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Abstract 
Precipitation is an important part of the global hydrological cycle. The large- 
scale, high-precision continuous precipitation data obtained by satellite re-
mote sensing detection technology has become an important source of spatial 
precipitation data. However, because the spatial resolution of remote sensing 
precipitation data is still low, it is difficult to meet the needs of hydrological 
research, which restricts their application in drought and flood analysis, hy-
drological simulation, etc. In response to this problem, this paper takes the 
Beijing-Tianjin-Hebei region as the research area, downscaling the TRMM 
data and the GPM data space of the continuation plan, and increasing the 
spatial resolution of the data to 1 km. Compared with the original data, spa-
tial downscaling data not only greatly improves the spatial resolution, but also 
increases the accuracy of the data, which has better applicability. 
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1. Introduction 

Nowadays, global climate change research is receiving extensive attention from 
all walks of life, and precipitation is one of the core researches. Precipitation is 
an important part of the global hydrological cycle, and an important part of re-
search fields such as meteorology, climate, biology, hydrology, and agriculture. 
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Obtaining precipitation data with long time series, high temporal and spatial res-
olution and high precision is of great significance to many fields. 

The traditional source of precipitation data is the precipitation measured by 
ground meteorological stations. The precipitation data obtained through the di-
rect measurement of weather stations is the most accurate and the most widely 
used data. However, the distribution of weather stations is sparse and uneven, 
and precipitation is a spatial distribution phenomenon. If you want to obtain a 
continuous spatial distribution of precipitation results, you need to perform spa-
tial interpolation on the precipitation data of the weather station. There is a 
problem of substituting points for areas, and the results are obtained by interpo-
lation. There are certain uncertainties in precipitation data. Satellite remote sens-
ing precipitation observation breaks through the limitations of traditional ob-
servation methods, and realizes the conversion of precipitation observation from 
point to surface. It has the advantages of high temporal and spatial continuity, 
wide coverage, and less limited by the underlying surface. It has become an im-
portant part of spatial precipitation data source [1]. 

Commonly used satellite precipitation data include Global Precipitation Cli-
matology Project (GPCP) [2], Global Satellite Mapping of Precipitation (GSMaP) 
[3], Tropical Rainfall Measuring Mission (TRMM) [4], and Global Precipitation 
Observation Plan (Global Precipitation Measurement, GPM) [5] and Fengyun 
series satellites [6]. However, the spatial resolution of these data is low. The most 
widely used TRMM data has a spatial resolution of up to 0.25˚, and its follow- 
up product GPM data has a spatial resolution of up to 0.1˚. In the application 
of local climate and hydrological simulation in small areas, remote sensing 
precipitation data can hardly reflect the spatial variability of precipitation and 
cannot meet research needs. Aiming at the problem of low spatial resolution 
of remote sensing precipitation data, it is an effective method to use spatial 
downscaling to improve the spatial resolution of remote sensing precipitation 
data. 

2. Experimental Area and Experimental Data 
2.1. Experimental Area 

This article takes the Beijing-Tianjin-Hebei region as the research object of this 
study. The Beijing-Tianjin-Hebei region encompasses the two municipalities di-
rectly under the Central Government of Beijing and Tianjin and Hebei Province, 
and is known as my country’s "Capital Circle". The Beijing-Tianjin-Hebei region 
is mainly located in the semi-humid and semi-arid regions of my country. It be-
longs to the warm temperate zone, semi-humid and semi-arid continental mon-
soon climate, with four distinct seasons, concentrated rainfall, obvious dryness 
and wetness, and rain and heat in the same season [7]. The changes in precipita-
tion in the Beijing-Tianjin-Hebei region are related to seasons, latitudes, and 
topography, and have obvious regular changes. The time change of precipitation 
in the Beijing-Tianjin-Hebei region is relatively significant. The precipitation is 
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mainly distributed in the period from May to September, and the precipitation 
in July is significantly higher than the other four months. The study of precipita-
tion in the Beijing-Tianjin-Hebei region and obtaining precipitation data with 
long time series, high temporal and spatial resolution and high precision are of 
great significance and value (Figure 1). 

