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Abstract 
This paper studies the finite-time synchronization of fractional-order chaotic 
systems with different structures under parameter disturbance and external 
disturbance. We put forward a fractional-order controller that can achieve 
the finite-time synchronization of any-order fractional-order chaotic systems 
under stochastic disturbances. This controller has good robustness and an-
ti-interference performance. With the concept of the finite-time stability 
theory given, some judgment criterions for the synchronization of fraction-
al-order chaotic systems are proved. This method can not only make the er-
ror systems have a faster convergence rate but also can be implemented in 
engineering easily. The numerical simulations of two specific examples dem-
onstrate the effectiveness of the method. At the same time, the synchronised 
time of finite-time synchronization is shorter and faster than the complete 
synchronization and the time can be adjusted according to the parameters in 
the controller. 
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1. Introduction 

Although the development history of fractional and integer calculus is not much 
different, it turns out that fractional calculus is of great significance to express 
the model we are studying. This is because it not only has the memory function 
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but also more accurately describes the fractional order dynamic models. Of 
course, fractional calculus has many other advantages [1] [2] [3]. It’s because of 
these benefits that the theories of fractional calculus are widely used in physics 
[4], engineering [2], chemistry [5] and other subjects. In recent decades, these 
fields including information processing [6], secure communication [7], thermal 
systems [8], robot control and problems [9] have been discovered that many 
physical processes exhibit fractional order dynamic behavior. 

Chaos has achieved tremendous and far-reaching development in many fields 
after discovering the first chaotic attractor by Lorenz. At present, the research on 
chaos control and synchronization has spread across many disciplines. In the 
past 20 years, many methods of chaos control have appeared, such as OGY con-
trol [10], drive-response control [11], pulse control [12], sliding mode control 
[13], active control [14], Lyapunov direct method [15], etc. Taking into account 
above methods, some scholars have considered the synchronization problem for 
a class of fractional-order chaotic systems [16] [17] [18] while others only con-
centrate on the specific chaotic systems [19] [20] [21]. And many scholars have 
solved the synchronization problem of chaotic systems of any order [22] [23]. 

Currently, the main research direction is to make the system reach synchro-
nization in infinite time, that is, to consider the asymptotically stable of systems. 
However, facing the actual situation, we may need a specified time, that is, fi-
nite-time synchronization. It not only has a faster convergence rate but also 
stronger robustness [24]. Keyong S et al. used the finite-time synchronization 
theories to define a nonlinear controller which realizes that the synchronization 
of four-dimensional fractional order hyperchaotic system [25]. Lingdong Z et al. 
adopted the finite-time stability theory to accomplish the synchronization of 
hyperchaotic Lorenz systems [26]. In literature [27], a robust non-singular ter-
minal sliding mode controller is proposed for synchronizing two different input 
nonlinear uncertain chaotic systems. However, these results are aimed at specific 
chaotic systems. What we need more is a controller that can control all fraction-
al-order chaotic systems. What’s more, in real life, chaotic systems do not exist 
in society in isolation. Of course, there are some disturbances. For example, the 
signal transmission caused by random fluctuations is a disturbed process. Dis-
turbances can be divided into parameter disturbance [28], external disturbance 
[29] and internal disturbance [30]. Their presence will make the system unstable 
and difficult to control. Therefore, some scholars began to consider the impact 
of disturbance. Literatures [31] [32] [33] have solved the synchronization of 
fractional-order chaotic systems under random disturbance, but they only con-
sidered one of the above three disturbances. If they can consider multiple dis-
turbances, it has more practical significance. Although literatures [34] [35] [36] 
consider the case of multiple disturbances, the object of their research is the in-
teger order chaotic system. 

