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Abstract 
Data clustering plays a vital role in object identification. In real life we mainly 
use the concept in biometric identification and object detection. In this paper 
we use Fuzzy Weighted Rules, Fuzzy Inference System (FIS), Fuzzy C-Mean 
clustering (FCM), Support Vector Machine (SVM) and Artificial Neural 
Network (ANN) to distinguish three types of Iris data called Iris-Setosa, 
Iris-Versicolor and Iris-Virginica. Each class in the data table is identified by 
four-dimensional vector, where vectors are used as the input variable called: 
Sepal Length (SL), Sepal Width (SW), Petal Length (PL) and Petal Width 
(PW). The combination of five machine learning methods provides above 
98% accuracy of class identification. 
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1. Introduction 

In this paper five widely used methods: Fuzzy weighted rule, FIS, FCM, SVM 
and ANN are integrated in classification of Iris data. Several works related to the 
paper are mentioned in this section. In [1] authors use Adaptive Neuro-Fuzzy 
Inference System (ANFIS) and the Fuzzy Inference System (FIS) for professional 
blogger classification, where FIS provides better results compared to Classifica-
tion Based on Associations (CBA). The combination of Artificial Neural Net-
work (ANN) and ANFIS gives better classification, whereas the proposed ANFIS 
of the paper shows the best result which is 93%. The concept of FIS in data clas-
sification is also found in [2], where fault of electrical transmission line is de-
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tected and classified properly.  
In [3], fuzzy weighted rules are used to classify Iris data using seven member-

ship function (MFs). The average classification rate is found 96.48%, 96.06% and 
96.7% for 7, 9 and 11 labels of MFs. The main drawback of the paper is that, it 
only deals with single method of classification; therefore we have the scope of 
inclusion of other data segregation algorithms. The fuzzy rule-based classifica-
tion is found in [4] for classification of coronary artery disease data, where tra-
pezoidal membership functions are used for input variables. The classification 
rate varies with different weighting rules, the maximum value is found 92.8% 
and that of minimum value is 71.8%. In this paper, we applied fuzzy c-mean 
clustering in Iris data classification; the similar concept is available in MR brain 
image segmentation in [5]. Here the entire algorithm of C-mean clustering is 
shown and the performance of image classification is compared with seven dif-
ferent methods and fuzzy c-mean clustering provides moderate result. Applica-
tion of FCM in image classification is found in [6], where FCN is combined with 
Convolution Neural Network (CNN) to recognize tumors in the brain. The ac-
curacy of detection is claimed by the auditors is 91%. Application of FCM is also 
found in image classification in [7] [8]. The SVM in data classification is used in 
[9], where text based automatic task classification is done. The authors claim the 
accuracy of classification in the range of 82% to 99%. Similar concept is found in 
[10] for breast cancer diagnosis, where three different types of kernels are used 
and accuracy is found above 90% for all cases.  

In this paper we combined all the five algorithms to classify Iris data, although 
the concept of the paper is applicable in any type of data or feature vector-based 
image classification. The main objective of the paper is to get high accuracy of 
data classification avoiding deep learning technique so that process time will 
remain low. Actually, inclusion of Fuzzy weighted rule plays a vital role in data 
classification. Most of the previous works did not include the Fuzzy weighted 
rule hence they have to include deep learning to acquire high accuracy of classi-
fication, which needs huge process time. The combination of five methods of the 
paper like [11] is found more robust compared to previous works. We compare 
the result of the paper (using same data set) with two previous works and found 
better result, which is shown in result section.  

The rest of the paper is organized as: Section 2 provides theoretical analysis of 
five machine learning algorithms used in this paper for data classification, Sec-
tion 3 provides results based on analysis of Section 2 and Section 4 concludes 
entire analysis. 

2. Theory of Data Classification 
2.1. Fuzzy Inference System (FIS) 

Fuzzy Inference System (FIS) consists of three building blocks: Fuzzification, 
Inference and De-fuzzification. The numerical data is converted to Fuzzy sym-
bols using membership functions (MFs) consisting of several variables, where 
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each variable has its range of numerical value. The above conversion technique 
is called Fuzzification. The Inference block deals with some rules using if-then 
form to relate input and output. Finally output symbols are converted to nu-
merical value using De-fuzzification technique on the output MFs.  

