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Abstract 
This paper proposes a deep learning-based channel estimation method for 
orthogonal frequency-division multiplexing (OFDM) systems. The existing 
OFDM receiver has low estimation accuracy when estimating channel state 
information (CSI) with fewer pilots. To tackle the problem, in this paper, a 
deep learning model is first trained by the interpolated channel frequency 
responses (CFRs) and then used to denoise the CFR estimated by least square 
(LS) estimation. The proposed deep neural network (DNN) can also be 
trained in a short time because it only learns the CFR and the network struc-
ture is simple. According to the simulation results, the performance of the 
DNN estimator can be compared with the minimum mean-square error 
(MMSE) estimator. Furthermore, the DNN approach is more robust than 
conventional methods when fewer pilots are used. In summary, deep learning 
is a promising tool for channel estimation in wireless communications. 
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1. Introduction 

In an OFDM system, the CSI is important for precoding before transmission and 
decoding at the receiver. The accurate estimation of the CSI is used for the re-
covery of the transmitted symbols. It can effectively reduce the system error rate 
and improve system performance [1]. Usually, the CSI is estimated based on the 
pilot data sent by the transmitter and then the estimated CSI is used to recover 
the transmitted symbols. 

The LS or MMSE estimation is normally used in traditional channel estima-
tion methods [2] [3] [4]. The LS estimation is easy to implement since it needs 
no CSI. However, it ignores the influence of noise and leads to inadequate per-
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formance. Compared to the LS estimation, the MMSE estimation utilizes the 
second-order statistics of the channel can achieve higher estimation accuracy. 
But, an MMSE estimator is undesirable. It needs to calculate the channel corre-
lation matrix between the base station and user. Its complexity is also much 
higher than that of the LS estimation. 

With the rapid development of machine learning technology and hardware 
performance in recent years, deep learning has been successfully applied to many 
fields including computer vision, natural language process, and so on [5]. Based 
on deep learning, the transmitter and receiver of the communication system can 
be regarded as two networks to complete end-to-end information transmission 
[6]. Deep learning can also be applied to the various modules of the communica-
tion system to optimize the performances of the modules [7] [8], such as channel 
estimation module and so on. In an OFDM system, deep learning is used to 
complete the channel estimation and signal detection and obtain a better signal 
recovery effect [9]. In addition, the deep neural network has excellent noise re-
duction capabilities. Before the LS estimation, the deep learning can be used to 
reduce noise to improve the estimation accuracy and research has found that 
such noise reduction network is robust to pilot pollution [4]. The DNN can di-
rectly learn the frequency domain information of the CSI. So it can perform 
noise reduction processing on the CSI estimated by the LS estimation and can be 
used for subsequent signal detection to avoid wasting resources by repeatedly 
sending pilots [10] [11] [12]. In the meantime, compressed sensing and deep 
learning can be combined to improve estimation accuracy [13] [14]. 

In this paper, we propose a deep learning-based channel estimation method in 
the OFDM system. We combine the DNN mode and LS estimation to make the 
two mutually benefited. To this end, we first train the DNN offline so that it learns 
the channel frequency characteristics in advance. In the online deployment stage, 
the trained DNN is capable of denoising the CSI estimated by the LS estimator. 
We found that directly using channel frequency characteristics as training data 
to train the DNN has poor robustness with fewer pilots. Therefore, we use the 
interpolated frequency characteristics to train the DNN and use the DNN re-
cover the estimated CSI. The simulation results in this paper indicate that the 
proposed scheme has a good performance compared with traditional methods. 
In the future, deep learning can be potentially applied in channel estimation. 

The remainder of this paper is organized as follows. The system model is giv-
en in Section 2. The proposed DNN estimator is explained in Section 3. The si-
mulation results are presented in Section 4. Finally, we conclude the paper in 
Section 5. 

2. System Model 
2.1. Deep Neural Network 

Figure 1 shows the architecture of a DNN model. A DNN is composed of an 
input layer, an output layer, and several hidden layers. Each layer is composed of 
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Figure 1. An example of deep neural network. 

 
several neurons. The output of each neuron is a nonlinear function of the weighted 
sum of the output of previous neurons. The nonlinear function may be Rectified 
Linear Unit (RELU) function or Sigmoid function. 