2.2. Experimental Data 

1) Measured precipitation data from ground stations 
The measured precipitation data from the ground stations used in this paper 

comes from the National Oceanic and Atmospheric Administration of the United 
States (https://gis.ncdc.noaa.gov/maps/ncei). The data was filtered to filter out the 
sites with missing data, and finally the data of seven sites were selected for analy-
sis. The latitude and longitude information of the ground station is shown in 
Table 1. 

2) Remote sensing precipitation data 
The Tropical Rainfall Measurement Mission (TRMM) is a remote sensing 

precipitation monitoring mission jointly developed by NASA and the Japan 
Aerospace Exploration Agency (JAXA) for the purpose of studying rainfall for  

 

 
Figure 1. Beijing-Tianjin-Hebei region. 
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Table 1. Ground station information in the experimental area. 

 Station Name Longitude Latitude 

1 Potou 116.55 38.083 

2 Leting 118.9 39.433 

3 Tianjin 117.167 39.1 

4 Huailai 115.5 40.417 

5 Shijiazhuang 114.417 38.033 

6 Beijing 116.283 39.933 

7 Chengde 117.917 40.967 

 
weather and climate research. The satellite was launched into space on Novem-
ber 28, 1997, with a designed orbital inclination of 35˚, an orbital height of 350 
km, and orbiting the earth 16 times every 24 hours. TRMM carries 5 sensing de-
vices, including Precipitation Radar (PR), TRMM Microwave Imager (TMI), 
Visible and Infrared Scanner (VIRS) three precipitation observation devices And 
lightning imaging sensor (Lighting Imaging Sensor, LIS), cloud and the earth 
radiant energy system (Clouds and the Earth Radiant Energy System, CERES) 
two related equipment [8]. The Global Precipitation Observation Program GPM 
is an extension of TRMM and is the follow-up satellite precipitation observation 
program of TRMM. It includes a core precipitation observation satellite and ten 
cooperative satellites [9]. The designed orbital inclination of the GPM satellite is 
65˚, and it orbits the earth 16 times every 24 hours. Compared with TRMM sa-
tellites, the observation range of GPM satellites has been extended to 90˚N - 
90˚S, and the highest spatial resolution has reached 0.1˚ × 0.1˚. The TRMM data 
used in this study is TRMM 3B43 v7, which belongs to the third-level product of 
TRMM. The data is downloaded from NASA’s Earth DATA database  
(https://disc.gsfc.nasa.gov/), the time scale is 1 month, the spatial resolution is 
0.25˚ × 0.25˚, and the time range is from February 2000 to 2014 December. The 
data used in this study is the GPM IMERG data provided by NASA. The specific 
data model is GPM_3GPROFGPMGMI_CLIM 05. The data source is the GMI 
microwave imaging meter carried by GPM, which belongs to the GPM Class III 
product. The time range is from January 2015 to December 2018. 

3) NDVI data 
The NDVI data used in this study is the MOD13A3 product released by the 

Land Product Distribution Center (LPDAAC) jointly established by the United 
States National Geological Survey (USGS) and the National Aeronautics and 
Space Administration. The spatial resolution of the data is 1 km and the time 
resolution is 8 Day, the data format is HDF. In this study, MRT batch processing 
tools are used to process mosaic, splicing, format conversion, projection, etc., to 
obtain rasterized NDVI data every 8 days, and on the basis of this data, obtain 
the monthly NDVI data value of each year. Because vegetation growth may have 
a certain lag relative to precipitation [10], in order to analyze whether this phe-
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nomenon exists in the Beijing-Tianjin-Hebei region, the relationship between 
NDVI and precipitation in the current month and one month lag is analyzed, 
and it is found that it is relative to the one month lag. In the situation, the corre-
lation between the current month’s NDVI and the precipitation is higher, and 
highly relevant areas also account for more, so the current month’s NDVI is se-
lected to participate in the downscaling of the data space (Figure 2). 