In response to this situation, we are going to consider the synchronization of 
fractional-order chaotic systems under two kinds of disturbances, namely para-
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meter disturbances and external disturbances, where these two disturbances are 
random. The controller we designed has good robustness and anti-interference 
performance and this method we derived can make the error systems have a 
faster convergence rate. Many figures provided by the numerical simulations 
guarantee our theoretical analysis. Meanwhile, conclusions that the synchro-
nised time of finite-time synchronization is shorter and faster than the complete 
synchronization and the time can be adjusted according to the parameters in the 
controller are established. The composition of this article is shown below. In 
chapter 2, we present the definitions, lemmas and stability theories that need to 
be used. In chapter 3, synchronization conditions are presented. In chapter 4, 
the numerical simulations proved that our method is very effective. In chapter 5, 
we have a sum up for this paper. 

2. Related Theories of Fractional Order System 
2.1. Definitions and Lemmas of Fractional Derivative 

Next, we will introduce the Riemann-Liouville (R-L) derivative and the Caputo 
derivative. When the order α  is a negative real number and a positive integer, 
they are equivalent. The R-L definition is more suitable for theoretical analysis 
and can simplify the calculation of fractional order derivatives. The definition of 
Caputa is more suitable for modern engineering and makes the Laplace trans-
formation more concise. 

Definition 1. [1] The mathematical expression of Caputo derivative with or-
der α  is given as  

 ( ) ( ) ( ) ( ) ( )11 d ,
t m mC

a t a
D f t t f

m
αα υ υ υ

α
− −= −

Γ − ∫              (1) 

where 1 ,m m mα +− < < ∈ .  
Definition 2. [1] The mathematical expression of Riemann-Liouville deriva-

tive with order α  is given as  

 ( ) ( ) ( ) ( )11 d d ,
d

m t mRL
a t m a
D f t t f

m t
αα υ υ υ

α
− −= −

Γ − ∫             (2) 

where 1 ,m m mα +− < < ∈ .  
Lemma 1. [22] When ( ) nt ∈x   has continuous first derivative, then  

 ( ) ( ) ( )T T1 ,
2a t a tD t Q t Q D tα α  ≤ 

 
x x x x                 (3) 

where ( )0,1α ∈  and Q is an arbitrary n order positive definite matrix.  

2.2. Stability Theories of Fractional Order System  

Considering that most of the things around us are nonlinear, we write the frac-
tional order nonlinear system to be:  

 ( ) ( )( )0 , ,tD t t t=a x f x                       (4) 
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where ( )0,1α ∈ , ( )T
1 2, , , nf f f=f  , ( ) nt ∈x  . And [ ]0: , nf t ∞ ×Ω→   

meets Lipschitz conditions; the initial value is ( )0 0 0, 0x t x t= ≥ . The equili-
brium point *x  of (4) can be obtained from ( )* 0=f x . 

Theorem 1. [37] Suppose that n∈   is a domain that contains the origin. 
If there is a locally bounded Lyapunov function ( )( ) [ ]0, : ,V t t t ∞ × →x    
which meets the local Lipschitz condition about x adapting to  

( )( ) ( )( ) ( )( )1 2, ,
a ab

t V t t tη η≤ ≤x x x  

 ( )( ) ( )( )0 3, ,
ab

tD V t t tα η≤ −x x                  (5) 

where ( )0,1α ∈ , 0a > , 0b > , ( )1, 2,3 0i iη = > , then the system (4) is called 
Mittag-Leffler stable.  

Theorem 2. [37] Suppose that n∈   is a domain that contains the origin. 
If there is a locally bounded Lyapunov function ( )( ) [ ]0, : ,V t t t ∞ × →x    
which meets the local Lipschitz condition about x adapting to  

1) ( )( ) ( )( ) ( )( )1 2, ,
a ab

t V t t tη η≤ ≤x x x  

2) ( )( ) ( )( )1/
3, ,

ab
kV t t tβ η≤x x                      (6) 

3) ( )( ) ( )( )0 3, ,
ab

tD V t t tα η≤ −x x  

where ( )0,1α ∈ , 0a > , 0b > , 0k > , 1β > , ( )1,2,3 0i iη = > , the system (4) 
is called finite-time stable. The stabilization time of the system (4) has the fol-
lowing form  

 ( )
( )

( ) ( )
1/

1 /
0

1
0, .