2.2. Fuzzy Weighted Rule 

The detail analysis of Fuzzy weighted rule is shown in [3] with numerical exam-
ple. In this paper we show the steps of the algorithm in a different way like be-
low:  
 
Algorithm 1: Fuzzy Weighted Rule 

1. 
Take the numerical data in tabular form as the input, where the size of each record 
is N and number of output types are n 

2. Take M number of MFs for each of N input variable 

3. Convert numerical input data of the table into Fuzzy linguistic values using MFs 

4. 
Take union of Fuzzy linguistic value of 1st field, 2nd field, 3rd field, …, Nth field for 
the case of first output 

5. 
If the sets obtained from the unions of step 4 are: {S1}, {S2}, {S3}, …, {SN} then the 
N-tuple (({S1}, {S2}, {S3}, …, {SN}), First output) known as RFirst_output 

6. Repeat step 4 and 5 to get RSecond_output, RThird_output, …, RNth_output 

7. 
Take union of 1st element of RFirst_output, RSecond_output, RThird_output, …, RNth_output to get 
the rule R1 

8. 
Repeat step 7 for 2nd, 3rd, …, Nth elements of RFirst_output, RSecond_output, RThird_output, …, 
RNth_output to get the rule R2, R3, R4, …, RN 

9. 
Take the sum of non-overlapping range and full range of first input variable 
against all the n output 

10. Take the ratio v1 two terms of step 9 

11. Repeat step 9 and 10 for the rest of input variables 

12. 
Take ( )1 2 3max , , , , Nv v v v�  and weights, 

( )1 2max , , ,
i

i
N

VW
V V V

=
�

, where  

1,2,3, ,i N= �                           (1) 

13. 

For each input record of N-tuple determine weighted co-variance of each rule like, 

( ),1 i j j ji

NR X W
=

= Ψ∑ ;                       (2) 

where Xj is jth the input Fuzzy variable, i for ith rule, ( ), 1i j jXΨ =  if Xj belongs 

to jth set of ith rule Ri, otherwise ( ), 0i j jXΨ =  

14. 
The highest value of R corresponding to kth rule indicates the input tuple is under 
the output of kth category 

 
In this subsection few numerical examples are shown according to the steps 

Fuzzu weighted rule. First of all, we take few data of Iris under three categories 
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called: Iris-Setosa, Iris-Versicolor and Iris-Virginica shown in Table 1. For each 
category four types of inputs (SL, SW, PL and PW) and corresponding output 
are taken as the initial data shown in Table 1. For better understanding of read-
er, we chose the same initial data of [3] and we elaborate the initial data 
processing steps more explicitly compared to previous paper. 

For each input SL, SW, PL or PW we consider 7 trapezoidal membership 
functions named: HN, MN, SN, Z, SP, MP and HP as shown in Figures 1(a)-(d) 
for four input variables. The MFs of three output classes is shown in Figure 2. 

2.3. Fuzzy c-Means Clustering 

The main objective of FCM is to minimize the objective function, 

( )( )( )

2

1 j

m
m ij jj x i c

cJ u x i c
= ∈

= −∑ ∑                  (3) 

where 
m is a real number greater than 1 called fuzzifier  
uij is the degree to which an x(i) belongs to the cluster j with center cj 
x(i) is the ith data point 
c is the number of clusters 
The steps of Fuzzy c mean clustering algorithm is given below like [12] [13].  

 
Algorithm 2: Fuzzy c-means clustering 

1. 
First consider n data points, ( ) ( ) ( ) ( )1 2 3x x x x n=   �x  to be segregated 

into c clusters 

2. Take the initial value of center of clusters, ck; where 1,2,3, ,k c= �  

3. 

Evaluate grade (or degree) of membership uij i.e. the degree to which an x(i) belongs 
to the cluster with center cj, 

( )
( )

, 2
1

1

1

c

i j
m

j

l
l

u
x i c
x i c

−

=

=
 −
 
 − 

∑

; for 1,2,3, ,i n= �                (4) 

The entire vector is expressed at kth iteration as, 
( ) [ ]1 11 21 31 1, , , , nk u u u u= �U , under cluster 1 

( ) [ ]2 12 22 32 2, , , , nk u u u u= �U , under cluster 2 

�  
( ) [ ]1 2 3, , , ,c c c c nck u u u u= �U , under cluster c 

4. 