4) DEM data 
The DEM data used in this study is SRTM DEM, which is jointly obtained by 

NASA and the National Bureau of Surveying and Mapping of the Department of 
Defense. SRTM DEM provides two kinds of data with 30 m resolution and 90 m 
resolution, called SRTM1 and SRTM3 respectively, covering the world between 
60˚N - 56˚S. This study uses SRTM3 DEM data with a spatial resolution of 90 m, 
and the data is obtained from the geospatial data cloud  
(http://www.gscloud.cn/), and the downloaded data is spliced, cropped, and 
projected to transform to obtain the required experiments DEM data for the Bei-
jing-Tianjin-Hebei region. 

3. Spatial Downscaling Model Based on  
Geographically Weighted Regression 

Among the existing remote sensing precipitation data products, the spatial resolu-
tion of TRMM data and GPM data is higher than other data, and the coverage is 
wide, so they are favored by researchers at home and abroad. However, in the re-
search of hydrology, climate, ecology and other fields in small and medium-sized 
regions, the spatial resolution of TRMM and GPM data is still low [11] [12] [13]. 
This chapter considers spatial heterogeneity, uses the relationship between 
TRMM data, GPM data and NDVI to construct a GWR regression model, 
downscaling the original resolution TRMM data and GPM data to obtain 1 km 
resolution spatially downscaled precipitation data. 

 

 
Figure 2. Correlation of NDVI and precipitation. 
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3.1. Predictor Selection 

Precipitation is a complex weather phenomenon and will be affected by many 
factors. Downscaling needs to choose appropriate predictive factors, these fac-
tors need to have a close relationship with precipitation, and can predict or in-
vert the precipitation law to a certain extent. In this paper, the following factors 
are selected as the predictive factors for spatial downscaling of remote sensing 
precipitation data: 

1) Elevation 
Elevation is one of the common downscaling predictors, and there is a rela-

tively obvious correlation between precipitation and elevation. The northeast 
part of the Beijing-Tianjin-Hebei region is the North China Plain, the west is the 
Taihang Mountains, and the north is the Zhangbei Plateau. The precipitation is 
gradually decreasing from low-lying areas to high-lying areas. In order to reflect 
the changes in elevation in the Beijing-Tianjin-Hebei region, this study selects a 
digital elevation model as one of the predictive factors for downscaling. 

2) Slope and aspect 
The precipitation in the Beijing-Tianjin-Hebei region is affected by the mon-

soon. The warm and humid air current is blocked and forced to rise on the 
windward slope, the temperature decreases and the water vapor saturation in-
creases, and it is easy to condense to form rainfall, which is called topographic 
rain. The air sinks on the leeward slope, the temperature rises and the precipita-
tion decreases, which is called the rain shadow area. Windward slopes tend to be 
rainier than leeward slopes. In this study, the terrain slope aspect is selected as 
one of the downscaling predictive factors, which are extracted from DEM. 

3) Geographical location 
Geographical location can be expressed by latitude and longitude, and both in 

the Beijing-Tianjin-Hebei region affect the temporal and spatial distribution of 
precipitation. Latitude determines the amount of solar radiation received, which 
further affects the atmospheric circulation. The location of the sea and land is 
also one of the factors that affect precipitation. The coastal area is affected by 
water vapor from the ocean, and the amount of precipitation is larger. The farther 
away from the ocean, the more difficult it is to affect the ocean water vapor. The 
east coast of the Beijing-Tianjin-Hebei region has higher precipitation than the 
northwest. In this study, longitude and latitude are selected as the factor to cha-
racterize the geographic location, and as the predictive factor for downscaling, 
extracted from DEM. 

