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Abstract 

This report presented a method that uses deep computing and stochastic gra-
dient descent algorithm to automatically detect building from satellite images. 
In this method, a convolutional neural network architecture called U-Net was 
trained to highlight the building pixels from the rest of the image. This me-
thod applied a binary cross-entropy loss function, used ADAM algorithm for 
gradient descent optimization, and adopted interaction-over-union for accu-
racy measurement. Continuous loss decreases and accuracy increases were 
observed during the training and validation. Finally, the visualization of the 
predicted masks from the trained model after 20 epochs proved that the U-Net 
model delivers over 60% Intersection over Union accuracy results for detect-
ing buildings from satellite images. 
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1. Introduction 

Satellite imagery has a myriad of uses in a variety of different technical fields, 
such as meteorology, oceanography, fishing, agriculture, regional planning, edu-
cation, intelligence and warfare. This study uses satellite images for building de-
tection. There are several reasons to focus on the topic of satellite imagery and 
its relationship to building representation: 1) it can help us to plan out what new 
buildings can go where, and how each current building fits in an ecosystem of 
other surrounding buildings, 2) it can be applied to a city building simulation, 
where I can have a holistic visualization of each section of the city, to find ways 
to improve on the current infrastructure, and 3) it can help with risk detection 
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and management (i.e. natural disaster planning). 
There is an expansive amount of literature on how to detect buildings from sa-

tellite imagery using traditional approaches. [1] [2] developed feature-based ap-
proaches to characterize and detect buildings. [3] presented a region-based tech-
nique for building detection. [4] proposed a model to compute the contours of 
buildings. Additionally, people have applied deep computing technologies for 
building detection very recently. [5] proposed a scheme with guided filters for ef-
ficient building detection from satellite images using deep learning. [6] presented 
a method for automatic airport detection in remote sensing images using convo-
lutional neural networks. Finally, [7] presented a method that used R-CNN net-
work methods for building detection in remote sensing images. 

2. Method 
2.1. Satellite Data and Mask Generation 

Most satellite images come with a special data format (such as GEOTIFF and 
HDF [8] [9]), and require special knowledge as well as a geospatial library (such 
as GDAL [10]) to process it. In order to help accomplish this task without exten-
al software dependecy, we first converted the original data from GEOTIFF into 
the common numpy format with the channel first option. The resulting dataset 
contains 16 images with a core area of 625 × 625 pixels, as well as an additional 
92 padding pixels outside of the core box, making the total dimension a 809 × 
809 pixel image. Each image contains 4 channels: the cyan, magenta, yellow, and 
key (black) color maps. Furthermore, binary masks for these images (where 1 
represents a building pixel, and 0 represents anything else) were manually created. 
These images and masks were randomly split into three parts: 12 images/masks 
grouped as the training dataset, 2 images/masks as the validation dataset, and 
the final 2 images/masks as the testing dataset. An example of the input image 
and its corresponding masks are illustrated in Figure 1. 
 

   
(a)                                   (b) 

Figure 1. An example of a training images and its building mask. (a) A training image 
example; (b) a ground-truth mask for the training image. 
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2.2. Building Detection with U-Net 

This study adopted a special network, called U-Net, to detect buildings. In this 
section, the U-Net architecture was briefly introduced and was followed by an 
illustration of the general workflow for training, validation, and testing. Several 
technical components, such loss functions, accuracy measurements, and optimi-
zation algorithms were also explained in this section. 

2.2.1. U-Net Model Architecture 
Our primary segmentation tool, U-Net [11] is an architecture originally used for 
biomedical image segmentation, but has become the most popular architecture 
for many type of semantic segmentation. It is composed of many of what is 
known as a skip connection, a connection from the early parts of the network to 
its later parts, with information being transferred over. This allows us to bring 
over lost information that was previously located in the early layers, and it allows 
us to get a better idea of the network as a whole. It assigns each skip connection 
from the first convolution to the last, and meeting in the middle, giving the ar-
chitecture its signature “U” shape. In this study, a PyTorch implementation of 
U-Net is adopted [12]. 

2.2.2. Workflow of Building Detection 
The workflow chart of this study was presented in the the following Figure 2. At 
first, a U-Net model was randomly initialized to take the input images from the 
training dataset and produce a series of masks. Then, these masks are compared 
with the labelled masks for loss function calculation. Next, these loss functions 
are used in the backpropagation procedure to adjust the weights of U-Net with a 
gradient decent algorithm. During the training process, the intermediate training 
result of the U-Net was used on the images in the validation dataset to produce 
validation masks. These masks are then compared with associated masks to show 
the model prediction accuracy. After training and validation, the final U-Net  
 

 

Figure 2. Workflow of building detection with U-Net architecture. 
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model was saved into disk and a test utility was created to load the model, take 
the images of testing dataset, and produce masks that show building pixels. 

