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Abstract 
In the industrial production of expanded thermoplastic polyurethane 
(E-TPU) midsoles, the surface defects still rely on manual inspection at 
present, and the eligibility criteria are uneven. Therefore, this paper proposes 
an E-TPU midsole surface defect detection method based on machine vision 
to achieve automatic detection and defect classification. The proposed me-
thod is divided into three parts: image preprocessing, block defect detection, 
and linear defect detection. Image preprocessing uses RGB three channel 
self-inspection to identify scorch and color pollution. Block defect detection 
uses superpixel segmentation and background prior mining to determine 
holes, impurities, and dirt. Linear defect detection uses Gabor filter and 
Hough transform to detect indentation and convex marks. After image pre-
processing, block defect detection and linear defect detection are simulta-
neously performed by parallel computing. The false positive rate (FPR) of the 
proposed method in this paper is 8.3%, the false negatives rate (FNR) of the 
hole is 4.7%, the FNR of indentation is 2.1%, and the running time does not 
exceed 1.6 s. The test results show that this method can quickly and accurate-
ly detect various defects in the E-TPU midsole. 
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1. Introduction 

Intelligent manufacturing refers to a new production model. Manufacturing 
machines are fully connected through the network, monitored by sensors, and 
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intelligently controlled by advanced computing. It improves product quality, 
system productivity, and sustainability [1] [2]. As a powerful tool for product 
quality control, machine vision systems have been widely studied and applied. 
Machine vision is a technique measured and judged by machines instead of hu-
man eyes. However, it is not only limited to human eyes, but also the function of 
the human’s brain to extract information from the image of the target object, 
and the information is to be understood, analyzed and processed, what’s more, 
making feedbacks from the results and then applied on detection, location, and 
control. Today its applications include object measurement [3] [4], target recog-
nition [5], vision-based control [6] [7] and defective product inspection [8] [9]. 

Surface defect detection is a key step in many industrial processes. With the 
requirement of high-quality inspection, the advanced computer vision technol-
ogy has developed into the mainstream, and it has replaced the conventional 
manual inspection. Manual detection methods have disadvantages such as low 
sampling rate, low accuracy, poor real-time performance, low efficiency, high 
labor intensity, and large influence by the competency of employees. In recent 
years, with the continuous development of computer technology and image 
processing technology, the disadvantage of manual detection is gradually over-
come by the detection method based on machine vision. Among them, the on-
line detection technology based on image processing [10] has outstanding ad-
vantages such as non-contact, fast speed, and good flexibility, and has been more 
and more widely studied and applied in modern industry. 

Surface defects in the industry are usually defined as a local anomaly embed-
ded in uniform texture. To realize automatic and non-destructive inspection, the 
visual inspection system (VISs) has been widely used in the surface inspection of 
steel [11], slabs [12], rails [13], structures [14], and glass ampoule packaging [15] 
application. Generally, these inspection techniques can be roughly divided into 
the following three categories: spectral, statistical, and model-based methods 
[16]. The basic idea of the spectral methods is to transform the images into the 
frequency domain. In the frequency domain, the responses of the defects and the 
defect-free background are expected to be different, so the defects can be identi-
fied. Obviously, this method is suitable for surfaces with regular patterns and pe-
riodic textures, such as fabrics [17], but the choice of filters will affect its per-
formance to a certain extent. Statistical methods usually use co-occurrence ma-
trix [18], histogram [19], and other texture statistics to detect surface defects. 
Unfortunately, both spectral methods and statistical methods are difficult to deal 
with random changes on random texture surfaces [20]. Based on the Markov 
random field model, a supervised method [21] was developed to monitor and 
diagnose stochastic textured surfaces. Typically, model-based approaches tend to 
require high computational complexity [22]. 

