
Journal of Computer and Communications, 2022, 10, 132-138
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2022.106011 Jun. 30, 2022 132 Journal of Computer and Communications

Using U-Net to Detect Buildings in Satellite
Images

Eric Wang1, Dali Wang2

1Department of Computer Science, Stanford University, Stanford, USA
2Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, USA

Abstract

This report presented a method that uses deep computing and stochastic gra-
dient descent algorithm to automatically detect building from satellite images.
In this method, a convolutional neural network architecture called U-Net was
trained to highlight the building pixels from the rest of the image. This me-
thod applied a binary cross-entropy loss function, used ADAM algorithm for
gradient descent optimization, and adopted interaction-over-union for accu-
racy measurement. Continuous loss decreases and accuracy increases were
observed during the training and validation. Finally, the visualization of the
predicted masks from the trained model after 20 epochs proved that the U-Net
model delivers over 60% Intersection over Union accuracy results for detect-
ing buildings from satellite images.

Keywords

U-Net, Satellite Images, Computer Vision, Object Detection

1. Introduction

Satellite imagery has a myriad of uses in a variety of different technical fields,
such as meteorology, oceanography, fishing, agriculture, regional planning, edu-
cation, intelligence and warfare. This study uses satellite images for building de-
tection. There are several reasons to focus on the topic of satellite imagery and
its relationship to building representation: 1) it can help us to plan out what new
buildings can go where, and how each current building fits in an ecosystem of
other surrounding buildings, 2) it can be applied to a city building simulation,
where I can have a holistic visualization of each section of the city, to find ways
to improve on the current infrastructure, and 3) it can help with risk detection

How to cite this paper: Wang, E. and Wang,
D. (2022) Using U-Net to Detect Buildings in
Satellite Images. Journal of Computer and
Communications, 10, 132-138.
https://doi.org/10.4236/jcc.2022.106011

Received: May 2, 2022
Accepted: June 27, 2022
Published: June 30, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2022.106011
https://www.scirp.org/
https://doi.org/10.4236/jcc.2022.106011
http://creativecommons.org/licenses/by/4.0/

E. Wang, D. Wang

DOI: 10.4236/jcc.2022.106011 133 Journal of Computer and Communications

and management (i.e. natural disaster planning).
There is an expansive amount of literature on how to detect buildings from sa-

tellite imagery using traditional approaches. [1] [2] developed feature-based ap-
proaches to characterize and detect buildings. [3] presented a region-based tech-
nique for building detection. [4] proposed a model to compute the contours of
buildings. Additionally, people have applied deep computing technologies for
building detection very recently. [5] proposed a scheme with guided filters for ef-
ficient building detection from satellite images using deep learning. [6] presented
a method for automatic airport detection in remote sensing images using convo-
lutional neural networks. Finally, [7] presented a method that used R-CNN net-
work methods for building detection in remote sensing images.

2. Method
2.1. Satellite Data and Mask Generation

Most satellite images come with a special data format (such as GEOTIFF and
HDF [8] [9]), and require special knowledge as well as a geospatial library (such
as GDAL [10]) to process it. In order to help accomplish this task without exten-
al software dependecy, we first converted the original data from GEOTIFF into
the common numpy format with the channel first option. The resulting dataset
contains 16 images with a core area of 625 × 625 pixels, as well as an additional
92 padding pixels outside of the core box, making the total dimension a 809 ×
809 pixel image. Each image contains 4 channels: the cyan, magenta, yellow, and
key (black) color maps. Furthermore, binary masks for these images (where 1
represents a building pixel, and 0 represents anything else) were manually created.
These images and masks were randomly split into three parts: 12 images/masks
grouped as the training dataset, 2 images/masks as the validation dataset, and
the final 2 images/masks as the testing dataset. An example of the input image
and its corresponding masks are illustrated in Figure 1.

(a) (b)

Figure 1. An example of a training images and its building mask. (a) A training image
example; (b) a ground-truth mask for the training image.

https://doi.org/10.4236/jcc.2022.106011

E. Wang, D. Wang

DOI: 10.4236/jcc.2022.106011 134 Journal of Computer and Communications

2.2. Building Detection with U-Net

This study adopted a special network, called U-Net, to detect buildings. In this
section, the U-Net architecture was briefly introduced and was followed by an
illustration of the general workflow for training, validation, and testing. Several
technical components, such loss functions, accuracy measurements, and optimi-
zation algorithms were also explained in this section.

2.2.1. U-Net Model Architecture
Our primary segmentation tool, U-Net [11] is an architecture originally used for
biomedical image segmentation, but has become the most popular architecture
for many type of semantic segmentation. It is composed of many of what is
known as a skip connection, a connection from the early parts of the network to
its later parts, with information being transferred over. This allows us to bring
over lost information that was previously located in the early layers, and it allows
us to get a better idea of the network as a whole. It assigns each skip connection
from the first convolution to the last, and meeting in the middle, giving the ar-
chitecture its signature “U” shape. In this study, a PyTorch implementation of
U-Net is adopted [12].

