
Journal of Computer and Communications, 2021, 9, 120-131
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2021.99009 Sep. 30, 2021 120 Journal of Computer and Communications

Countermeasure against Deepfake Using
Steganography and Facial Detection

Kyle Corcoran, Jacob Ressler, Ye Zhu

Department of Electrical Engineering & Computer Science, Cleveland State University, Cleveland, OH, USA

Abstract
As deepfake technology continues to advance at a rapid pace, there is a con-
stant need to develop new methods to counteract its use. Physical copies of
authentic items like signed baseball memorabilia use a certification to identify
the authenticity. This paper proposes using steganography to embed a signed
watermark inside a digital image. By using RSA to generate, sign, and verify
the watermark, individuals will be able to authenticate personal images or try
to verify signed images for authenticity. We evaluate the proposed approach
with images manipulated by deepfake algorithms. The experiment results
show 100% detection rate on deepfake images. The signing time and the veri-
fication time are around 300 ms according to our experiments. So the over-
head of the countermeasure are negligible.

Keywords
Deepfake, Deepfake Detection, Steganography, Cryptography, Facial
Detection

1. Introduction
1.1. Background

Deepfake is an emergent and rapidly developing technology that uses machine
learning to generate synthetic media that replaces a person in a video or image
with someone’s likeness. Deepfakes rely on neural networks that use a set of data
samples to learn to mimic attributes of a person’s face with training. Neural
networks are non-linear models for predicting or generating content based on
an input [1]. Deep fakes are usually created by using a combination of several of
the following networks: Encoder-Decoder, Convolutional neural Networks, Ge-
nerative Adversarial Networks. This technology was once very expensive but has

How to cite this paper: Corcoran, K., Ress-
ler, J. and Zhu, Y. (2021) Countermeasure
against Deepfake Using Steganography and
Facial Detection. Journal of Computer and
Communications, 9, 120-131.
https://doi.org/10.4236/jcc.2021.99009

Received: June 26, 2021
Accepted: September 27, 2021
Published: September 30, 2021

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2021.99009
https://www.scirp.org/
https://doi.org/10.4236/jcc.2021.99009

K. Corcoran et al.

DOI: 10.4236/jcc.2021.99009 121 Journal of Computer and Communications

become much more accessible and powerful over the years it has existed. Mali-
cious actors have taken advantage of this to generate believable fake media for
various unethical purposes such as deception, blackmail, and mischaracteriza-
tion.

1.2. Deepfake Algorithms

This paper uses an encoder and decoder algorithm to generate deepfakes. En-
coder is a separate neural network that has the job of taking in dataset x of im-
ages and encoding them into a vector En(x) = e. The decoder, the other neural
network, has the job of taking the vectors created by the encoder and attempting
to turn this representation back into faces as closely matching the input as possi-
ble De(En(x)) = x.

In order to detect how well the neural network is doing encoding and decod-
ing faces a loss and weight function is used. The loss function is used to update
the weights with an optimization algorithm like gradient descent. A loss function
for training model M as an n-class classifier, where the output of M would be the
probability vector ny∈ . Forward propagation is applied to M to obtain y' =
M(x). Loss function is computed by comparing y' to the probability vector y,
then back-propagation is performed to update the weights. The Loss  over
the entire training set X is calculated as

[] []()1 1 logX n
i ii c y c y c

= =
′= −∑ ∑ (1)

where y'[c] is the predicted probability of xi belonging to the cth class [1]. Once
the model has evaluated its performance the weights are updated for both En-
coder and Decoder algorithm. This is repeated many times constantly updating
the weights based on the loss values, theoretically improving the reconstruction
of input face (Figure 1).

Figure 1. Encoder and decoder (figure caption).

https://doi.org/10.4236/jcc.2021.99009

K. Corcoran et al.

DOI: 10.4236/jcc.2021.99009 122 Journal of Computer and Communications

Next the neural network uses the same encoder for both A data set (source
face) and B data set (target face). This concept is called Shared Encoder and
allows for the encoder to learn one algorithm to construct both faces. The idea
is to tell the neural network to take the encoding of one face and decode it us-
ing the other face. When training the model two decoders are generated one
for decoding face A and the other for decoding face B. To perform the deep-
fake faceswap the encoding of face A En(A) is passed to the decoder of face B
DeB(En(A). Resulting in a swapped face is the output of the model (Figure 2).