In recent years, well-designed deep convolutional neural networks have be-
come powerful tools in various computer vision tasks. As a result, some studies 
have tried to use deep learning (DL) methods for defect inspection [23] [24], but 
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these methods still face huge challenges. As mentioned in [25], training a DL 
model usually requires quite a lot of samples, and collecting and labeling a large 
number of defective images can be expensive. In addition, DL methods rely on 
data sets with specific supervision information. Therefore, the learning model is 
tightly coupled with a specific data set and may not perform well on other data 
sets [16]. 

However, most of these methods are task-specific, so it is difficult to convert 
them into similar detection schemes for expanded thermoplastic polyurethane 
(E-TPU) midsole. So, we propose a defect detection method for E-TPU midsole. 
The seven kinds of defects, including scorch, color pollution, hole, impurity, 
dirty, indentation and convex marks, were divided into three kinds of color de-
fects, block defects and linear defects. Different detection methods were de-
signed for different kinds of defects. 

2. Materials and Methods 
2.1. E-TPU Shoe Midsole 

E-TPU is a new type of thermoplastic polyurethane (TPU) foam material made 
by the physical foaming of thermoplastic polyurethane particles, as shown in 
Figure 1. The polymer material is formed by changing and compounding high 
resilience foam particles through the structure of TPU particles, and is com-
posed of numerous elastics and light TPU foam particles. It is a non-toxic, bio-
degradable, and recyclable new environmentally friendly material. It has the ad-
vantages of low density, high resilience, wear resistance, corrosion resistance, 
and good low-temperature performance. It can be widely used in insoles, cu-
shions, pads, solid tires, marine floats, packaging, and shipping. 

In this research, the hardware environment is Intel(R) Core (TM) i5-6600K @ 
3.50 GHz * 4 CPU, 8 GB of memory, and the development environment is 
MATLAB 2018b. The image acquisition equipment is two strip light sources and 
an industrial camera, as shown in Figure 2. The pictures used in this paper have 
been processed by previous work. 

2.2. The Method of This Paper 
2.2.1. Image Preprocessing 
Surface defects are generally defined as a local anomaly embedded in a uniform 
texture, and the defect area is smaller than the background area. Compared with  

 

 
Figure 1. E-TPU material. 
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Figure 2. Image acquisition equipment. 

 
other midsole defect, the scorch defect is a relatively special defect. It has wide 
distribution range and large area. Using other detected defects method in this 
paper, it will be recognized as a texture, resulting in missed inspection. But it is 
special in color. The E-TPU midsole is white, and its defects are white or black. 
There are only scorch and color pollution with different colors. At the same 
time, these two types of defects have obvious characteristics. The scorch ac-
counts for a relatively large proportion, while the color pollution accounts for a 
relatively small proportion. It is easy to detect and classify these two kinds of de-
fects in the preprocessing process. 

Each pixel in an RGB image is composed of R, G, and B components, where R, 
G, and B are described by different gray levels. Black is composed of (0, 0, 0), 
and white is composed of (255, 255, 255). In the actual collection process of im-
age, due to different reasons such as light source and material, this effect cannot 
be achieved. But in general, the gray values of the three channels are similar, as 
shown in Figure 3.  

( ),Rf x y , ( ),Gf x y , and ( ),Bf x y  represent the R, G, B components of 
( ),f x y  respectively. The variance cD  can be calculated by the following for-

mula: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )2 2 2
, , , , , ,R G G B B R

cD f x y f x y f x y f x y f x y f x y= − + − + −  (1) 

The image preprocessing flow chart is shown in Figure 4. Where N represents 
the total number of pixels in the detected image, num represents the total num-
ber of pixels that do not meet the judgment conditions. So, num Nθ =
represents the proportion of defect area in the detected image.  

The threshold value of cD  is 30, it is used to determine whether the pixel for 
defects. The threshold value of θ is 0.01, it is used to distinguish scorch and color 
pollution. However, if the θ is less than 0.001, such defect size is acceptable, and 
conducts the next test it is also judged as a qualified product for the next step of 
testing. However, if B is less than 0.001, such defect size is acceptable, the mid-
sole image will be tested next step. 
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Figure 3. The three-component gray value of each area. (a) Schematic diagram of the same three-component gray value; (b) 
Three-component gray value of scorch defect; (c) Three-component gray value of dirt defect. 
 

