation hyperplane, and 
the further it is, the higher the level of confidence that the observation x* has 
been correctly classified [17]. 

3. Case Study 

It contains a description of the industrial environment and the components 
within which the system will operate, as well as a description of how the sensors 
are distributed. It also explores the characteristics and connections of a data ac-
quisition card. 

3.1. Prototype and Sensor Distribution  

It is very useful to diagnose problems with components like the small wind tur-
bine prototype shown in Figure 2 as it can detect deterioration and wear on the 
parts and what its effects are [18]. The purpose of this system is to allow easy 
exchange of parts without waiting for deterioration to occur and, therefore, to 
test diagnostic techniques before deterioration occurs. In measuring the vibra-
tions of generator, gearbox, and bearings, the vibration sensors are positioned 
near the fast shaft coupling. 
 

 
Figure 2. Component distribution in the prototype. 
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Sensors should be placed in the input bearing of a generator to monitor the 
vibrations caused by the fast shaft coupling to the generator. In the multiplier, 
the sensors should be placed in each stage in accordance with the state monitor-
ing techniques and the design of the machine. This will allow the propagation of 
the signal between the stages and how various failures affect the vibrations. 
Another interesting element for measuring the prototype is the bearing located 
on the slow axis. This element can be changed on some of the deteriorated bear-
ings to examine the behaviour of the signal following a failure as well as studying 
the signal in normal operation and the deterioration of the component itself over 
time.  

Thus, following the previous considerations, it was decided to place a total of 
10 accelerometers, distributed as follows: 
 Generator: 2 accelerometers. 
 Multiplier: 7 accelerometers. 
 Bearing: 1 accelerometer. 

To measure vibrations, accelerometers are selected. These are general-purpose 
accelerometers with a 2-pin MIL-C-5015 connector [19]. 

3.2. Data Collection and Description  

Vibrations are measured using accelerometers. The accelerometers have a two-pin 
MIL-C-5015 NI connector. Using the PCI-4472B acquisition card for measured 
vibration using eight channels of dynamic signal acquisition. The eight input 
channels of accelerometers and microphones are integrated simultaneously us-
ing IEPE. An eight-channel input system covers a spectrum ranging from DC to 
45 kHz. The PCI 4472B performs with a cut-off frequency of only 0.5Hz when 
AC coupled with very low frequency AC vibration measurements. Audio mea-
surements, fractional octave analysis, frequency analysis, transitory analysis, and 
order tracking are all performed using the NI Sound and Vibration Measure-
ment Suite and the NI Sound and Vibration Toolkit [20]. Each PCI-4472B card 
provides 8 inputs, which two PCI-4472B cards. As you can see in Figure 3. In 
addition to eight accelerometer inputs, the NI PCI-4472B also comes with eight 
PCI cards that can be connected just like regular PCI cards (Table 1).  

4. Results and Discussion 

Both traditional and artificial methods are successfully used in this section to 
run the simulation. There are five speeds available for rotating the prototype, 
from 0 rpm to 1500 rpm. The medium speed was chosen to be 300 rpm in this 
instance. Using automated learning systems, it is possible to track, diagnose, and 
prevent wind turbine failures using traditional vibration analysis methods. A 
graphical presentation at 1 KHz was generated from an average of 5000 samples 
generated from the selected sensors. Automated learning systems can predict 
failures as well as track, prevent, and diagnose them. It is important to train the 
algorithm to get feedback before analysing and classifying the data independently  

https://doi.org/10.4236/jcc.2022.1011004


J. Vives et al. 
 

 

DOI: 10.4236/jcc.2022.1011004 51 Journal of Computer and Communications 
 

 
Figure 3. Connection of accelerometers to the data acquisition system. 

 
Table 1. The data description is shown in table. 

Data Attributes Data Description 

First PCI-4472B  

Channel 0 Accelerometer LA. 

Channel 1 Accelerometer LOA. 

Channel 2 Accelerometer E2V. 

Channel 3 Accelerometer E2H. 

Channel 4 Accelerometer E3V. 

Channel 5 Accelerometer E3H. 

Channel 6 Accelerometer 3EA. 

