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Abstract 
In the frequency division duplex (FDD) mode of the massive MIMO system, 
the system needs to perform coding through channel state information (CSI) 
to obtain performance gains. However, the number of antennas of the base 
station has been greatly increased, resulting in a rapid increase in the over-
head for the user terminal to feedback CSI to the base station. In this article, 
we propose a method based on multi-task CNN to achieve compression and 
reconstruction of channel state information through a multi-scale and mul-
ti-channel convolutional neural network. We also introduce a dynamic 
learning rate model to improve the accuracy of channel state information re-
construction. The simulation results show that compared with the original 
CsiNet and other work, the proposed CSI feedback network has better recon-
struction performance. 
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1. Introduction 

Massive multiple-input multiple-output (MIMO) technology was proposed in 
the 20th century and has become particularly important in the latest 5G wireless 
communication systems [1]. Massive MIMO system refers to the simultaneous 
provision of services to multiple users through base stations equipped with a 
large number of transmitting antennas on the same time-frequency resources 
[2]. In MIMO systems, increasing the number of antennas can improve channel 
capacity and transmission efficiency. However, the above benefits are based on 
the base station’s ability to obtain accurate channel state information (CSI). In 
the uplink, the base station can accurately estimates the channel state informa-
tion through the pilots sent by the user equipment [3]. For the downlink, the us-
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er equipment needs to estimate the CSI and feed it back to the base station for 
precoding. However, due to the increase in the number of antennas, the size of 
the CSI matrix is also greatly increased [4]. If the traditional feedback method is 
used, the cost of the system will increase. 

With the rise of deep learning, great progress has been made in computer vi-
sion, natural language processing, etc. Deep learning technology was introduced 
into the field of wireless communication. It is used to compress and reconstruct 
the CSI matrix. An auto-encoder network called CsiNet proposed by Wen and et 
al. [5] compresses and reconstructs CSI through a convolutional neural network, 
whose reconstruction performance is better than that of traditional compressed 
sensing methods (e.g. LASSO and TVAL3) [6] [7] [8]. In addition, they also 
proposed LSTM-CsiNet, a recurrent neural network that uses channel time cor-
relation and has good reconstruction performance in the face of high compres-
sion ratios [9]. They also proposed a multi-rate CSI network in [10], which re-
duces the amount of parameters and a novel quantitative CSI feedback network 
is adopted. Based on the channel reciprocity, the uplink CSI information is used 
to reconstruct the downlink CSI. The work of literature [11] [12] reduces the im-
pact of transmission delay in feedback. The above researches roughly show that 
the convolutional neural network has a better effect on CSI feedback processing. 
However, in these methods, the number of parameters is huge and computational 
complexity is relatively high. So we consider to use convolutional neural net-
work as the infrastructure and use multi-scale and multi-channel convolutional 
neural network to improve the quality of CSI reconstruction. In addition, we in-
troduce the dynamic learning rate model to obtain optimization. Our main work 
is listed below. 
 We propose a new CSI compression recovery mechanism in FDD massive 

MIMO systems, which is called multi-scale and multi-channel convolutional 
CsiNet (MSMCNet). In this multi-task network, we set the number of the 
channels to 3 because of the balance of complexity and accuracy. 

 We introduce a dynamic learning rate model to improve the robustness of 
the automatic encoder especially in case of high compression ratio. At the 
same time, we adopted block convolution and hole convolution to the con-
volution layer which can improve robustness in case of different sparsity ma-
trix. 

The rest of the article is arranged as follows. The Section 2 introduces the 
CSI feedback system model; the Section 3 presents the specific architecture of 
MSMCNet; the Section 4 shows the simulation results and analysis. Finally, the 
conclusion is drawn in Section 5. 