Update the center cj like, 

( )( )

( )

j

j

m
ijx i c

j m
ijx i c

u x i
c

u
∈

∈

=
∑
∑

                          (5) 

5. Repeat step 3 and 4 until ( ) ( )1j jk k ε− + <U U , 1,2,3, ,j c= �  

2.4. Support Vector Machine 

The SVM is a supervised learning algorithm used for data classification,  
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Figure 1. MFs of four input variables. (a) MFs of input SL; (b) MFs of input PW; (c) MFs of input PL; (d) MFs of input SW. 
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Table 1. Three types of Iris data [3]. 

 SL SW PL PW Out 

Ir
is

-S
et

os
a 

4.6 3.4 1.4 0.3 1 

5.7 3.8 1.7 0.3 1 

5.2 3.4 1.4 0.2 1 

4.5 2.3 1.3 0.3 1 

4.4 3.2 1.3 0.2 1 

Ir
is

-V
ir

gi
ni

ca
 6.1 3 4.9 1.8 3 

6.1 2.6 5.6 1.4 3 

6.9 3.1 5.4 2.1 3 

6.7 3.1 5.6 2.4 3 

6.2 3.4 5.4 2.3 3 

Ir
is

-V
er

si
co

lo
r 6.6 2.9 4.6 1.3 2 

5 2 3.5 1 2 

6.2 2.2 4.5 1.5 2 

5.9 3.2 4.8 1.8 2 

6 2.9 4.5 1.5 2 

 

 

Figure 2. MFs of three output classes. 
 
decision-making, pattern recognition, forecasting of data, disease diagnostic etc. 
The SVM algorithm classifies objects taking decision boundary called hyper-
plane where the optimum hyperplane separates the points corresponding to 
objects with widest margin as discussed in [14] [15]. The generalized equation 
of a hyperplane like,  

( ) Tf x b= + w x ;                            (6) 

where w  is known as the weight vector and b as the bias.  
The SVM determines the constants: T , ,b τw  such that T b τ+ ≥w x  for one 

group of points, T b τ+ ≤w x  for another group of points. The SVM uses Ker-
nel function to provide the best trajectory of decision boundary. 

2.5. Artificial Neural Network 

In this paper we used feed-forward ANN, where signal only travels in one direc-
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tion i.e. from input to output. Such neural network is called multi-layer percep-
tron and used for pattern recognition. We used it for the case of 10 and 20 hid-
den layers to observe relative performance. We also used ANN under backpro-
pagation algorithm, where signal flows in both directions. The concept of both 
of above ANN is available in [16] [17] and here we avoid the theoretical analysis 
of such ANNs. 

The five machine learning methods will be combined using Shannon entro-
py-based algorithm. 

3. Result and Discussion 

This section provides results based on theoretical analysis of previous section. 
First of all, we apply FIS on the Iris data. The FIS used in this paper is shown in 
Figure 3, where 7 MFs are used against each of the four input variables. We ap-
ply 69 Fuzzy rules and few of them are shown in Figure 4. The surface plot va-
riables: PS, PL, PW and SW of the FIS is shown in Figures 5(a)-(f). Here the 
surface level 1.5, 2 and 2.5 provides the results of Iris-Set, Iris-Ver and Iris-Vir 
respectively. Next, we apply Fuzzy weighted rule on 150 data of Iris. The detail of 
the Fuzzy weighted rule is shown in Section 2.1. We run the algorithm 5 times 
taking 100 data each time, corresponding accuracy of correct recognition is giv-
en in Table 2 at the end of this section.  
 

 

Figure 3. Fuzzy system of data classification. 
 

 

Figure 4. Some fuzzy rules. 

SL

PW

Output

FIS
PL

SW
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Figure 5. Surface plot of the FIS. (a) Surface plot of PW vs. SL; (b) Surface plot of PL vs. SL; (c) Surface plot of SW vs. SL; (d) Sur-
face plot of PL vs. PW; (e) Surface plot of SW vs. PW; (f) Surface plot of SW vs. PL.  