1
T V x

k

α
β ββ α

β
− +

≤   − 
                  (7) 

Corollary 1. It follows from Lemma 1 and Theorem 2 that the system (4) 
must first satisfy the criterions of the Mittag-Leffler stability. From the condi-
tions (2) and (3) in Theorem 2, we get  

 ( )( ) ( )( )1/
0 , , .tD V t t kV t tα β≤ −x x                  (8) 

Hence, the system (4) is called finite-time stable if it satisfies (8) and the crite-
rions of the Mittag-Leffler stability.  

3. Sufficients Condition for Finite-Time Synchronization 

In this chapter, we believe that a small disturbance can make a great change in 
the orbit of the chaotic system. Therefore, it is reasonable to treat them as 
bounded. This will also make our theory easier to understand. With the help of 
Lyapulov function, we obtain our conclusions successfully. 

The fractional-order drive-response system with parametric disturbance and 
external disturbance is demonstrated as follows. The drive system is:  

 ( ) ( ) ( ) ( )( ) ( )0 1 , .tD t A A t t t= + ∆ + +a x x f x d x            (9) 
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The response system is:  

 ( ) ( ) ( ) ( )( ) ( ) ( )0 2 , ,tD t B B t t t t= + ∆ + + +a y y g y d x u          (10) 

where A and B are the parameter matrices of the systems; A∆  and B∆  are the 
parameter interference matrices; ( )( )tf x  and ( )( )tg y  are the nonlinear 
vectors; ( )1 , td x  and ( )2 , td x  are external disturbances. 

We suppose the state error among the driving system with response system as 
( ) ( ) ( )t t t= −e y x . Subtract (9) from (10) to get the error system:  

 ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )0 , ,tD t C t D t t t t t= − + − + +ae y x g y f x d x u     (11) 

where C B B= + ∆ , D A A= + ∆  and ( ) ( ) ( )2 1, , ,t t t= −d x d x d x . 
For the sake of ensuring our conclusion more realistic, we need to make the 

following assumptions.  
Assumption 1. For any ( ) nt ∈x  , the nonlinear function ( )( )tg x  and 

( )( )tf x  are continuous and smooth. That is, there is a constant M adapting to  

 ( )( ) ( )( ) ,t t M− ≤f x g x                      (12) 

where 0M > , ⋅  represents the 2-norm of matrix.  
Assumption 2. For any ( ) ( ), nt t ∈x y  , the nonlinear function ( )⋅g  meets 

the Lipschitz condition, namely  

 ( )( ) ( )( ) .t t L− ≤ −g y g x y x                   (13) 

Remark 1. Regardless of whether the nonlinear functions ( )⋅g  and ( )⋅f  
are about x  or y , they are bounded because the system state variables x  
and y  are bounded.  

Assumption 3. The parameter matrices A and B, the parameter interference 
matrices A∆  and B∆ , the external disturbances ( )1 , td x  and ( )2 , td x  all 
have a bounded norm, namely  

,A B p∆ + ∆ ≤  

 ,A B q+ ≤                         (14) 

( ) ( )2 1, , ,t t l− ≤d x d x  

where 0p > , 0q > , 0l > .  
Theorem 3. When the assumptions 1 - 3 are all satisfied, the systems (9) and 

(10) are stable for a finite time with the following controller:  

 ( ) ( ) ( ) ( ) ( ) ( )1 2 1 ,t A A t B B t m m
 

= + ∆ − + ∆ − + + 
  

eu y x e
e

    (15) 

where 1m L p q≥ + + , 2m l M≥ +  and 0≠e .  
Proof. Take the Lyapulov function as  

 ( )( ) T1, .
2

V t t =x e e                      (16) 