2. System Model 

We consider a simple single-cell downlink massive MIMO system. The system 
has 1tN �  transmitting antennas at the base station and a single receiving an-
tenna at the user equipment. Orthogonal frequency division multiplexing (OFDM) 
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with CN�  orthogonal sub-carriers is adopted where the received signal on the 

thn  subcarrier can be derived as follows: 
H

n n n n ny h v x z= +�                         (1) 

where 1tN
nh ×∈�  , 1tN

nv ×∈ , nx ∈ , nz ∈  respectively represent the 
channel vector, precoding vector, data bearing symbol and additive noise of the 
nth subcarrier. The downlink CSI matrix is a stack of subcarrier channel vectors 
[13]: 

1 2[ , , , ]
c

H
Nh h h=H �

� � �� �                       (2) 

After that, two pre-processes are implemented on CSI: 
1) Using two dimension (2D) discrete Fourier transform (DFT) to transform 

H�  into H , H  is sparse in the angular delay domain. 
2) In the delay domain, except for the first few non-zero columns, most of the 

elements in H�  are zero. Because the time delay between multipath arrivals lies 
within a limited period of time. Therefore, only the first cN  non-zero columns 
are retained for the processed H . The size of the new CSI matrix obtained is 

c tN N× , that is: 

= H
d aH F HF�                           (3) 

where dF  and aF  are the DFT matrices with dimension c cN N×  and t tN N×  
[14]. For angular-delay domain channel matrix H , only the first cN  row con-
tains large values. We use aH  to denote the first cN  rows of H . 

Although the number of the elements aH  in is much lower than the initial 
H� , it is still too large for feedback. So we have to further compress aH  before 
feedback. Traditional LASSO and AMP methods rely on the priori of the chan-
nel structure and cannot guarantee the recovery performance. Therefore, scho-
lars introduces deep learning into feedback compression and use the black box 
model to obtain better reconstruction performance. 

In this article, we use the encoder-decoder network for downlink CSI feedback 
to perform further compression. MSMCNet will compress aH  into a feature 
vector V  according to a certain compression ratio. The user side then feeds 
back V  to the base station, and the decoder of the base station performs aH  
reconstruction through decompression. Finally, the original CSI matrix is res-
tored through zero column padding and inverse DFT (IDFT). 

aH�  is reconstructed matrix: 

( )( )aH , , ,a e dD E H θ θ=�                      (4) 

where E and D denote the encoder and the decoder of MSMCNet. eθ  and dθ  
represent their network parameters. We propose to design and train eθ  and 

dθ  so that the distance between reconstructed matrix aH�  and aH  is mini-
mized. 

The work in the article only focuses on the feedback scheme, so we assume 
that the uplink feedback and downlink channel estimation are ideal. The article 
uses the COST2100 model to simulate the channel matrix H  for the massive 
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MIMO FDD system [15]. 

3. Design of MSMCNet 

In the literature [5], CsiNet adopts the residual structure of RefineNet which has 
been proved to be effective in calculating CSI. CsiNet applys a fixed resolution 
which has a fixed convolution kernel to extract the features of the CSI matrix. 
However, the degree of CSI matrix sparsity shows different adaptability to dif-
ferent resolutions. 

For example, if a CSI matrix has poorer sparsity, we should use a convolution 
kernel with a smaller kernel size to extract finer features. However, when the 
sparsity of the CSI matrix is very high, if we continue to use a smaller kernel size, 
it may result in a large blank area and cannot effectively extract its features. 
Therefore, in case of different CSI matrices, the size of the convolution kernel 
adopted should be different in order to adapt to different sparsity. 

We introduce a multi-scale and multi-channel convolution kernel and pro-
pose a network called multi-scale multi-channel-Net (MSMCNet). The structure 
of MSMCNet is shown in Figure 1 and Figure 2. MSMCNet consists of two 
parts: the encoder at the user and the decoder at the base station. The aH  is 
2 c tN N× × , where 2 represents the real part and the imaginary part of the ma-
trix. We set three channels which is a trade-off between complexity and results. 

Firstly, for the encoder, the input image passes through three parallel chan-
nels. The size of the convolution kernel of each channel is 3 × 3, but the three 
channels use different degrees of hole convolution, and the dilation is 1, 2 and 3. 
The dilation 1 represents the ordinary 3 × 3 resolution, and the 2 corresponds to 
the 5 × 5, and the 3 corresponds to the 7 × 7 convolution kernels. Therefore, 
convolution kernels of different scales are concatenated to the outputs and  
 

 
Figure 1. The structure of encoder with multi-scale and multi-channel. 
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Figure 2. The structure of decoder with multi-scale and multi-channel. 
 
merged them through a 1 × 1 convolution layer. Then we adopt the fully con-
nected layer to obtain the desired compression rate. 