ReLU ( ) max(0, )a aσ =                        (1) 

Sigmod ( )
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l ∈b  represent the weight matrix and the bias vec- 

tor, respectively. { , }l l lθ = W b  is the set of parameters for the l-th layer. Hence, 
the final output of the DNN is given by 
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The DNN is trained with the training set which includes the training data and 
label data. The goal of the training is to minimize the loss function which is  

2
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where LN
L R∈z  is the label data and 1 2{ , , , }Lθ θ θ= �θ  is the set of all train-

ing parameters [15]. 

2.2. System Architecture 

Figure 2 shows the architecture of a baseband OFDM system model. At the 
transmitter, the transmitted signal are converted into a parallel data stream, then 
the signal are transformed from the frequency domain to the time domain by in-
verse discrete Fourier transform (IDFT). After that, the inter-symbol interference 
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Figure 2. OFDM system. 
 
(ISI) can be mitigated by inserting cyclic prefix (CP). Then the signal is con-
verted into a serial data stream and sent to the channel. At the receiver, the re-
ceived serial data stream is converted to a parallel data stream. Then the CP is 
removed and the signal are transformed to the time domain by discrete Fourier 
transform (FFT). Finally, the signal is converted to a serial data stream for out-
put. The received signal ( )iY k  of the k-th subcarrier in the i-th OFDM symbol 
can be expressed as  

( ) ( ) ( ) ( )i i i iY k H k X k W k= +                    (6) 

where ( ), ( )i iH k X k , and ( )iW k  denote the CFR, transmitted signal, and com-
plex Gaussian noise with zero mean and variance 2

wσ , respectively. We assume 
that the first OFDM symbol is a pilot symbol and the subsequent OFDM sym-
bols are composed of the transmitted data. These symbols from a frame. Each 
OFDM symbol contains 64 subcarriers including data subcarriers index set D  
and pilot subcarriers index set P . 

It is straightforward to express LS estimation as  
( )

( ) ,
( )

p
p P

p

Y k
H k k

X k
= ∈                    (7) 

where ( )pX k  and ( )pY k  are the pilot symbol and corresponding received 
signal. Then we get the estimated CFR ˆ ( )H k  by interpolating ( )PH k . 

3. Deep Channel Estimator 

The LS estimation has low complexity. However, its estimation accuracy is poor. 
Thus, we design a DNN to improve estimation accuracy. Our estimation method 
consists of two steps as shown in Figure 3. 
 Estimating the CFR by the LS estimation. 
 Using the DNN to denoise the estimated CFR. ( )H k�  is the CFR with de-

noise processing. 
We use the FFT operation to convert the channel impulse responses to the 

CFRs as training data. We build a five layers DNN including the input layer and 
the output layer. The neurons in each layer are 128, 80, 40, 80, 128, respectively. 
Separate the real and imaginary parts of the CFR, so the number of neurons in 
the input and output layer are both 128, i.e., the input vector 
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Figure 3. Schematic diagram of proposed channel estimation based on deep learning. 
 

T
0 [ { }, { }]= ℜ ℑh H H                        (8) 

where T( )⋅  represents the transpose operation, {}ℜ ⋅  and {}ℑ ⋅  denote the real 
and imaginary parts of a complex CFR [{ ( )} ]

P DkH k ∈= ∪ H . 
In our experiment, the DNN is trained to minimize the mean square error 

(MSE) between the input CFR and the output. The MSE is expressed as  
2

MSE 2

1( ) arg min L L
L

L
N

∗= −h h
θ

θ                  (9) 

where 0Lh h∗=  and Lh∗  denote the label and output data. According to the si-
mulation results in Section 3, the trained DNN performs poorly with a few pilots. 
Therefore, for a few pilots, e.g. 8 pilots subcarriers with index set  

{0,8,16,24,32,40,48,56}P = . We train DNN through the following two steps. 
 Extracting 1( )H k  from ( )H k  according to the known pilot index Pk ∈ . 

( )H k  can be obtained by interpolating 1( )H k  where P Dk ∈ ∪  . We use 
third-order spline interpolation to interpolate 1( )H k .  

 Inputting the ( )H k  as training data into the DNN and the label data is 
( )H k . From the simulation results in Section III, the DNN trained by this 

method has a significant noise reduction with fewer pilots. 