The fractional order derivative of the Lyapulov function is  
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( )( )
( ) ( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )

( ) ( ) ( )

T
0 0

T

2 1

T

2 1 1 2

,

, ,

, , 1

t tD V t t D

B B t A A t t t

t t t

B t B t A t A t B t B t

A t A t t t t t

t t m m

α α≤

= + ∆ − + ∆ + −

+ − + 

= − + − + ∆ −∆

+ ∆ − ∆ + − + −

 
+ − − + + 

  

x e e

e y x g y f x

d x d x u

e y x y x y x

y x g y g x g x f x

ed x d x e
e

 

 

( )

( )

( ) ( )

( ) ( ) ( )

2

1 2

2 2
1 2

2 2

1

1

1

.

B A B A L M l

m m

B A B A L M l m m

q p L M l L q p l M

≤ + + ∆ + ∆ + + +

 
− ⋅ + +  

 

= + + ∆ + ∆ + + + − − +

≤ + + + + − + + − + +

= −

e e e

ee e
e

e e e e e

e e e e e

e

 (17) 

Finally, ( )( )0 , 0tD V t tα <x  is obtained. Therefore, we must be able to find 3α  
to make ( )( ) 2

0 3,tD V t t xα α≤ −x  hold. It follows from Lemma 2 that the sys-
tem (4) is Mittag-Leffler stable. Then, because the formula  

( )( ) ( )( )( ) ( )( )1/2 1/2
0 , 2 , 2 ,tD V t t V t t V t tα ≤ − = − = −x e x x  is held, we can ob-
tain that the systems (9) and (10) achieve finite-time synchronization according 
to Theorem 1. And  

 
( ) ( )

1/
1/2

0

2 1
0, ,

2
T V x

α
α + 

≤  
 

                 (18) 

where ( )0,1α ∈ . 

4. Numerical Simulation 

We exemplify a pair of three-dimensional and four-dimensional fractional chao-
tic systems to affirm the availability of our method. The results indicate that the 
error variables of the system quickly stabilize in a finite time, and the synchro-
nization time is able to adjust via 1 2,m m . Among them, the influence of 1m  on 
the synchronization time is small, and we can ignore it. 

Example 1. Let the fractional order Chen chaotic system [38] under stochastic 
disturbances be the drive system  

 

( )( )
( ) ( )

( )

0 1 2 1 11

0 2 1 1 3 2 12

0 3 2 1 3 13

,

,

,

t

t

t

D x a a x x d

D x c c a a x x x c c x d

D x x x b b x d

α

α

α

= + ∆ − +

= + ∆ − − ∆ − + + ∆ +

= − + ∆ +

        (19) 

where ( )0,1α ∈ , 35, 3, 28a b c= = =  and ( )1 11 12 13, ,d d d=d . 
Let the fractional order Lorenz chaotic system [39] under stochastic distur-

bances and controller be the response system  
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( )( )
( )

( )

0 1 1 1 2 1 21 1

0 2 1 1 1 3 2 22 2

0 3 2 1 1 1 3 23 3

,

,

,

t

t

t

D y a a y y d u

D y y b b y y d u

D y y y c c y d u

α

α

α

= + ∆ − + +

= + ∆ − − + +

= − + ∆ + +

              (20) 

where ( )0,1α ∈ , 1 1 110, 28, 8 3a b c= = =  and ( )2 21 22 23, ,d d d=d . 
When we select the initial value as ( )1, 2, 2− −  and the order 0.995α = , the 

driving system (19) appears chaotic attractors which are presented in Figure 1. 
For the response system (20), if we take the initial value ( )0,1, 1−  and the order 

0.995α = , it appears chaotic attractors which are presented in Figure 2. We 
realize that the trajectories about the state variables of fractional order Chen and 
Lorenz systems are not synchronized with time without any control. Next, we 
will verify the effectiveness of our controller. 

