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Abstract

The problem of social workers visiting their patients at home is a class of
combinatorial optimization problems and belongs to the class of problems
known as NP-Hard. These problems require heuristic techniques to provide
an efficient solution in the best of cases. In this article, in addition to provid-
ing a detailed resolution of the social workers’ problem using the Quadratic
Unconstrained Binary Optimization Problems (QUBO) formulation, an ap-
proach to mapping the inequality constraints in the QUBO form is given. Fi-
nally, we map it in the Hamiltonian of the Ising model to solve it with the
Quantum Exact Solver and Variational Quantum Eigensolvers (VQE). The
quantum feasibility of the algorithm will be tested on IBMQ computers.
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1. Introduction

The social workers’ problem is the problem defined by social workers who visit
patients at home to provide personalized assistant care according to a schedule,
time and duration of the visit based on the patient’s pathology. This problem
combines, on the one hand, a routing problem such as Vehicle Routing Problem
(VRP) [1] [2] [3] and, on the other, a planning problem [4]. Hence the exact so-
lution can drive an exponential computation time for growing scale input data
where the need for another approach to solving these problems is veritably cru-
cial. The complexity and above all, the importance of these problems involved

the scientific community in investigating efficient methods to solve them [5].

DOI: 10.4236/jcc.2020.811004 Nov. 12, 2020 a4 Journal of Computer and Communications


https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2020.811004
https://www.scirp.org/
https://orcid.org/0000-0003-2725-277X
https://doi.org/10.4236/jcc.2020.811004
http://creativecommons.org/licenses/by-nc/4.0/

A. P. Adelomou et al.

The social workers’ problem, as the combination of VRP and planning prob-
lem, is NP-Hard. This definitely, leads us to explore new approaches for the
large-scale social workers and one of these approaches to take into account is
Quantum computing [6].

Quantum computing could help us in a change of the degree of complexity of
the problem, empowered by its high computation capacity. Within the large
fields where quantum computing is called to stand out, is the field of combina-
torial optimization. And one of the most special algorithms in this field is the
Quadratic Unconstrained Binary Optimization Problems (QUBO).

The QUBO [7] [8] [9] is one of the most relevant categories of optimization
problems. It was designed to solve quantum annealing problems and maps to
perfection with D-wave technology [7]. QUBO refers to a pattern matching
technique used in machine learning and optimization, which involves minimiz-
ing a quadratic polynomial over binary variables [7]. It must be ruled out that
QUBO is NP-hard [10]. And also, because this formulation does not admit re-
strictions, it could significantly limit its use when modelling systems that need
constraints (especially inequality). However, many famous combinatorial opti-
mization problems take advantage of the QUBO formulation to be solved [7] [8]
[9] and also to be used in quantum computers based on gate model [7].

This article provides a detailed resolution of the social workers’ problem using
the Quadratic Unconstrained Binary Optimization Problems (QUBO) formula-
tion. We also propose an approach to mapping the inequality constraints in the
QUBO form and finally, we map it in the Hamiltonian of the Ising model to
solve it with the Quantum Exact Solver and Variational Quantum Eigensolvers
(VQE) [11]. The quantum feasibility of the algorithm will be tested on IBMQ
computers.

The paper is organized as follows. In Section 2, the quantum computers, the
Adiabatic Quantum Computing (AQC), and the VQE will be explored by focus-
ing on the two dominant configurations and their techniques. In Section 3, we
introduce the question we want to solve and the approaches. In Section 4, 5 and
6 we outline our proposed formulation to solve the problem, we describe details
of its algebraic QUBO formulation and we translate it into Ising form ready to
be solved with any quantum solver, in this paper, mainly with the VQE. Finally,
in Section 7, we present the results of our experimental analysis. In the discus-

sion, we give a summary, scale our new formulation over some open problems.

2. Quantum Techniques

It is essential to understand the leading quantum techniques that exist to know
what steps to follow for the implementation of an algorithm in quantum. And
especially for this work that uses the QUBO formulation to solve the social
workers’ problem.