 
Figure 4. Image preprocessing flow chart. 

2.2.2. Block Defect Detection 
After the image preprocessing, the image is then partitioned into compact and 
perceptually homogeneous superpixels. There are two reasons for this process. 
Since the number of superpixels in an image is much smaller than the number 
that of pixels, it is desirable to use superpixels as the smallest processing unit to 
reduce the computational burden. More importantly, some defects may occupy 
contiguous areas. When a defect image is segmented into superpixels, there are 
only few superpixels for corresponding to the defect [16]. 

1) Superpixel segmentation 
Algorithms for generating superpixels can be roughly classified into 

graph-based methods or gradient ascent methods. The graph-based superpixel 
generation method regards each pixel as a node in the graph. The edge weight 
between two nodes is proportional to the similarity between adjacent pixels. Su-
perpixels are created by minimizing a cost function defined over the graph. The 
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gradient ascent-based algorithms start from the rough initial clustering of pixel 
until certain convergence criteria are met to form superpixels. This paper 
chooses Simple Linear Iterative Clustering (SLIC) [26] because it exhibits good 
boundary dependence. 

We estimate that the number of pixels contained in each superpixel is 32 * 32. 
This is because the pixels number of the circular texture diameter in the quali-
fied midsole image is 32, as shown in Figure 6(a). We hope that these textures 
can be segmented in the same superpixel. After the superpixel segmentation, the 
average gray value of the pixel contained in the superpixel is used as the value of 
the superpixel. And the value imean  of each superpixel can be expressed as 

i
1mean

i

f
N

= ∑ ,                       (2) 

where iN  is the number of pixels included in the i-th superpixel, f  is the 
gray value of each pixel included in the i-th superpixel.  

The image after superpixel segmentation can be expressed as 

[ ]1 2 Cmean ,mean , ,meanCF = ⋅⋅⋅ ,                 (3) 

where C represents the number of the superpixel. and CF  is a matrix composed 
of the gray value of each superpixel. 

Figure 6(a) shows an image of qualified midsole. The superpixel segmenta-
tion effect is shown in Figure 6(b). The curve of 𝐹𝐹𝐶𝐶  is shown in Figure 6(c), 
the gray value of superpixel is increasing, indicating that the illumination is not 
uniform when image acquisition. 

2) Judge the defective superpixel 
In a superpixel segmentation image, the adjacent elements of each superpixel 

are different from the adjacent pixel of the original image. It is more irregular 
and the number of adjacent elements is not fixed, as shown in Figure 5. 

Because the number of superpixel adjacent elements is not fixed, it is easy to 
cause errors in defect detection. In this paper, the background prior (BP) mining 
method is used to estimate the background mean. In [16], Wang et al. extracted 
the 15 dimensions (15-D) statistical features, so they used ||*||2 to calculate BP. 
In this paper, the gray value was only used as the calculation parameter, and the 
calculation method was redesigned as follows: 

M superpixels are randomly selected to express as 1mean′ , 2mean′ , ∙∙∙, 

Mmean′ , and the background mean Mmean  can be expressed as the following 
formula:  

M i1

1mean meanM
iM =

′= ∑ .                    (4) 

For each superpixel, BP can be expressed as the following formula: 

i MBP mean mean= −                      (5) 

The curve of BP is shown in Figure 6(d). The threshold value of 40 is selected. 
If the BP exceeds the threshold value, this superpixel is considered to be a defect. 
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Figure 5. The adjacent elements of individual superpixels after superpixel segmentation. 

 

 
Figure 6. Superpixel segmentation. (a) Original image; (b) Superpixel Segmentation; (c) FC curve; (d) 
BP curve. 