We use the MATLAB software to obtain the state variable trajectory of the 
systems (19) and (20) obtaining the following results  

121 22x− ≤ ≤ , 224 25x− ≤ ≤ , 37 38x≤ ≤ , 

 

 
Figure 1. The attractors with respect to fractional order Chen chaotic system choosing 0.995α =  and 35, 3, 28a b c= = =  
show in sub-pictures (a)-(d) respectively which are 1 2 3x x x− − , 1 2x x− , 1 3x x−  and 2 3x x− . 
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Figure 2. The attractors with respect to fractional order Lorenz chaotic system choosing 0.995α =  and 1 1 110, 28, 8 3a b c= = =  
show in sub-pictures (a)-(d) respectively which are 1 2 3x x x− − , 1 2x x− , 1 3x x−  and 2 3x x− . 

 

111 20y− ≤ ≤ , 213 28y− ≤ ≤ , 30 49y≤ ≤ . 

According to (19) and (20), we get the following matrices. The parameter ma-
trices are  

 
35 35 0 10 10 0
7 28 0 , 28 1 0 .

0 0 3 0 0 8 3
A B

− −   
   = − = −   
   − −   

           (21) 

The parameter interference matrices are  

 
( )( )
( )( )

0.3sin ,0.2sin ,0.15sin 3 ,

0.1sin ,0.2sin ,0.3sin 3 .

A diag t t t

B diag t t t

∆ = −

∆ = −
            (22) 

The nonlinear vectors of systems are  

 ( )( ) ( )( )1 3 1 3

2 1 2 1

0 0
, .t x x t y y

x x y y

   
   = − = −   
   
   

f x g y             (23) 
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The external disturbances are  

 ( ) ( )
( )

( ) ( )
( )

2 2

1 3 2 3

1 1

0.05 sin 0.6 sin
, 0.1 sin 3 , , 0.9 sin 3 .

0.01 cos 2 0.8 cos 2

x t y t
t x t t y t

x t y t

   
   = =   
   
   

d x d x      (24) 

It follows from the assumptions 1 - 3 and Theorem 3 that the following calcula-
tion results are obtained. 

58A < , 32B < , 0.4A∆ < , 0.4B∆ < . 

( ) ( )2 1, , 46t t− <d x d x , ( )( ) ( )( ) 0t t− =f x g x , 

( )( ) ( )( ) 63t t− ≤ −g y g x y x . 

Hence, it follows from Assumption 3 and Theorem 3 that we get  

63L = , 0.8p = , 90q = , 47l = , 0M = , 1 153.8m ≥ , 2 47m ≥ . 

We get the controller as  

 ( )
( ) ( )

( ) ( )
( )( ) ( )( )

1 2 1 2 1

1 2 1 2 2

3 3 3

35 0.3sin 35 10 0.1sin 10
7 28 0.2sin 28 0.2sin 1 .

3 0.15sin 3 0.3sin 3 8 3

t y y t x x k
t y t y x t x k

t y t x k

 − − + + + − −
 

= − + + − − − − 
 − + − − − 

u    (25) 

where ( ) ( ) ( )1 21, 2,3i i i i i i ik i m y x m y x y x= = − − − − . 
Under the control of the above controller, the synchronised time satisfies 

4.21T ≤  seconds. Numerical simulations show that the (19) and (20) achieve 
the finite-time synchronization revealing in Figures 3-5. Comparing Figures 
3-5, it’s worth noting that the synchronization time gradually decreases as the  
 

 
Figure 3. The finite-time synchronization errors 1 2 3, ,e e e  change with time t when 

1 2154, 55m m= = . The synchronization time is 0.73 second.  
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Figure 4. The finite-time synchronization errors 1 2 3, ,e e e  change with time t when  

1 2154, 64m m= = . The synchronization time is 0.58 second.  