 
Next we apply Fuzzy c-mean clustering on the entire dataset taking two va-

riables at a time. The scatterplot of three output data are shown in Figure 6. Few 
data points seem to cross its region i.e. produce some recognition error. Here 50 
data for Iris-Set, 50 data for Iris-Ver and 50 data for Iris-Vir are taken. 
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Finally, scatterplot of data points in four combinations of four input variables 
are shown in Figures 7(a)-(d) to get the idea of best separation case. Here PW 
vs. PL shows the best separation as found in Figure 6(b). The regional separation 
of data points using SVM is shown in Figures 8(a)-(d), where Figure 8(b) 
shows the best regional separation. In future we will apply multiple linear regres-
sion (MLR) on four-dimensional input data to convert them into two-dimensional 
data, then apply SVM to observe any improvement compared to four cases of 
Figure 8.  

Next, Irish data classification is done using feedforward ANN. The perfor-
mance of the network, error histogram and confusion matrix are shown in Fig-
ure 9-11 for the case of 10 and 20 hidden layers. Similar results are shown in 
Figure 12 and Figure 13 for backpropagation ANN for 8 and 10 hidden layers. 
The performance is found better with increment of hidden layer at the expense 
of process time.  

Except Weighted Fuzzy, no individual method provides high accuracy of rec-
ognition visualized from Table 2. The Weighted Fuzzy provides high accuracy at  
 

Table 2. Comparison of data separation algorithms. 

Experiments Weighted Fuzzy FIS Fuzzy C-mean SVM 
Feedforward 

ANN 
Backpropagation 

ANN 
Combined 

1 0.931 0.881 0.892 0.873 0.835 0.878 0.974 

2 0.904 0.855 0.879 0.907 0.862 0.874 0.982 

3 0.929 0.867 0.862 0.893 0.857 0.895 0.988 

4 0.913 0.853 0.864 0.880 0.866 0.903 0.976 

5 0.932 0.871 0.882 0.921 0.841 0.917 0.978 

 

 

Figure 6. Scatterplot of data under fuzzy c-mean clustering. 
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Figure 7. Scatterplot of Iris data. 
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Figure 8. Three regions of output under SVM. 
 

 

Figure 9. Performance of the feedforward ANN. (a) 10 hidden neuron; (b) 20 hidden neuron. 
 

 

Figure 10. Error histogram. (a) 10 hidden neurons; (b) 20 hidden neurons. 
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Figure 11. Confusion matrix. (a) 10 hidden neuron; (b) 20 hidden neuron. 
 

 

Figure 12. Performance of the backpropagation ANN. (a) 8 hidden neuron; (b) 10 hidden neuron. 
 
the expense of process time, but process time is much smaller than deep leaning 
technique. We combined five methods using entropy based combining algorithm 
of [11], which provides accuracy of recognition above 98% for all the five expe-
riments. Finally, we compared our results with NN + SVM of [18] and FCM + 
SVM of [19], using the same data, where the result of first case is found 0.9417 
and that of second case is 0.9445. Our model is the combination of five MLs, 
which is more robust than previous works in data classifications.  
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Figure 13. Error histogram of backpropagation ANN. (a) 8 hidden neuron; (b) 10 hidden neuron. 

4. Conclusion 

In this paper Iris data classification is done using FIS, Weighted Fuzzy rule, 
Fuzzy c-mean clustering, SVM and ANN. The combination of five techniques 
gives minimum value of accuracy of 97.4%, which is found better than previous 
individual method. The concept of the research work is also applicable for any 
type of tabular data. The high accuracy of classification of the paper is found be-
cause of inclusion of weighted fuzzy rule. The process time of weighted fuzzy 
rule is larger than the other five techniques used in the paper but considerably 
lower than deep learning like Convolutional Neural Network (CNN). The pro-
posed technique of the paper provides high accuracy with minimum possible 
process time. Still we have scope to include other machine learning techniques 
like: Principal Component Analysis, Linear Discriminant Analysis (LDA), Baye-
sian Classification, Decision tree etc.  
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