2.3. Loss Function 

Our indicator for loss during this project was Binary Cross Entropy [13], or BCE 
for short. It is a loss function used to classify binary (yes/no, A/B, 0/1) tasks. As 
such, it is represented by Loss Equation (1): 

( ) ( )
1

1 ˆ ˆlog 1 log 1
N

i i i i
i

y y y y
N =

− + − −∑                  (1) 

where ˆiy  and iy  are the output scalar value and the target value of the i’th term, 
respectively, and N is the number of scalars within the output data for the mod-
el. Our purpose for using BCE is to allow quick processing and classification of 
our training examples, as it is equivalent to maximum likelihood estimation fit-
ting, guaranteeing consistency and statistical efficiency. 

2.4. Accuracy Measurement 

For accuracy prediction, the Intersection over Union (IoU) metric, a 0 (least 
overlap) to 1 (most overlap) scale metric, was used to determine the amount of 
similarity between the predicted masks and the ground truth masks. Figure 3 il-
lustrates an IoU as the ratio of the two bounds’ overlap over the total areas of the 
two bounds.  

2.5. Optimization Procedure 

Our method adopted Adaptive Moment Estimation, or ADAM, for stochastic 
gradient descent optimization. ADAM optimization relies on the first and second 
moment of gradient to update its learning rates. It has an increased cost, due to  
 

 

Figure 3. Illustration of Intersection-over-Union. 
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requiring the calculation of the second derivative, but with the added benefit of 
converging in circumstances that standard gradient descent may not, as it is in-
variant to gradient rescaling. 

Mathematically, by defining the estimates of tm  and tv  as the mean and the 
uncentered variance of the gradients of current mini-batch tg , respectively, as 
well as the decay rates as 1β  and 2β , ADAM can be represented as following 
Equations (2): 

( )
( )

1 1 1

2
2 1 2

1

1
t t t

t t t

m m g

v v g

β β

β β
−

−

= + −

= + −
                      (2) 

This gives a decaying average for both that allows the gradient descent to pro-
ceed and eliminate more jagged routes to the intended destination. 

3. Experiment and Result 
3.1. Software Packages and Computer Configuration 

Python 3.8 is the main program environment. Several packages were added, in-
cluding PyTorch, Click, and NumPy for code development, as well as matplotlib 
for visualizations. PyCharm and Jupiter Notebook were crucial for debugging 
and arduously testing the code. All the code development and experiments were 
conducted on a 2020 16’ MacBook Pro with an 8-core i9 Processor and 16GB 
DDR4 Memory. 

3.2. Training and Validation Results 

After running through 20 epochs (30 seconds per image/2.5 hours for the entire 
training) with the training data, a few insights were discovered as to the loss and 
accuracy of the masks as a whole. 

The average of the 12 BCE values at each epoch was used to determine the 
training loss over time. There was a significant decreasing negative rate over 
time, as shown in the first graph of Figure 4. 

As to the Validation Accuracy over time, the average of the 2 IoU values at 
each epoch were use to measure our prediction. Due to the high variance of the  
 

 

Figure 4. The performance of U-Net training and validation. 
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(a)                                    (b) 

Figure 5. An example of a final test result from the model. (a) A test image example; (b) a 
predicted mask from test image. 
 
data, a logarithmic trend line was plotted to show the general increase of the ac-
curacy over time (Figure 4, second graph). 

After training and validation, the final model was saved to a separate folder, 
called saved models. 

3.3. Testing Result 

Through the previous training and validation, we were able to get a well trained 
model to run on the test images. Figure 5 shows the result of the model on a test 
image. The general result seems to accurately find the buildings, leading us to 
conclude that our trained model was a good fit. 

4. Discussion and Future Work 

In this project, a U-shaped convolutional network was used to detect building 
pixels from satellite images with the help of the Python Pytorch package on a 
laptop computer. A common optimization algorithm (i.e. ADAM) was used for 
training with a fixed learning rate, and the Intersection-over-Union index was 
used to measure the accuracy. The result is generally satisfactory, but there is 
certainly more room to improve, especially as the IoU data tended to still fluc-
tuate largely even after 20 epochs. Currently, it takes very long time to train the 
model, and most importantly, the training process drained my computer battery 
rapidly even as it was connected to the power source the entire time. For future 
work, I would like to look into the use of a graphics processing unit (GPU) to 
accelerate the deep learning calculation. I will also look to explore the impact of 
different learning rates on model prediction accuracy. 

5. Data and Code Availability 

The code related to this report is publicly available in GitHub at  
https://github.com/Ericw553/sat_detect. All the training, validation, and testing 
data is also available per request by email. 
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