2.2.2. Workflow of Building Detection
The workflow chart of this study was presented in the the following Figure 2. At
first, a U-Net model was randomly initialized to take the input images from the
training dataset and produce a series of masks. Then, these masks are compared
with the labelled masks for loss function calculation. Next, these loss functions
are used in the backpropagation procedure to adjust the weights of U-Net with a
gradient decent algorithm. During the training process, the intermediate training
result of the U-Net was used on the images in the validation dataset to produce
validation masks. These masks are then compared with associated masks to show
the model prediction accuracy. After training and validation, the final U-Net

Figure 2. Workflow of building detection with U-Net architecture.

https://doi.org/10.4236/jcc.2022.106011

E. Wang, D. Wang

DOI: 10.4236/jcc.2022.106011 135 Journal of Computer and Communications

model was saved into disk and a test utility was created to load the model, take
the images of testing dataset, and produce masks that show building pixels.

2.3. Loss Function

Our indicator for loss during this project was Binary Cross Entropy [13], or BCE
for short. It is a loss function used to classify binary (yes/no, A/B, 0/1) tasks. As
such, it is represented by Loss Equation (1):

() ()
1

1 ˆ ˆlog 1 log 1
N

i i i i
i

y y y y
N =

− + − −∑ (1)

where ˆiy and iy are the output scalar value and the target value of the i’th term,
respectively, and N is the number of scalars within the output data for the mod-
el. Our purpose for using BCE is to allow quick processing and classification of
our training examples, as it is equivalent to maximum likelihood estimation fit-
ting, guaranteeing consistency and statistical efficiency.

2.4. Accuracy Measurement

For accuracy prediction, the Intersection over Union (IoU) metric, a 0 (least
overlap) to 1 (most overlap) scale metric, was used to determine the amount of
similarity between the predicted masks and the ground truth masks. Figure 3 il-
lustrates an IoU as the ratio of the two bounds’ overlap over the total areas of the
two bounds.

2.5. Optimization Procedure

Our method adopted Adaptive Moment Estimation, or ADAM, for stochastic
gradient descent optimization. ADAM optimization relies on the first and second
moment of gradient to update its learning rates. It has an increased cost, due to

Figure 3. Illustration of Intersection-over-Union.

https://doi.org/10.4236/jcc.2022.106011

E. Wang, D. Wang

DOI: 10.4236/jcc.2022.106011 136 Journal of Computer and Communications

requiring the calculation of the second derivative, but with the added benefit of
converging in circumstances that standard gradient descent may not, as it is in-
variant to gradient rescaling.

Mathematically, by defining the estimates of tm and tv as the mean and the
uncentered variance of the gradients of current mini-batch tg , respectively, as
well as the decay rates as 1β and 2β , ADAM can be represented as following
Equations (2):

()
()

1 1 1

2
2 1 2

1

1
t t t

t t t

m m g

v v g

β β

β β
−

−

= + −

= + −
 (2)

This gives a decaying average for both that allows the gradient descent to pro-
ceed and eliminate more jagged routes to the intended destination.

3. Experiment and Result
3.1. Software Packages and Computer Configuration

Python 3.8 is the main program environment. Several packages were added, in-
cluding PyTorch, Click, and NumPy for code development, as well as matplotlib
for visualizations. PyCharm and Jupiter Notebook were crucial for debugging
and arduously testing the code. All the code development and experiments were
conducted on a 2020 16’ MacBook Pro with an 8-core i9 Processor and 16GB
DDR4 Memory.

3.2. Training and Validation Results

After running through 20 epochs (30 seconds per image/2.5 hours for the entire
training) with the training data, a few insights were discovered as to the loss and
accuracy of the masks as a whole.

The average of the 12 BCE values at each epoch was used to determine the
training loss over time. There was a significant decreasing negative rate over
time, as shown in the first graph of Figure 4.

As to the Validation Accuracy over time, the average of the 2 IoU values at
each epoch were use to measure our prediction. Due to the high variance of the

Figure 4. The performance of U-Net training and validation.

https://doi.org/10.4236/jcc.2022.106011

E. Wang, D. Wang

DOI: 10.4236/jcc.2022.106011 137 Journal of Computer and Communications

(a) (b)

Figure 5. An example of a final test result from the model. (a) A test image example; (b) a
predicted mask from test image.

data, a logarithmic trend line was plotted to show the general increase of the ac-
curacy over time (Figure 4, second graph).

After training and validation, the final model was saved to a separate folder,
called saved models.

3.3. Testing Result

Through the previous training and validation, we were able to get a well trained
model to run on the test images. Figure 5 shows the result of the model on a test
image. The general result seems to accurately find the buildings, leading us to
conclude that our trained model was a good fit.

4. Discussion and Future Work

In this project, a U-shaped convolutional network was used to detect building
pixels from satellite images with the help of the Python Pytorch package on a
laptop computer. A common optimization algorithm (i.e. ADAM) was used for
training with a fixed learning rate, and the Intersection-over-Union index was
used to measure the accuracy. The result is generally satisfactory, but there is
certainly more room to improve, especially as the IoU data tended to still fluc-
tuate largely even after 20 epochs. Currently, it takes very long time to train the
model, and most importantly, the training process drained my computer battery
rapidly even as it was connected to the power source the entire time. For future
work, I would like to look into the use of a graphics processing unit (GPU) to
accelerate the deep learning calculation. I will also look to explore the impact of
different learning rates on model prediction accuracy.