4. Simulation Results 

In this section, we show the simulation results of the proposed method. In our 
experiment, an OFDM system with 64 subcarriers and the QPSK modulation 
method is considered. The wireless channel follows the WINNER II channel 
model, where the carrier frequency is 2.6 GHz and the number of paths is 24. 
The typical urban channels with maximum delay 16 sampling period are used. 
We train the DNN in different pilots with Adam optimizer. We initialize the 
weights and biases by Glorot Uniform to achieve the best learning performance 
[16]. The normalized mean square error (NMSE) is used as a performance ma-
trix which is defined as  

2

2
2
2

NMSE
 − =
 
  

�


H H
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where �H  and H  are estimated CFR and actual CFR. The proposed method is 
compared with the LS, MMSE, deep learning-based [9], and AE estimation me-
thod [11]. [9] and [11] use the ideal CSI to train the neural network. In [9], The 
neural network performs not only channel estimation but also signal detection. 
The transmitted signal through the channel is used as the input signal of the 
neural network and the trained neural network will complete the channel esti-
mation and demodulation and it restores the received signal to the transmitted 
binary bit stream. In [11], the author utilizes the trained neural network in the 
channel estimation procedure as shown in Figure 3. The trained neural network 
uses the channel matrix estimated by LS estimation as the input signal and it 
outputs the denoised CSI which can be used for data demodulation later. 

Figure 4 compares the NMSE of the different channel estimation methods. 
The MMSE estimation method performs best with 64 pilots because the MMSE 
estimation utilizes the second-order statistical characteristics of the channel. For 
64 pilots, the proposed DNN estimation is equivalent to the AE estimation, be-
cause the training data at this time is a 64-pilot channel matrix which is equiva-
lent to the training data of the AE estimation. However, there are often no 64 
pilots in actual situations. When 16 pilots are used, the NMSE curves of the 
MMSE, LS, and AE estimation decrease slightly when the SNR is above 15 dB. 
But the DNN estimation still has the ability to reduce NMSE when the SNR is 
greater than 15 dB. In the case of 8 pilots, the MMSE, LS, and AE estimation 
reach the performance limit at the SNR of 10 dB, while the DNN estimation 
method performs better than the above three methods from 0 dB and can also 
estimate well when the SNR is above 10 dB. Figure 5 shows the bit-error rate  
 

 

Figure 4. NMSE performance comparison in different pilots with respect to SNR. 
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Figure 5. BER performance comparison in different pilots with respect to SNR. 
 
(BER) of the three deep learning-based channel estimation methods. The BER of 
the three estimation methods has little difference with 16 pilots. But in the case 
of 8 pilots, the BER estimated by DNN estimation is much smaller than AE es-
timation at high SNR. Compared with the method in [9], although the BER of 
our DNN estimation is not significantly reduced, the network structure is much 
simpler than that in [9], which means that we can train the network in shorter 
time. A simpler network structure can be adjusted more quickly when using 
samples from the real wireless channels to fine-tune the DNN model. Besides, 
our network is more flexible. For example, the denoised channel matrix can be 
used for precoding at the transmitting end while [9] has no estimated channel 
matrix because it directly completes channel estimation and detection. It is ob-
vious that the proposed DNN estimation can learn channel characteristics well 
with fewer pilots and has higher estimation accuracy compared with other me-
thods according the simulation results above. 

The comparison of different network structures is shown in Figure 6. When 
we use the 40-20-40 network, the NMSE is the highest. As the number of hidden 
neurons increases, the NMSE will decrease slightly. However, the training time 
increases exponentially with increase of the complexity of the network structure. 
Therefore, there is a trade-off between network complexity and estimation ac-
curacy. If the network is too simple, its learning channel characteristics effect 
and noise reduction effect are not significant. When the network is too complex 
may require a lot of training time. Thus, we should choose a suitable network on 
the different situations in order to achieve the higher estimation accuracy with 
less resource consumption. 
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Figure 6. The MSE performance of the proposed estimator with respect to hidden units. 

5. Conclusion 

In this paper, we have proposed a novel deep learning-based channel estimator 
composed of DNN and LS estimation to improve the performance of the con-
ventional LS estimation. To overcome the low estimation accuracy with few pi-
lots, we developed a combined strategy of the DNN and the LS estimation. The 
DNN channel estimator exploits channel characteristics in the frequency domain 
very effectively and then denoises the LS estimation results. It was shown from 
the simulation results that the proposed scheme obtains a obvious performance 
gain over the conventional LS estimation and other deep learning estimation 
methods, which is attributed to that the training data provided in this paper are 
closer to the real channel estimation. In this work, the training data are generat-
ed by the WINNER II channel model. For practice use, we can collect samples 
generated from real wireless channels to retrain or fine-tune the model. 
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