 

 
Figure 5. The finite-time synchronization errors 1 2 3, ,e e e  change with time t when  

1 2154, 100m m= = . The synchronization time is 0.46 second.  

 
value of 2m  increases. We can also say that the synchronised time of finite-time 
synchronization is shorter and faster than the complete synchronization in infi-
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nite time, and it can be adjusted according to the 2m . 
Example 2. Let the fractional order hyperchaotic Lorenz system [38] under 

stochastic disturbances be the driving system  

 

( )( )
( )

( )
( )

0 1 2 1 4 11

0 2 1 1 3 2 12

0 3 2 1 3 13

0 4 2 3 4 14

,

,

,

.

t

t

t

t

D x a a x x x d

D x c c x x x x d

D x x x b b x d

D x x x d d x d

α

α

α

α

= + ∆ − + +

= + ∆ − − +

= − + ∆ +

= − + + ∆ +

                (26) 

where ( )0,1α ∈ , 10, 8 3, 28, 1a b c d= = = − = −  and ( )1 11 12 13 14, , ,d d d d=d . 
Let the fractional order hyperchaotic Liu chaotic system [40] under stochastic 

disturbances and controller be the response system  

 

( )( )
( )

( ) ( )
( )

0 1 1 1 2 1 21 1

0 2 1 3 1 1 1 4 22 2

2
0 3 1 1 1 3 23 3

0 4 1 1 1 24 4

,

,

,

.

t

t

t

t

D y a a y y d u

D y y y b b y y d u

D y m m y c c y d u

D y d d y d u

α

α

α

α

= + ∆ − + +

= − + + ∆ + + +

= + ∆ − + ∆ + +

= − + ∆ + +

           (27) 

where ( )0,1α ∈ , 1 1 1 110, 40, 2.5, 10, 4a b c d m= = = = =  and  
( )2 21 22 23 24, , ,d d d d=d . 

When we select the initial value as ( )11,2,1, 1−  and the order 0.99α = , the 
driving system (26) appears chaotic attractors which are presented in Figure 6. 
For the response system (27), if we take the initial value ( )3, 4,2,1−  and the 
order 0.99α = , it appears chaotic attractors which are presented in Figure 7. 
We realize that the trajectories about the state variables of fractional order 
hyperchaotic Lorenz and Liu systems are not synchronized with time without 
any control. Next, we will verify the effectiveness of our controller. 

We use the MATLAB software to obtain the state variable trajectory of the 
systems (26) and (27) obtaining the following results  

120 25x− ≤ ≤ , 225 28x− ≤ ≤ , 30 47x≤ ≤ , 4124 180x− ≤ ≤ , 

115 20y− ≤ ≤ , 235 30y− ≤ ≤ , 30 110y≤ ≤ , 440 40y− ≤ ≤ . 

According to (26) and (27), we get the following matrices. The parameter ma-
trices are  

 

10 10 0 1 10 10 0 0
28 1 0 0 40 0 0 1

, ,
0 0 8 3 0 0 0 2.5 0
0 0 0 1 10 0 0 0

A B

− −   
   − −   = =
   − −
   

− −   

      (28) 

The parameter interference matrices are  

 
( ) ( ) ( )( )
( ) ( ) ( )( )

0.1sin ,0.2sin 2 ,0.3sin 3 ,0.4sin 4 ,

0.1cos ,0.2cos 2 ,0.3cos 3 ,0.4cos 4 .

A diag t t t t

B diag t t t t

∆ = −

∆ = −
     (29) 

The nonlinear vectors of systems are  
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Figure 6. The attractors with respect to fractional order hyper-chaotic Lorenz system choosing 0.99α =  and  

10, 8 3, 28, 1a b c d= = = = −  show in sub-pictures (a)-(d) respectively which are 1 2 3x x x− − , 1 2 4x x x− − , 1 3 4x x x− −  and 

2 3 4x x x− − . 