4) NDVI 
In the Beijing-Tianjin-Hebei region, precipitation is the main source of soil 

water and surface water. The growth of vegetation is affected by water. If there is 
more precipitation, the soil will have more water, while the growth of plants will 
be more luxuriant. If there is less precipitation, the growth of vegetation will be 
poor. Therefore, the growth of vegetation can be used as an important reflection 
condition of precipitation changes. The normalized vegetation index is an index 
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that quantifies vegetation by measuring the difference between the near-infrared 
band and the red band, and can reflect the growth of regional vegetation. In this 
study, the normalized vegetation index was selected as a factor to characterize 
vegetation growth and as a predictor of downscaling. The Equation (1) is the 
calculation formula of NDVI: 

NIR RedNDVI .
NIR Red

−
=

+                       (1) 

Among them, NIR and Red are the reflectivity of the near-infrared band and 
the red band, respectively. The value of NDVI is between −1 and 1. The larger 
the value, the greater the amount of vegetation. 

3.2. Geographically Weighted Regression Model 

The spatial downscaling analysis of remote sensing precipitation data needs to 
select suitable model variables to obtain better downscaling results. Commonly 
used downscaling models include general linear regression models and geo-
graphic weighted regression models. General linear regression models focus on 
the overall situation and cannot reflect local features. Geographically weighted 
regression emphasizes local features and is therefore widely used in geographic 
research and hydrometeorological research. 

Geographically weighted regression model is a regression model proposed by 
Brunsdon, Fotheringham and others of the University of Newcastle, UK in 1996 
[14]. It considers spatial heterogeneity based on the idea of local smoothing. The 
basic principle of GWR is to embed the spatial position of the data into the re-
gression parameters, and use the local weighted least squares method to estimate 
the point-by-point parameter, where the weight is between the geographic spa-
tial position of the regression point and the geographic spatial position of other 
observation points. Distance function. GWR is an extension of the ordinary li-
near regression model. The core is the spatial weight matrix, which expresses 
different understandings of the spatial relationship between data by selecting 
different spatial weight functions. In this study, the GWR regression model was 
used to downscale the remote sensing precipitation data. The regression formula 
established is shown in Equation (2): 

( ) ( )0 1, , .p
j j j i j j ij jiY Xβ µ ν β µ ν ξ

=
= + +∑               (2) 

In the equation, ( ),i j jβ µ ν  and ( )0 ,j jβ µ ν  are the slope and intercept of 
the regression model established by GWR at the j-th point, p represents the 
number of predictors; jξ  is the regression residual at the j-th point, ( ),j jµ ν  
represents the spatial position of the j-th point. 

According to the relationship between precipitation and predictive factors, a 
geographically weighted regression model between remotely sensed precipitation 
data and predictive factors is established. Resample DEM and NDVI to make the 
spatial resolution the same as remotely sensed precipitation data, fit remotely 
sensed precipitation data with factors at low spatial resolution to estimate preci-
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pitation, and calculate the residual between the estimated precipitation and re-
motely sensed precipitation data, Interpolate the residual to obtain a residual 
with a resolution of 1 km. Combine the precipitation estimated through the geo-
graphically weighted regression model with the residual error to obtain the final 
down-scaled remote sensing precipitation data. The above process is completed 
by ArcGIS, where the geographic weighted regression model estimation uses the 
GWR module in ArcGIS. 

4. Spatial Downscaling Results 
4.1. Spatial Distribution of Precipitation 

By constructing a GWR-based spatial downscaling model, the TRMM data and 
GPM data were spatially downscaled, and the precipitation raster data with a 
spatial resolution of 1 km in the Beijing-Tianjin-Hebei region from 2000 to 2018 
was obtained. Figure 3 shows the data comparison in August 2008. It can be 
found that the spatial distribution trends of the two types of data are consistent, 
which can better show the large amount of rainfall in the southwest and the 
small amount of rainfall in the east. Compared with the original resolution of 
remote sensing precipitation data, the spatial resolution of the downscaled data 
is increased to 1 km, and the trend of precipitation from high to low is smooth-
er, showing more details of the spatial distribution of rainfall. 