Second PCI-4472B  

Channel 0 Accelerometer EV1. 

Channel 1 Accelerometer E1H. 

Channel 2 Accelerometer ROD. 

 
for it to make a correct prediction. The purpose of this section is to describe how 
to train, teach, and get accurate results from the algorithm. For accurate predic-
tion, two states are simulated: imbalance and breakage, which provided good 
feedback. The training algorithm was run about six times. 

Using SVM, the two states in the final analysis are compared. A four-phase 
analysis was conducted, beginning with the acquisition of data using the 
PCI-4472B acquisition card, then filtering and processing. It is necessary to 
transform the signal into something that is not random to stabilize the analysis. 
It is crucial to apply appropriate conditioning and efficient processing to extract 
patterns from signals of this type when using machine learning algorithms. It is 
difficult to process and learn from the signal due to its time variation. For the 
algorithm to work correctly, the first stage of filtering and conditioning is essen-
tial. Invariant characteristics are read in time by signal processing algorithms. It 
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is necessary to extract features to figure out if a fault or condition exists. Arith-
metic means are determined by adding each example (for each predetermined 
condition) and dividing it by the number of tests considered. The data set is then 
reduced to the minimum number of variables necessary to represent the original 
variables using principal component analysis.  

Additionally, can make future decisions can be made based on the under-
standing of the current state, as well as what is happening, in addition to deter-
mining the standard deviation for each failure condition. According to the data 
presented, there most points are close to the average, so it should work since 
there is variation across many states. A few training sessions follow the entire 
process so that the algorithm becomes self-operating in the future. To make the 
algorithm work, it only needs a few training sessions and some new data. 

Following, each simulated state is analyzed in more detail. Due to the failure 
due to an imbalance, the SVM algorithm is a little out of date regarding feedback 
(Figure 4(a)). The failure (Figure 4(b)) can be attributed to bearing race brea-
kage based on the data analysis. Due to different ways of classifying and analys-
ing the data, the data are not well grouped, since they do not follow a specific 
pattern. No matter which failure condition is considered, the algorithm predicts 
the actual output with high accuracy and similarity. 

An example of a confusion matrix can be found in Figure 5. In 91% of the  
 

 
(a) 

 
(b) 

Figure 4. (a) Imbalance. Real output vs predicted output algorithm; (b) Bearing break. Real output vs predicted output algorithm. 
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Figure 5. Confusion matrix (SVM) support vector machines. 
 
cases, the algorithm correctly classified the imbalance variable, while in 9% of 
the cases, the algorithm misclassified it as a bearing break. Bearing breaks are 
classified correctly 96% of the time, while imbalances are classified incorrectly 
4% of the time. Our wind turbine prototype is assumed to have a lot of similari-
ties with SVM based learning methodology that can assist in predicting the fail-
ure of the prototype with a high degree of accuracy. 

5. Conclusion 

Acquisition and classification of data are critical to AI’s success and proper 
functioning. The use of machine learning systems is improving the ability to 
detect, monitor, and diagnose wind turbine faults. This document explores sev-
eral techniques for analysing vibrations to diagnose and prevent wind turbine 
bearing failures using artificial intelligence. Bearing faults have been diagnosed 
theoretically and practically using SVM models. They are very suitable for this 
type of study because they are robust, highly accurate, and very fast. Due to its 
ease of classification and prediction, spectral analysis is displacing traditional 
methods like spectral analysis. To identify or prevent possible breakdowns, this 
methodology can be applied to other mechanical components of wind turbine 
prototypes, thereby providing good predictions for the stipulated failure condi-
tions. As a result of this prototype, fault diagnosis and supervision techniques 
can be studied, developed, and validated through the possibility of replacing de-
fective or worn parts with other components. Before their installation in high- 
power wind turbines, prototype wind turbines can be tested to verify, adjust, and 
correct the diagnostic algorithms, reducing costs and time. 
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Imbalance Bearing break

Imbalance 91 96

Bearing break 9 4

True Positive 91 96

False Negative 4 4

CONFUSION MATRIX
Imbalance Bearing break True Positive False Negative
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