2.2.3. Linear Defect Detection 
In the research of E-TPU midsole, there are two types of linear defects: indenta-
tion and convex marks. After the image registration, the linear defects are only 
distributed at about 0 degrees and 90 degrees, that is horizontal straight lines 
and longitudinal straight lines. In the detection of linear elements, the Hough 
transform has excellent effects, but the Hough transform can only process binary 
images. Generally, it should be the output image after edge detection. Therefore, 
the Gabor filter is preferentially selected for feature extraction in these two di-
rections, and then the Hough transform is used to perform the straight-line in-
spection. 

1) Gabor filter 
Gabor wavelet is an important tool in the field of computer vision, and very 

similar to the visual stimulus-response of simple cells in the human visual sys-
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tem [27]. It has good characteristics in extracting the local space and frequency 
domain information of the target. Although Gabor wavelet itself cannot form an 
orthogonal basis, it can form a tight frame under certain parameters. Gabor 
wavelet is sensitive to the edge of the image, can provide good direction selection 
and scale selection characteristics, and is not sensitive to changes in illumina-
tion, and can provide good adaptability to changes in illumination. 

Two-dimensional Gabor wavelet transform is an important tool for signal 
analysis and processing in the time-frequency domain [28]. Its transform coeffi-
cients have good visual characteristics and biological background, so they are 
widely used in image processing, pattern recognition, and other fields. Com-
pared with the traditional Fourier transform, the Gabor wavelet transform has 
good time-frequency localization characteristics. In terms of feature extraction, 
Gabor wavelet transform is compared with other methods: on the one hand, it 
processes fewer data and can meet the real-time requirements of the system; on 
the other hand, wavelet transform is insensitive to changes in illumination and 
can tolerate a certain degree of image rotation and deformation. Figure 7 shows 
the feature extraction results of the E-TPU midsole. 

2) Hough transform 
In 1962, Huff obtained a method that can effectively identify lines in an image, 

called Hough transform [29]. Even now, it is still a very important tool [30]. In 
addition, Kalviainen et al. [31] proposed a Random Hough Transform (RHT). 
RHT selects n pixels from the edge image by random sampling to solve the n 
parameters of the curve, and then only accumulates 1 pixel in the parameter 
space. Compared with other Hough transforms, this method has the advantages  

 

 
Figure 7. Feature extraction of Gabor operator. (a) Original image; (b1) Gabor kernel function (90˚) renderings; (b2) 
Gabor kernel function (0˚) renderings; (c1) Longitudinal straight line test results; (c2) Horizontal straight line detec-
tion result. 
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Figure 8. Hough transform detection process. (a) Original image; (b1) Binarize the Gabor operator’s longitudinal line detection 
result; (b2) Binarize the Gabor operator’s horizontal line detection result; (c1) Morphological removal of interference; (c2) Mor-
phological removal of interference; (d1) Hough space; (d2) Hough space; (e1) Longitudinal straight line test results; (e2) Horizon-
tal straight line detection result. 
 

of high-speed expansion and low memory usage. Figure 8 shows the straight-line 
test results of convex marks. 

2.2.4. Inspection Process 
In the preparation for defect detection, we have performed edge detection and 
image registration on the collected E-TPU midsole images. 

In this paper, image preprocessing is used to detect the scorch and color pol-
lution defects. The main purpose is to prioritize the detection and classification 
of scorch defects. Because it will cause the wrong straight lines to be detected 
during linear defect detection, and do not have a simple method to judge 
whether it is a defect during block defect detection. 

In the process of the block defect detection, superpixel segmentation cannot 
effectively segment linear defects, and linear defect detection also cannot identify 
block defects. Therefore, parallel computing based on the graphics processing 
unit (GPU) [32] is used to perform two types of detection methods at the same 
time, as shown in Figure 9. It increases the operating speed, maximizes the 
function of the hardware equipment, and detects whether there are multiple 
types of defects in a midsole. 