For the decoder, firstly, it amplifies the received feature vector V to a specific 
size and roughly extract features through a 3 × 3, dilation = 2 convolution ker-
nel. After that, the output characteristics are obtained through two MSMCBlock 
modules and finally the CSI matrix is reconstructed through the Sigmoid layer. 
As shown in Figure 2, MSMCBlock has three parallel channels, one passes 
through 1 × 9 and 9 × 1 convolution kernels, and the second passes directly 
through 1 × 5 and 5 × 1 convolution kernels, and the third passes through 1 × 7 
and 7 × 1 convolution kernels. The results are concatenated through 1 × 1 con-
volution layer. In this way, it can perform well in the case of different sparsity 
CSI matrices. MSMCBlock also directly merges the original data to the subse-
quent layers and adds the original data and the multi-channel convolution re-
sults. Multichannel refers that three channels we used and multiscale refers that 
different convolution kernels.  

We use hole convolution and 1 × 9, 9 × 1 serial convolution to replace the 
huge convolution kernel of 9 × 9. They can retain the resolution effect of 9 × 9 in 
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the resolution area and reduce the complexity of the calculation and the number 
of parameters. The MSMCNet proposed in this paper has higher accuracy than 
CsiNet. 

For each convolutional layer, the activation function LeakRelu is adopted in-
stead of Relu, because the negative part of Relu has a slope of 0. When a large 
gradient flow passes through the Relu neuron, this neuron will be assigned a 
value of 0 after the parameters are updated. This neuron will not activate the 
subsequent data. The LeakRelu has a negative slope, and the above problem will 
not occur. And when we increase the slope appropriately, the performance of 
MSMCNet will be improved. 

In addition, we also use a dynamic learning rate learning scheme. If we use 
0.001 as the value of learning rate in 1000 learning epochs, we can indeed get 
good results. If we want to increase the efficiency of deep learning, we set the 
learning rate in the initial state to be high so that they can quickly enter the cor-
rect range. After that, the learning rate is reduced to ensure that over-fitting does 
not occur and it can get better results. The learning rate used follows a cosine 
function and the network performance can be improved through this dynamic 
learning method. Under the reference of literature [2] [5] and tested in advance, 
the maximum learning rate we set is 0.0025 and the minimum learning rate is 
0.0005. The initial value of function is maximum and the last value is minimum, 
the whole process is monotonously decreasing. Such a learning rate setting can 
not only accelerate the learning speed of the first half of the network, but also 
prevent overfitting in the second half and further approach the true value.  

4. Simulation Results and Analysis 

The experiment is completed in an indoor scene at 5.3 GHz band. We use the 
COST2100 model to generate training samples. In order to facilitate comparison, 
the MSMCNet model has the same basic settings as the CsiNet model. The base 
station is a uniform linear array (ULA) model with 32tN = . For the FDD sys-
tem, we take 1024cN =  in the frequency domain and 32aN =  in the angular 
domain. 150,000 independently generated channels are divided into three parts: 
training, verification and test sets, including 100,000, 30,000 and 20,000 channel 
matrices, respectively. The Batchsize used in this training is 200. Reconstruction 
results with compression ratios (CR) of 4, 8, 16, and 32 were obtained. We also 
test the NMSE in an outdoor environment with compression ratio of 4. It is used 
to compare with indoor data. 

The entire experimental system is implemented in Pytorch. Both the convolu-
tional layer and the fully connected layer are initialized with Xavier. Typically, 
the default settings we use are b1 = 0.9, b2 = 0.999, e = 1e−8 and we use the 
Adam optimizer with mean square error (MSE) as the loss function. We also use 
a dynamic learning rate in the system, the maximum learning rate is 0.0025 and 
the minimum learning rate is 0.0005. 

In order to evaluate the performance of MSMCNet, we use the normalized 
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mean square error (NMSE) to measure the distance between the original matrix 

aH  and the reconstructed matrix aH� . 
The training epochs chosen in our test is 1000. During the test, we find that 

the training results usually get better with the growth of the epochs. However, 
when the epochs increase to 5000, the improvement will be very slight. So we use 
1000 epochs in our experiment. In [5] CsiNet is better than traditional com-
pressed sensing methods. From Table 1 that in case of 4 compression ratios, 
MSMCNet with dynamic learning rate is better than const-MSMC and both they 
are better than CsiNet. 