1.3. Our Approach

In this paper we discuss the application of digital signing watermarks on images
that are embedded using steganography. This approach uses facial detection to
bound the embedded watermark inside the subject’s face of the input image al-
lowing for higher accuracy in detecting deep fake face swaps. The watermark is a
fixed length and retrieved at run time with the asymmetric private key. The pri-
vate key is used to sign the watermark using Rivest Shamir Adleman (RSA) de-
cryption algorithm. The algorithm returns a string of bytes that is used to flip the
least significant bits of the bitmap returned from facial detection. This allows for
the signed watermark to be embedded in the face of the image giving the illusion
the image was not changed to the human eye. Once the image is signed stegana-
lysis is used to retrieve the embedded signed watermark. If the image has had a
encoder and decoder swap the pixels of the face the watermark retrieved will not
be verified using RSA verification. If the image has not been manipulated, then
the verification will return a success authenticating the image has not been
face-swapped.

Figure 2. Shared encoder and swapped.

https://doi.org/10.4236/jcc.2021.99009

K. Corcoran et al.

DOI: 10.4236/jcc.2021.99009 123 Journal of Computer and Communications

1.4. Our Contributions

This paper focus on using steganography, steganalysis, cryptography, and facial
detection for media forensics to detect face swap deepfakes. Related work has
focused on detecting deepfakes using media forensics that analyzed the unique
fingerprints left behind by Generative Adversarial Networks (GAN) [2]. Our
contribution is a novel approach to detection of deepfakes.

1.5. Structure of This Paper

Section 2 of this paper looks at different algorithms that are related to the model
proposed. It is broken up into three parts describing the related works of deep-
fake, countermeasures and steganography. Section 3 overviews the model pro-
posed and is broken into two parts. Section 3.1 is general overview of the whole
model both sign.py and verify.py. Section 3.2 is a detailed view of both sign and
verify. Section 4 goes over the evaluation of how well the model performed. It is
comprised of three parts each detailing the evaluation of the performance. Sec-
tions 4.1 and 4.2 detail our two performance experiments. Section 4.3 discusses
some identified issues using steganography with facial detection and proposes
solutions. Section 5 is the conclusion and future works section. This section talks
about how well the performance of the model did overall and future implemen-
tations and research.

2. Related Work
2.1. Deepfake Algorithms

This paper focuses on detecting face-swapped deepfake images. Face swapping
used to be a manual process done with photoshop prior to 2004 [1]. Online
communities began finding improved ways to perform face swapping with deep
neural networks. The original deepfake network used an encoder and decoder
neural network. Over time improvements have been made to the model confi-
gurations, including adversarial training, residual blocks, a style transfer loss and
mask loss to improve the quality of face and eyes [3]. FaceSwap [4], is an open-
source tool and used for deepfake face swap in this paper. Software comes with
popular implementations, including deepfake lab, and multiple variations of the
original deepfake network for face-swaps.

2.2. Deepfake Countermeasures

Deepfakes generate artifacts which are subtle to humans but can be easily de-
tected using machine learning and forensic analysis [3]. Detection measures fo-
cus on these artifacts, this paper is heavily focused on the forensics of the pixels
in an image. A pixel bitmap is the grid of pixels represented by bits. Each pixel of
the image is represented by a gray scale or red, green, blue (RGB) pixel. These
pixels are stored in the pixel bit map by their corresponding color number
represented in bytes. By analyzing the pixels of an image extreme precision can
be made on detecting manipulation of image. This type forensics uses a combi-

https://doi.org/10.4236/jcc.2021.99009

K. Corcoran et al.

DOI: 10.4236/jcc.2021.99009 124 Journal of Computer and Communications

nation of cryptography and steganography to authenticate and verify images.