Figure 4 shows the results of the annual and monthly average precipitation 
distribution. The monthly average precipitation distribution in the study area 
shows a trend of more in the south and east. The monthly precipitation distribu-
tion in the study area is uneven. January has the least precipitation and July has 
the most precipitation. The precipitation is mainly concentrated from June to 
August. The maximum precipitation in these months can reach more than 150  

 

 
Figure 3. Comparison of spatial downscaling results. 
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Figure 4. Monthly average precipitation distribution. 
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mm, and the maximum precipitation in January does not exceed 10 mm. 

4.2. Result Accuracy Analysis 

In order to evaluate the accuracy and applicability of remote sensing precipita-
tion data in the Beijing-Tianjin-Hebei region, this paper uses the correlation coef-
ficient R (Correlation Coefficient), the standard error RMSE (Root Mean Square 
Error) and the relative error BIAS as indicators. 

Use ArcGIS to extract the corresponding grid value of the ground station as 
the remote sensing precipitation observation measurement of the station, and 
compare it with the actual measurement result of the ground station. After cal-
culation, the average R2 of the original spatial resolution remote sensing precipi-
tation data and the measured precipitation is 0.970, indicating that there is a 
good agreement between the two. The average value of standard error RMSE is 
56.18 mm, and the average value of relative error BIAS is 0.15. On the whole, the 
remote sensing precipitation data with the original resolution overestimated the 
actual precipitation. Compared with the original resolution data, the accuracy of 
the spatial downscaling data has improved. R2 increased from 0.970 to 0.975, 
RMSE decreased from 56.18 to 53.74, and BIAS decreased from 0.15 to 0.09, in-
dicating that the downscaling model based on geographically weighted regres-
sion is feasible in experimental area. The accuracy verification results of each site 
are shown in Table 2. 

5. Conclusion 

Aiming at the problem that the spatial resolution of TRMM data and GPM data 
is low, and it is difficult to meet the application of hydrological simulation in 
small and medium-sized areas, this paper conducts a spatial downscaling study 
of remote sensing precipitation data in the Beijing-Tianjin-Hebei region. Based 
on the response relationship of NDVI to precipitation, combined with terrain 
elements, the paper establishes a geographically weighted regression model to 
spatially downscale the original spatial resolution TRMM data and GPM data to 
1 km, which improves the spatial resolution and data of TRMM data and GPM  

 
Table 2. Accuracy verification results. 

Station 
Name 

Original 
resolution 

data R2 

Spatial 
downscaling 

data R2 

Original 
resolution 
data RMSE 

Spatial 
downscaling 
data RMSE 

Original 
resolution 
data BIAS 

Spatial 
downscaling 

data BIAS 

Potou 0.984 0.984 72.19 64.42 0.102 −0.075 

Leting 0.999 0.998 70.35 67.62 −0.010 −0.041 

Tianjin 0.966 0.971 41.49 36.30 0.277 0.144 

Huailai 0.975 0.971 48.83 47.80 0.425 0.112 

Shijiazhuang 0.969 0.975 52.78 48.94 0.030 −0.060 

Beijing 0.939 0.957 40.72 54.20 −0.052 0.074 

Chengde 0.960 0.967 60.63 56.93 0.187 0.098 

https://doi.org/10.4236/jcc.2021.96011


N. Wang et al. 
 

 

DOI: 10.4236/jcc.2021.96011 201 Journal of Computer and Communications 
 

data Accuracy can more finely describe the precipitation distribution characte-
ristics of the Beijing-Tianjin-Hebei region, and provide high-resolution, conti-
nuous surface rainfall raster data for the Beijing-Tianjin-Hebei region. 
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