 

 ( )( ) ( )( )1 3 1 3
2

2 1 1

2 3

0 0

, .
4

0

x x y y
t t

x x y
x x

   
   − −   = =
   
   
−   

f x g y            (30) 

The external disturbances are  

 ( ) ( )1 2

0.1cos 0.1cos
0.1cos 0.1cos

, , , .
0.1cos 0.1cos
0.1cos 0.1cos

t t
t t

t t
t t
t t

−   
   −   = =
   −
   
−   

d x d x          (31) 

It follows from the assumptions 1 - 3 and Theorem 3 that the following calcula-
tion results are obtained.  

32A < , 44B < , 0.55A∆ < , 0.55B∆ < . 

( ) ( )2 1, , 0.4t t− <d x d x , ( )( ) ( )( ) 3004f t g t− <x x , 

( )( ) ( )( ) 213g t g t− ≤ −y x y x . 
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Figure 7. The attractors with respect to fractional order hyperchaotic Liu system choosing 0.99α =  and  

1 1 1 110, 40, 2.5, 4, 10a b c m d= = = = =  show in sub-pictures (a)-(d) respectively which are 1 2 3x x x− − , 1 2 4x x x− − , 1 3 4x x x− −  
and 2 3 4x x x− − . 

 
Hence, it follows from Assumption 3 and Theorem 3 that we get  

213L = , 1.2p = , 76q = , 0.4l = , 3004M = , 1 290.2m ≥ , 2 3004.4m ≥ . 

We get the controller as  

 ( )

( ) ( )
( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )

1 2 4 1 2 1

1 2 1 2 4 2

3 3 3

4 1 4 4

10 0.1sin 10 10 0.1cos 10
28 1 0.2sin 2 40 0.2cos 2

.
8 3 0.3sin 3 2.5 0.3cos 3

1 0.4sin 4 10 0.4cos 4

t y y y t x x k
y t y x t x x k

t
t y t x k

t y x t x k

− − + + + + − − 
 − + − + − − − − 

=  − + − − + − 
 − + + − − 

u   (32) 

where ( ) ( ) ( )1 21, 2,3, 4i i i i i i ik i m y x m y x y x= = − − − − . 
Under the control of above controller, the synchronised time satisfies 6.47T ≤  

seconds. Numerical simulations show that the (26) and (27) achieve the fi-
nite-time synchronization revealing in Figures 8-10. Comparing Figures 8-10, 
it’s worth noting that the synchronization time gradually decreases as the value 
of 2m  increases. We can also say that the synchronised time of finite-time syn-
chronization is shorter and faster than the complete synchronization in infinite 
time, and it can be adjusted according to the 2m . 
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Figure 8. The finite-time synchronization errors 1 2 3 4, , ,e e e e  change with time t when  

1 2291, 3005m m= = . The synchronization time is 0.50 second.  

 

 
Figure 9. The finite-time synchronization errors 1 2 3 4, , ,e e e e  change with time t when  

1 2291, 3025m m= = . The synchronization time is 0.45 second.  
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Figure 10. The finite-time synchronization errors 1 2 3 4, , ,e e e e  change with time t when 

1 2291, 3065m m= = . The synchronization time is 0.27 second.  

5. Conclusion 

In this article, we have studied the finite-time synchronization of fraction-
al-order chaotic systems with different structures under parameter disturbance 
and external disturbance. With the help of theory of fractional order calculus 
and the finite-time Lyapunov principle, we put forward a new fractional-order 
controller which can synchronize any-order fractional-order chaotic system un-
der stochastic disturbances. From the numerical simulation results, it can be 
seen that the error variables of the systems quickly converges to the equilibrium 
point in a finite time and the synchronization time gradually decreases with the 
increase of 2m . Compared with complete synchronization in infinite time, the 
synchronised time of finite-time synchronization is shorter and faster and the 
time can be adjusted according to the parameter value in controller. Therefore, 
this controller is effective and has strong robustness. Next, we will study the 
time-delay systems under stochastic disturbances, and the system parameters are 
unknown. 
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