2.3. Steganography

Steganography is the hiding of information inside information. This paper fo-
cuses on hiding information inside images using least significant bit replacement
(LSB). A portable network graphics (PNG) or a joint photographic expert group
(JPEG) image is stripped down to its bitmapped image format (pixel bitmap).
The (LSB) implementation places the embedded data at the least significant bit
of each pixel in the bitmap. The bitmap is the reconstructed and outputs a PNG
with the embedded data [5]. Steganalysis is the retrieving of data in steganogra-
phy. This is done by stripping a PNG into its original bitmap and using the re-
verse algorithm of steganography to retrieve original data.

3. Detecting Deepfake Images
3.1. Overview of Our Detection Method

The model proposed in this paper embeds a cryptographic watermark to the 8th
bit of each byte in the pixel bitmap. The bounds are determined at runtime by
facial detection algorithm. This approach allows the cryptographic watermark to
be embedded in the face of the image to improve accuracy of detecting face
swaps. The model in this paper is implemented using two different python3.9
programs. The first program Sign.py allows the user to sign a specific image us-
ing a cryptographic watermark. The software uses TKinter as a graphical user
interface (GUI) which displays successful if image’s signed watermark is proper-
ly embedded. The second program Verify.py allows the user to choose a signed
image and cryptographically verify it has not been manipulated. The GUI return
success if cryptographic watermark is verified successfully and failed if not (Fig-
ure 3).

Figure 3. Model overview.

https://doi.org/10.4236/jcc.2021.99009

K. Corcoran et al.

DOI: 10.4236/jcc.2021.99009 125 Journal of Computer and Communications

3.2. Details

The system details of Sign.py will take an input image and use a facial detection
algorithm to return the bounds of the face in the image. The facial bounds will
get scrapped and stored into a pixel bit map for steganography. The private key
and watermark will be retrieved to use Rivest Shamir Adleman (RSA) decryption
algorithm. The algorithm uses mathematical properties of prime cofactors to
generate a unique private key that is used to sign the watermark where S =
D(W). This process returns a binary string of the signature, which is embedded
inside the face, using the facial bounds bitmap, of the input image with least sig-
nificant bit (LSB) steganography. The image is reconstructed from the bitmap
and returned with the signed watermark embedded (Figure 4).

The verification software details will allow a user to input an image they wish
to authenticate. Facial detection is used to return the bounds of the face in the
image where the watermark is stored. The watermark can be retrieved by using
the reverse LSB algorithm used to embed the watermark. Then the asymmetric
public key will be retrieved to use RSA encryption algorithm to decipher the
unenciphered watermark. The algorithm uses properties of trap-door one-way
permutations which allow the watermark to by deciphered using the public keys
encryption algorithm where W = E(S). Verified images will be deemed as suc-
cessful authentication, whereas unverified images will be deemed as failed au-
thentication (Figure 5).

4. Performance Evaluation

Our software was tested on two general metrics: security and usability. Security
is measured through detection rate, which is whether our image verification
software is able to accurately detect both real and fake images. Usability is meas-
ured through execution times for the signing and verification processes. We

Figure 4. Sign.py model.

https://doi.org/10.4236/jcc.2021.99009

K. Corcoran et al.

DOI: 10.4236/jcc.2021.99009 126 Journal of Computer and Communications

Figure 5. Verify.py model.

performed two different experiments to test these metrics, the first for general
purposes and the second for testing the effects of message length on our usability
metrics.

4.1. Variable Image Size Testing

In our first experiment, we performed some general testing on our software. We
selected 30 different images – 10 for each of our three FaceSwap models, split
evenly between the two faces trained on by each model. Model 1 was trained on
Emma Watson and Daniel Radcliffe for 400,000 training iterations using FaceS-
wap’s Original trainer; Model 2 was trained on Emma Watson and Ellen Page
for 150,000 iterations using FaceSwap’s Dfl-H128 trainer; and Model 3 was
trained on Anthony Mackie and Will Smith for 60,000 iterations, once again us-
ing FaceSwap’s Dfl-H128 trainer. These variations were made to cover a general
breadth of potential scenarios and subjects that could be encountered in the wild
(differences in skin tone and complexity, gender, facial hair, overall quality of a
deepfake, etc.).