5. Data and Code Availability

The code related to this report is publicly available in GitHub at
https://github.com/Ericw553/sat_detect. All the training, validation, and testing
data is also available per request by email.

https://doi.org/10.4236/jcc.2022.106011
https://github.com/Ericw553/sat_detect

E. Wang, D. Wang

DOI: 10.4236/jcc.2022.106011 138 Journal of Computer and Communications

Acknowledgements

Sincere thanks to the members of JAMP for their professional performance, and
special thanks to managing editor Hellen XU for a rare attitude of high quality.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Weidner, U. and Förstner, W. (1995) Towards Automatic Building Extraction from

High-Resolution Digital Elevation Models. ISPRS Journal of Photogrammetry and
Remote Sensing, 50, 38-49. https://doi.org/10.1016/0924-2716(95)98236-S

[2] Liu, W. and Prinet, V. (2005) Building Detection from High-Resolution Satellite Im-
age Using Probability Model. Proceedings of 2005 IEEE International Geoscience and
Remote Sensing Symposium, 6, 3888-3891.

[3] Cui, S., Yan, Q., Liu, Z. and Li, M. (2008) Building Detection and Recognition from
High Resolution Remotely Sensed Imagery. Proceedings of the XXIst ISPRS Con-
gress, 37, 411-416.

[4] Theng, L.B. (2006) Automatic Building Extraction from Satellite Imagery. Engineer-
ing Letters, 13, 255-259.

[5] Xu, Y., Wu, L., Xie, Z. and Chen, Z. (2018) Building Extraction in Very High Reso-
lution Remote Sensing Imagery Using Deep Learning and Guided Letters. Remote
Sensing, 10, 144. https://doi.org/10.3390/rs10010144

[6] Chen, F., Ren, R., Van de Voorde, T., Xu, W., Zhou, G. and Zhou, Y. (2018) Fast
Automatic Airport Detection in Remote Sensing Images Using Convolutional Neural
Networks. Remote Sensing, 10, 443. https://doi.org/10.3390/rs10030443

[7] Bai, T., Pang, Y., Wang, J., Han, K., Luo, J., Wang, H., Lin, J., Wu, J. and Zhang, H.
(2020) An Optimized Faster r-cnn Method Based on Drnet and Roi Align for Build-
ing Detection in Remote Sensing Images. Remote Sensing, 12, 762.
https://doi.org/10.3390/rs12050762

[8] Ritter, N., Ruth, M., Grissom, B.B., Galang, G., Haller, J., Stephenson, G., Coving-
ton, S., Nagy, T., Moyers, J., Stickley, J., et al. (2000) Geotiformat Specication Geo-
tirevision 1.0. SPOT Image Corp, 1, 154-172.

[9] Folk, M., Heber, G., Koziol, Q., Pourmal, E. and Robinson, D. (2011) An Overview
of the HDF5 Technology Suite and Its Applications. Proceedings of the EDBT/IC-
DT 2011 Workshop on Array Databases, pp. 36-47.

[10] Warmerdam, F. (2008) The Geospatial Data Abstraction Library. In: Hall, G.B. and
Leahy, M.G., Eds., Open Source Approaches in Spatial Data Handling, Springer, 87-104.
https://doi.org/10.1007/978-3-540-74831-1_5

[11] Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks
for Biomedical Image Segmentation. International Conference on Medical Image
Computing and Computer-Assisted Intervention, Springer, Cham, 234-241.

[12] Charles, P. (2018) Unet: Semantic Segmentation with Pytorch.
https://github.com/milesial/Pytorch-UNet

[13] Rubinstein, R.Y. and Kroese, D.P. (2004) The Cross-Entropy Method: A United Ap-
proach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learn-
ing. Springer, Berlin.

https://doi.org/10.4236/jcc.2022.106011
https://doi.org/10.1016/0924-2716(95)98236-S
https://doi.org/10.3390/rs10010144
https://doi.org/10.3390/rs10030443
https://doi.org/10.3390/rs12050762
https://doi.org/10.1007/978-3-540-74831-1_5
https://github.com/milesial/Pytorch-UNet

	Using U-Net to Detect Buildings in Satellite Images
	Abstract
	Keywords
	1. Introduction
	2. Method
	2.1. Satellite Data and Mask Generation
	2.2. Building Detection with U-Net
	2.2.1. U-Net Model Architecture
	2.2.2. Workflow of Building Detection

	2.3. Loss Function
	2.4. Accuracy Measurement
	2.5. Optimization Procedure

	3. Experiment and Result
	3.1. Software Packages and Computer Configuration
	3.2. Training and Validation Results
	3.3. Testing Result

	4. Discussion and Future Work
	5. Data and Code Availability
	Acknowledgements
	Conflicts of Interest
	References