Figure 3 shows that whether the dynamic learning rate is used, the MSMCNet 
is better than the CsiNet and its loss is lower. When we compare the red and 
green curves in Figure 3, it is obvious that the loss of the red is lower, which 
shows that the usage of dynamic learning rate is obviously helpful for results. 

Figure 4 shows the changes of NMSE under the three network frameworks. 
The data is recorded every 10 epochs and there are a total of 100 data in 1000 
epochs. MSMCNet in the article has a better reconstruction rate with both dy-
namic and non-dynamic learning rate. Since the dynamic learning rate in the 
middle period is higher than the fixed learning rate, the red line in Figure 4 
fluctuates more greatly. At the end of the period, the red curve becomes more 
stable compared to the green. The final result shows that the dynamic learning 
rate has a better NMSE. 

From Figure 5, we can see that MSMCNet’s effect on outdoor channel matrix 
restoration is far from ideal and far lower than the indoor effect. When experi-
ment at a high compression ratio, the reconstruction efficiency of the channel 
matrix will also decrease. So the further task is how to obtain a more ideal NMSE 
with high compression ratio and outdoor conditions. 
 

 

Figure 3. MSE (as loss function) between CsiNet and MSMCNet. 
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Figure 4. NMSE (dB) of CsiNet and MSMCNet in 1000 epochs with compression ratio 4. 
 

 

Figure 5. NMSE (dB) of MSMCNet in inside and outside with compression ratio 4. 
 
Table 1. NMSE of different methods for 4 ratios. 

Compress ratio 
NMSE (dB) of different methods 

Const-MSMC MSMC CSINet 

4 −21.98 −25.52 −17.36 

8 −13.69 −14.75 −12.70 

16 −9.86 −10.42 −8.65 

32 −8.23 −8.66 −6.24 
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We find that the CsiNet network almost reached the optimal value when it 
was trained for 100 epochs and the subsequent 900 epochs did not improve the 
results. MSMCNet can be significantly improved because it is more capable of 
exploiting subtle changes among adjacent elements than CsiNet methods. 

5. Conclusion 

For the downlink CSI feedback in the massive MIMO FDD system, we proposed 
MSMCNet on the basis of CsiNet. The multi-channel and multi-scale convolu-
tion was introduced into the CSI feedback task and it is proved to be effective. At 
the same time, the concept of dynamic learning rate was adopted to further im-
prove the efficiency of CSI reconstruction. Experiments have shown that our 
scheme has higher reconstruction efficiency than CsiNet. But experiments also 
presented that deep learning methods have poor reconstruction efficiency in 
case of outdoor environments and high compression ratios. We hope this paper 
will encourage future research in this direction. 

Acknowledgements 

This work has been supported by the Research Fund of National Mobile Com-
munications Research Laboratory, Southeast University (No. 2021C01).  

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Marzetta, T.L. (2010) Noncooperative Cellular Wireless with Unlimited Numbers of 

Base Station Antennas. IEEE Trans. Wireless Commun, 9, 3590-3600.  
https://doi.org/10.1109/TWC.2010.092810.091092 

[2] Zhang, J., Wen, C.-K., Jin, S., Gao, X. and Wong, K.-K. (2013) On Capacity of 
Large-Scale MIMO Multiple Access Channels with Distributed Sets of Correlated 
Antennas. IEEE J. Sel. Areas Commun., 31, 133-148.  
https://doi.org/10.1109/JSAC.2013.130203 

[3] Rusek, F., et al. (2013) Scaling up MIMO: Opportunities and Challenges with Very 
Large Arrays. IEEE Signal Process. Mag, 30, 40-60.  
https://doi.org/10.1109/MSP.2011.2178495 

[4] Hoydis, J., Brink, S.T. and Debbah, M. (2013) Massive MIMO in the UL/DL of Cel-
lular Networks: How Many Antennas Do We Need? IEEE Journal on Selected Areas 
in Communication, 31, 160-171. https://doi.org/10.1109/JSAC.2013.130205 

[5] Wen, C., Shih, W. and Jin, S. (2018) Deep Learning for Massive MIMO CSI Feed-
back. IEEE Wireless Communications Letters, 7, 748-751.  
https://doi.org/10.1109/LWC.2018.2818160 