Five pieces of information were recorded for each iteration of the experiment.
Filename refers to the name given to each base (unsigned, real) image. Image
Size refers to the total number of pixels in each base image. Signing Time refers
to the time in milliseconds it takes to create a signed image from a base image.
Verification Time refers to the time in milliseconds it takes to verify 1) the
signed image and 2) the deepfake signed image. Detection Rate refers to whether
verification correctly (indicated by 1) or incorrectly (indicated by 0) detects 1)
the signed image and 2) the deepfake signed image.

The experiment procedure is as follows. We start with a base image, indicated
by Filename. This image is then signed using our signing software, with the
Signing Time recorded. We take this new signed image and create a deepfake of
it using FaceSwap and the respective model. This is our deepfake signed image.

https://doi.org/10.4236/jcc.2021.99009

K. Corcoran et al.

DOI: 10.4236/jcc.2021.99009 127 Journal of Computer and Communications

From there, we run both the signed image and the deepfake signed image
through our verification software. The Verification Time and Detection Rate are
recorded for each. The results of this experiment can be seen in “Table 1.”

Table 1. Security and usability metrics for variable image sizes.

Filename
Image

Size (px)
Signing

Time (ms)

Verification Time (ms) Detection Rate (1 or 0)

Signed
image

Deepfake
signed image

Signed
image

Deepfake
signed image

watson1 540,876 340 597 551 1 1

watson2 262,656 299 404 342 1 1

watson3 129,300 282 304 219 1 1

watson4 242,946 287 465 400 1 1

watson5 151,500 274 337 245 1 1

radcliffe1 138,589 287 339 254 1 1

radcliffe2 353,564 334 468 363 1 1

radcliffe3 324,000 291 414 350 1 1

radcliffe4 135,000 300 334 256 1 1

radcliffe5 89,775 289 302 280 1 1

watson2_1 5,988,000 769 2984 3003 1 1

watson2_2 8,024,000 897 4175 4624 1 1

watson2_3 635,050 348 558 489 1 1

watson2_4 3,686,400 654 2511 2492 1 1

watson2_5 2,457,600 489 1524 1547 1 1

page1 238,934 309 303 248 1 1

page2 938,002 357 627 481 1 1

page3 2,161,200 539 612 512 1 1

page4 2,160,000 501 687 572 1 1

page5 3,755,808 830 841 775 1 1

mackie1 336,000 288 324 254 1 1

mackie2 699,392 352 416 340 1 1

mackie3 472,200 322 509 448 1 1

mackie4 437,000 331 310 239 1 1

mackie5 282,534 304 367 279 1 1

smith1 315,329 294 362 260 1 1

smith2 739,000 350 452 388 1 1

smith3 834,560 349 395 314 1 1

smith4 979,900 421 430 350 1 1

smith5 261,000 286 298 215 1 1

https://doi.org/10.4236/jcc.2021.99009

K. Corcoran et al.

DOI: 10.4236/jcc.2021.99009 128 Journal of Computer and Communications

From these results, we can see that image size directly affects both signing and
verification times. Our largest image (watson2_2 which consists of just over 8
million pixels) took 897 milliseconds to sign, 4175 milliseconds to verify as a
signed image, and 4624 milliseconds to verify as a deepfake signed image. In
contrast, our smallest image (radcliffe5 which consists of just under 90,000 pix-
els) took 289 milliseconds to sign, 302 milliseconds to verify as a signed image,
and 280 milliseconds to verify as a deepfake signed image. The main reason for
this is that both our signing and verification software utilize pixel traversal in
their facial detection as well as their steganographic encoding (signing software)
and decoding (verification software). As such, the more pixels an image has, the
longer it will likely take to perform these specific pixel-based operations on said
image. Some of this could be mitigated through further optimizations to our LSB
algorithm, specifically regarding decoding.

Another conclusion we can reach from our experiment results is that our
software is consistently able to correctly detect both signed images and their
corresponding deepfakes. The verification software had a 100% detection rate
for both signed images and deepfake signed images during our experiment. That
is to say, all signed images were confirmed as being authentic, and all deepfake
signed images were confirmed as being inauthentic.