3. Results and Analysis 
3.1. Image Preprocessing 

The two types of defects, scorch, and color pollution, are respectively tested, and 
the detection results are shown in Figure 10. Intuitively represent Dc as an image 
as shown in Figure 10(b), and use Otsu to binarize it as shown in Figure 10(c). 
It can be seen that scorch and color pollution can be easily identified by setting a 
threshold according to the experience. 

It can be seen from Table 1 that max(Dc) can effectively distinguish scorch, 
color pollution and other types of defects. It is appropriate to select a threshold 
of 30. Obviously, the proportion of scorch defect areas is much larger than the 
percentage of color pollution defects. So the threshold value of θ is selected as  
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Figure 9. Flow chart of the proposed method in this paper. 

 

 
Figure 10. The detection results of scorch and color pollution. (a) Scorch; (b) Three-component variance Dc; (c) Dc 
binary image and detection results; (d) Color pollution; (e) Magnified view of color pollution; (f) Dc binary image and 
detection results 

 
Table 1. Three-component variance DC and the proportion of defects. 

 Qualified Scorch Color pollution Convex marks Indentation Dirty Impurity Hole 

( )max cD  12.96 78.43 77.08 29.42 11.23 20.92 17.35 27.59 

( )mean cD  5.25 17.86 17.48 9.21 6.40 11.29 9.44 11.47 

θ 0 0.022 0.003 0 0 0 0 0 

 
0.01. If the proportion of defect areas is greater than 0.01, it is judged as a scorch 
defect, otherwise, it is judged as color pollution. But when the color pollution 
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part is particularly small, such a defect is considered acceptable. 

3.2. Superpixel Segmentation 

After the superpixel segmentation of midsole, the difference of local regions can 
be distinguished by calculating the superpixel neighborhood difference (SND). 
The average gray values difference between a superpixel and its neighboring su-
perpixel is expressed as the following formula 

i j
1 mean mean

ij Ner
SND

SND
N ∈

= −∑ ,                (6) 

where iNer  represents the superpixel adjacent to the i-th superpixel, SNDN
represents the number of adjacent superpixels.  

It can be seen from Figure 11 that SND will also determine the superpixels 
around the defect areas as defects. It can be used only to detect the existence of 
defects, but the specific location of defects cannot be determined. 

It can be analyzed from Figure 11 and Figure 12 that the larger the propor-
tion of defects in the entire image, the worse the SND detection effect after su-
perpixel segmentation. The reasons are that the defect is also segmented into 
multiple superpixels, which leads to the superpixels of defects center will be 
judged as background areas, as shown in Figure 12(c4). 

In fact, superpixel segmentation can also better segment scorch defects, as 
shown in Figure 13(a) and Figure 13(b), but the defect areas of the midsole are 
larger and the defects distribution is relatively homogeneous. There is no simple 
criterion to judge whether a superpixel is defect after segmentation. Even if a 
specific judgment method is used to determine that a superpixel is defect, it still 
requires other judgment conditions to distinguish the type of defects. As shown 
in Figure 13(c) and Figure 13(d), Superpixel segmentation cannot achieve the 
effect with linear defects on the midsole surface, so a separate method is used to  

 

 
Figure 11. Analysis of BP and SND detection results for impurities defect. (a) Impurities; (b) Superpixel segmentation 
results; (c) BP curve of Superpixel; (d) SND curve of Superpixel; (e) BP detection results; (f) SND detection results.  
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Figure 12. Superpixel segmentation results and BP and SND detection results of three kinds of defect. (a1) Hole; (a2) Superpixel 
segmentation results; (a3) BP detection results; (a4) SND detection results; (b1) Impurity; (b2) Superpixel segmentation results; 
(b3) BP detection results; (b4) SND detection results; (c1) Dirt; (c2) Superpixel segmentation results; (c3) BP detection results; 
(c4) SND detection results. 
 

 
Figure 13. Scorch and convex marks by superpixel segmentation. (a) Scorch; (b) Superpixel segmentation results; (c) Convex 
marks; (d) Superpixel segmentation results. 
 

detect linear defects. 