[6] Kuo, P.H., Kung, H.T. and Ting, P.A. (2012) Compressive Sensing Based Channel 
Feedback Protocols for Spatially-Correlated Massive Antenna Arrays. 2012 IEEE 
Wireless Coummunications and Networking Conference (WCNC), 492-497.  
https://doi.org/10.1109/WCNC.2012.6214417 

https://doi.org/10.4236/jcc.2021.910009
https://doi.org/10.1109/TWC.2010.092810.091092
https://doi.org/10.1109/JSAC.2013.130203
https://doi.org/10.1109/MSP.2011.2178495
https://doi.org/10.1109/JSAC.2013.130205
https://doi.org/10.1109/LWC.2018.2818160
https://doi.org/10.1109/WCNC.2012.6214417


B. Y. Cheng et al. 
 

 

DOI: 10.4236/jcc.2021.910009 141 Journal of Computer and Communications 
 

[7] Rao, X. and Lau, V.K.N. (2014) Distributed Compressive CSIT Estimation and Feed-
back for FDD Multi-User Massive MIMO Systems. IEEE Transactions on Signal Pro- 
cessing, 62, 2361-3271. https://doi.org/10.1109/TSP.2014.2324991 

[8] Daubechies, I., Defrise, M. and De Mol, C. (2004) An Iterative Thresholding Algo-
rithm for Linear Inverse Problems with a Sparsity Constraint. Communications on 
Pure and Applied Mathmatics: A Journal Issued by the Courant Institute of Mathe-
matical Sciences, 57, 1413-1457. https://doi.org/10.1002/cpa.20042 

[9] Wang, T., et al. (2019) Deep Learning Based CSI Feedback Approach for Time-Vary- 
ing Massive MIMO Channels. IEEE Wireless Commun. Lett., 8, 416-419.  
https://doi.org/10.1109/LWC.2018.2874264 

[10] Guo, J., Wen, C.-K., Jin, S. and Li, G.Y. (2019) Convolutional Neural Network 
Based Multiple-Rate Compressive Sensing for Massive MIMO CSI Feedback: De-
sign, Simulation, and Analysis. arXiv preprint arXiv: 1906.06007.  

[11] Yang, Y., Gao, F., Li, G.Y. and Jian, M. Deep Learning Based Downlink Channel 
Predicition for FDD Massive MIMO System. IEEE Communications Letters, in Press. 

[12] Liu, Z., Zhang, L. and Ding, Z. (2019) Exploiting Bi-Directional Channel Reciproci-
ty in Deep Learning for Low Rate Massive MIMO CSI Feedback. IEEE Wireless Com- 
munications Letters, 8, 889-892. https://doi.org/10.1109/LWC.2019.2898662 

[13] Wen, C.K., Jin, S., Wong, K.K., et al. (2015) Channel Estimation for Massive MIMO 
Using Gaussian-Mixture Bayesian Learning. IEEE Transactions on Wireless Com-
munications, 14, 1356-1368. https://doi.org/10.1109/TWC.2014.2365813 

[14] Choi, J., Love, D.J. and Bidigare, P. (2014) Downlink Training Techniques for FDD 
Massive MIMO Systems: Open-Loop and Closed-Loop Training with Memory. IEEE 
J. Sel. Topics Signal Process, 8, 802-814.  
https://doi.org/10.1109/JSTSP.2014.2313020 

[15] Liu, L., et al. (2012) The COST 2100 MIMO Channel Model. IEEE Wireless Com-
mun., 19, 92-99. https://doi.org/10.1109/MWC.2012.6393523 

 

https://doi.org/10.4236/jcc.2021.910009
https://doi.org/10.1109/TSP.2014.2324991
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1109/LWC.2018.2874264
https://doi.org/10.1109/LWC.2019.2898662
https://doi.org/10.1109/TWC.2014.2365813
https://doi.org/10.1109/JSTSP.2014.2313020
https://doi.org/10.1109/MWC.2012.6393523

	Multi-Scale and Multi-Channel Networks for CSI Feedback in Massive MIMO System
	Abstract
	Keywords
	1. Introduction
	2. System Model
	3. Design of MSMCNet
	4. Simulation Results and Analysis
	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