4.2. Variable Message Length Testing

In our second experiment, we tested the effect of different message lengths on
our signing and verification times. We began with a message length of 1 byte (a
single character) and doubled the length with each iteration for 25 iterations. All
iterations were performed using the same image (page1 from “Table 1”). Verifi-
cation times recorded are only for signed images, as no deepfakes were generat-
ed for this experiment.

Three pieces of information were recorded for each iteration of the experi-
ment. Length refers to the length of the message in bytes (equivalent to the
number of characters in the message). Signing Time refers to the time in milli-
seconds to create a signed image from a base image. Verification Time refers to
the time in milliseconds to verify a signed image.

The experiment procedure is as follows. We start with the base image page1.
The base image is then signed using a signature generated from a message of the
specified Length. The Signing Time of that process is recorded. The signed im-
age is then verified using the same message as was used for signing, with the Ve-
rification Time recorded. This whole process is done three times for each mes-
sage length, with the averages also recorded. All results for this experiment can
be found in “Table 2”.

From the results, we can see a gradual general upward trend in both signing
and verification times, though we believe some further testing would need to be
done using larger message lengths so as to fully grasp the effect of message
length on signing and verification times. If we account for randomness, all

https://doi.org/10.4236/jcc.2021.99009

K. Corcoran et al.

DOI: 10.4236/jcc.2021.99009 129 Journal of Computer and Communications

Table 2. Usability metrics for a constant image using variable message lengths.

Length
(bytes)

Signing Time (ms) Verification Time (ms)

Trial 1 Trial 2 Trial 3 Average Trial 1 Trial 2 Trial 3 Average

1 303 303 298 301.33 268 255 280 267.67

2 286 310 282 292.67 267 257 258 260.67

4 285 305 285 291.67 270 275 256 267.00

8 281 283 290 284.67 265 259 274 266.00

16 289 282 282 284.33 258 262 273 264.33

32 283 285 286 284.67 266 264 262 264.00

64 286 286 284 285.33 278 280 274 277.33

128 289 287 291 289.00 261 265 262 262.67

256 286 276 295 285.67 260 260 252 257.33

512 280 295 296 290.33 305 256 275 278.67

1024 289 288 287 288.00 267 263 281 270.33

2048 285 297 274 285.33 267 265 257 263.00

4096 284 283 288 285.00 267 256 260 261.00

8192 290 292 302 294.67 273 260 264 265.67

16,384 303 293 297 297.67 263 262 258 261.00

32,768 304 280 295 293.00 279 256 262 265.67

65,536 314 294 300 302.67 259 264 261 261.33

131,072 300 281 282 287.67 267 261 281 269.67

262,144 278 286 282 282.00 278 262 261 267.00

524,288 275 291 306 290.67 265 270 268 267.67

1,048,576 276 298 280 284.67 283 299 278 286.67

2,097,152 285 287 278 283.33 274 261 262 265.67

4,194,304 289 289 298 292.00 279 273 275 275.67

8,388,608 298 295 291 294.67 278 280 279 279.00

16,777,216 324 316 307 315.67 306 291 302 299.67

completion times up through the 8-megabyte mark are relatively similar. The
average signing times from 1 byte up to 8 megabytes have a range of 20.67 milli-
seconds (from 282 milliseconds to 302.67 milliseconds), and the average verifi-
cation times over the same interval have a range of 21.67 milliseconds (from
257.33 milliseconds to 279 milliseconds). In both cases, however, there is a nota-
ble jump in completion time at 16 megabytes. Signing took an average of 315.67
milliseconds to complete, and verification took an average of 299.67 millise-
conds, both of which are considerably greater than any prior times recorded
over the course of our experiment.

We can logically assume the trend of increasingly more noticeable completion
time differences would likely continue upon further doublings. However, as

https://doi.org/10.4236/jcc.2021.99009

K. Corcoran et al.

DOI: 10.4236/jcc.2021.99009 130 Journal of Computer and Communications

stated, more testing would need to be done in order to solidify this assumption.