3.3. Linear Defect Detection 

There are only two types of linear defects: indentation and convex marks. The 
defect detection result is shown in Figure 14. Whether the detected straight line 
is a defect is judged based on the length. Figure 14(a1)-(a4) list the inspection 
results of convex marks, and Figure 14(b1)-(b4) lists the inspection results of 
indentation. The test results show that the proposed method can effectively and 
accurately identify linear defects on the midsole surface. 

3.4. Analysis of the Accuracy and Operating Speed 

The inspection time of each part is shown in Table 2. Among them, the scorch 
and color pollution defects can be identified during image preprocessing, and the 
latter two steps are only to test the detection effect. It can be seen from Table 2  
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Figure 14. Test results for indentation and convex marks. (a1) Convex marks; (a2) Test results of longitudinal straight line; (a3) 
Test results of horizontal straight line; (a4) Final test result; (b1) Indentation; (b2) Test results of longitudinal straight line; (b3) 
Test results of horizontal straight line; (b4) Final test result. 
 
Table 2. Detection time. 

 Qualified Scorch Color pollution Convex marks Indentation Dirty Impurity Hole 

Image preprocessing <0.01 s <0.01 s <0.01 s <0.01 s <0.01 s <0.01 s <0.01 s <0.01 s 

Block defect detection 0.85 s 0.72 s 1.19 s 1.47 s 0.91 s 1.29 s 0.88 s 1.03 s 

Linear defect detection 0.78 s 0.95 s 1.12 s 0.84 s 0.86 s 1.27 s 1.02 s 0.74 s 

Full run time 0.92 s 0.14 s 0.17 s 1.63 s 1.25 s 1.41 s 1.27 s 1.34 s 

 
Table 3. Detection accuracy. 

 Qualified Scorch Color pollution Convex marks Indentation Dirty Impurity Hole 

FPR 0.083 \ \ \ \ \ \ \ 

FNR \ 0 0 0 0.027 0 0 0.041 

 
that the surface defect detection of the E-TPU midsole can be completed in 1.6 s. 

In this paper, the false positive rate (FPR) and the false negatives rate (FNR) 
are calculated for performance evaluation. FPR and FNR are defined as follows: 

the number of positive samples incorrectly marked as defectsFPR
the total number of positive samples

= ,   (7) 

the number of negatives samples with no defects detectedFNR
the total numberof negatives samples of this type of defect

= .   (8) 

That is, FPR is defined as the proportion of complete qualified samples that 
are falsely detected as defects, and FNR is the proportion of defective samples 
that cannot be accurately detected defect. 

It can be seen from Table 3 that the FPR of this method is 8.3%, the FNR for 
indentation defect is 2.7%, and the FNR for hole defect is 4.1%. This is because 
some midsole, though containing indentation and hole, are less damaged and 
not well recognized by machine vision. But overall, the proposed method in this 
paper has a higher accuracy rate. 

https://doi.org/10.4236/jcc.2020.811011


R. Z. Li et al. 
 

 

DOI: 10.4236/jcc.2020.811011 158 Journal of Computer and Communications 
 

4. Conclusions 

This paper proposes a surface defect detection method of E-TPU midsole based 
on machine vision, including image preprocessing, block defect detection, and 
linear defect detection. Image preprocessing can detect scorch and color pollu-
tion defects. Block defect detection can detect holes and dirt. Linear defect de-
tection can detect indentation and convex marks. The FAR is 8.3%, the DR is 
6.8%, using parallel computing to perform block defect detection and linear de-
fect detection at the same time, and the total running time does not exceed 1.6 s, 
which can meet the industrial production application of shoe midsole. 

Although the proposed method in this paper can accurately identify all kinds 
of defects in the E-TPU midsole, it can only classify the seven kinds of defects 
into three categories in terms of defect classification. For example, indentation 
and convex marks can only be judged as linear defects, and cannot accurately 
distinguish specific defect type. So, the defects classification still needs further 
study. 
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