4.3. An Issue with Facial Detection

After our experimentation, we encountered an interesting issue with our imple-
mentation of facial detection that we feel is novel and worth discussing in some
detail. Very rarely, our verification software would fail to authenticate a signed
image. We found that the source of this problem was due to the application of
LSB manipulation in the facial region during signing. The minor changes made
to the facial pixels would sometimes be enough to slightly shift the facial bounds
returned by our facial detection. This would lead to a misalignment between
where the signing software encodes the signature and where the verification
software checks for the encoded signature, resulting in failed authentication.

There are a few potential solutions to this problem that we have come up with.
One solution is to add a start sequence to our signature before signing our im-
age. By doing such, we would be able to use slightly broader facial bounds within
our verification software to search for said start sequence. The increase in facial
bounds is simply to ensure that if there is a start sequence in the image, we will
be able to find it. However, this approach could still result in the failed authenti-
cations of signed images if the width of its facial bounds is not equal to that of
the base image’s facial bounds. If the width is less, we would miss some encoded
pixels in our traversal. If the width is more, we would include unencoded pixels
in our traversal. Both of these would result in incorrect signatures, and thus
failed authentication.

Another solution would be to re-run our signed image through the facial de-
tection algorithm to make sure it returns the same facial bounds as the base im-
age. If it does not, we would create a new signature from our message and
re-sign the base image. This would be done until the signed image and base im-
age returned identical facial bounds. Such a solution could heavily impact sign-
ing times (depending on how many attempts at signing would be needed), but it
would in theory guarantee the authentication of un-doctored signed images.

5. Conclusion and Future Research

In conclusion the model we have adapted is accurate when detecting constrained
images. It is not perfect, however, and more research is required to identify a
more sophisticated way of storing the cryptographic watermark inside the face
and consistently retrieving the same bounds. Future work in this area could be
done with regard to handling images with multiple faces, as well as images with
no faces. Both are common scenarios to encounter that will need to be addressed
in order for this model to be widely usable. Future work could also be done re-
garding handling video, as our model currently only supports the use of still im-
ages.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

https://doi.org/10.4236/jcc.2021.99009

K. Corcoran et al.

DOI: 10.4236/jcc.2021.99009 131 Journal of Computer and Communications

References
[1] Blanz, V., et al. (2004) Exchanging Faces in Images. Computer Graphics Forum, 23,

669-676. https://doi.org/10.1111/j.1467-8659.2004.00799.x

[2] Yu, N., et al. (2019) Attributing Fake Images to GANs: Learning and Analyzing
GAN Fingerprints. 2019 IEEE/CVF International Conference on Computer Vision
(ICCV). https://doi.org/10.1109/ICCV.2019.00765

[3] Mirsky, Y. and Lee, W. (2021) The Creation and Detection of Deepfakes. ACM
Computing Surveys, 54, 1-41. https://doi.org/10.1145/3425780

[4] Deepfakes. “Deepfakes/Faceswap.” GitHub, github.com/deepfakes/faceswap

[5] Tiwari, N. and Madhu, S. (2010) Evaluation of Various LSB Based Methods of Im-
age Steganography on GIF File Format. International Journal of Computer Applica-
tions, 6, 1-4. https://doi.org/10.5120/1057-1378

https://doi.org/10.4236/jcc.2021.99009
https://doi.org/10.1111/j.1467-8659.2004.00799.x
https://doi.org/10.1109/ICCV.2019.00765
https://doi.org/10.1145/3425780
https://doi.org/10.5120/1057-1378

	Countermeasure against Deepfake Using Steganography and Facial Detection
	Abstract
	Keywords
	1. Introduction
	1.1. Background
	1.2. Deepfake Algorithms
	1.3. Our Approach
	1.4. Our Contributions
	1.5. Structure of This Paper

	2. Related Work
	2.1. Deepfake Algorithms
	2.2. Deepfake Countermeasures
	2.3. Steganography

	3. Detecting Deepfake Images
	3.1. Overview of Our Detection Method
	3.2. Details

	4. Performance Evaluation
	4.1. Variable Image Size Testing
	4.2. Variable Message Length Testing
	4.3. An Issue with Facial Detection

	5. Conclusion and Future Research
	Conflicts of Interest
	References