There are several techniques for building a quantum computer, and the way it

is currently done is by combining multiple various multicore processors [9]. All
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of this brings to life numerous models of quantum computing: theoretical mod-
els, quantum circuit models, adiabatic quantum computing, measurement-based
quantum computing, and topological quantum computing, being equivalent to
each other within the reduction of polynomial-time. The most widespread and
considerably developed model is the circuit model for gate-based quantum
computation. The conceptual generalization of Boolean logic gates used for clas-
sical computing works for quantum computing as well [12]. And, with the com-
bination of these basic gates and the appropriate memory structures based on
architecture, it gives life to the quantum computer. Quantum annealing has a
somewhat different software stack structure than gate-based model quantum
computers. The annealing-based computer must be viewed as a specific case of a
quantum accelerator based on quantum gate algorithms. So instead of a quan-
tum circuit, the level of abstraction is Ising’s classic model.

Currently, there are two dominant configurations for quantum computing:
Quantum Annealing (D-Wave), in which problems are coded in quantum Ha-
miltonians and the natural dynamics of physical systems, and the Gate Model
Quantum Calculus (IBM) [7] [12] [13], in which the calculation is made through
a series of discrete gate operations.

In quantum annealing, optimization is achieved by mapping the Hamiltonian
optimization problem of a controllable quantum system so that the low-
est-energy states correspond to optimal solutions. The quantum superconduct-
ing circuit analyzers produced by D-Wave Systems Inc are the most mature [7]
[11]. So, we can visualize a D-Wave quantum computer like is a physical repre-
sentation of the Ising model like the one in Equation (1).

For gate-based machines, one of the most promising algorithms [13] [14] for
optimization is known by Ansatz Alternative Quantum Operator, also known as
the Approximate Quantum Optimization Algorithm (QAOA) [11]. QAOA is
exclusively designed to run in polynomial time on Noisy Intermediate-Scale
Quantum (NISQ) [11] devices and find optimal solutions to optimization
problems. This algorithm is called to solve critical optimization problems that
classically take exponential computational complexity to solve exactly. Al-
though, in principle, QAOA could be considered a gate model or a conti-
nuous-time configuration [15] [16], also like the Variational Quantum Eigen-
solvers (VQE) [11].

As the experiment designed in this paper goes through the QUBO formula-
tion, the Adiabatic Quantum Computing will be analyzed, which is an essential
step for the implementation of our algorithm.

The Adiabatic Quantum Computing uses a concept of quantum physics
known as the adiabatic theorem [17]. The adiabatic theorem states that as long
as this transformation occurs slow enough, the system has time to adapt and will
remain in the lowest energy configuration [7].

The process followed by the AQC can be summarized in two very recogniza-

ble steps:
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1) The first step is to prepare a system and initialize it to its lowest energy state
known as the ground state.

2) The second step allows us to transform/map our problem in the system.

The researchers H. Nishimori and T. Kadowaki demonstrated that it is neces-
sary to use Ising’s transversal model to code the problem to be optimized and
activate it slowly. Equation (1) illustrates how we can use the adiabatic theorem
for computation [8].

i<j

H e = —A(t)( J,Z.Z, +ZhiZ,]+B(t)Zh,.X, (1)

with X, and Z, the Pauli matricesin Xand Zrespectively.

Taking into account that:

A(1),_, =0 and B(0)_, =1 @)

t=0

As mentioned above, if we want the system to be in the ground state, the ini-

tial state must be
|W(ﬂﬂh0=|+Jx®rb>x®”'®|+w0xc

with |+l. >x is the proper state of o7 (X, ).

+n>x (3)

Now suppose that quantum annealing ends at 7 > 1, where A(I)L:T =1

and B(t)L:T =0. The adiabatic theorem ensures that |l//(t)>|t:T will be the
ground state of F (r) such that the energy of the system will be the energy des-
tined for the ground state. This is the basis of AQC. There are several derivatives
of this technique, but it is not in line with this paper [7] [10] [14] [18].

As the given the social workers” problem is purely combinatorial, and the
recommended steps to follow when designing a combinatorial quantum algo-
rithm are:

1) define the model in the QUBO formulation,

2) apply the change of variables to bring it to the Ising model,

3) and then use a variational algorithm to find the optimal solutions the VQE
will be analyzed.

Unfortunately, we are still in the NISQ [11] era. Even, this era allowed the
scientific community to develop hybrid algorithms that use the potential of
quantum computing and especially the experience of classical algorithms in the
areas of optimization—leaving quantum computers operations that require a
very high computational cost.

One of the most famous algorithms is the Variational Quantum Eigensolver
(VQE) [15] [16] [19] which is based on the variational principle [15]. The native
VQE will be used to find optimal solutions to our social workers’ problem.

VQE is a hybrid quantum-classical algorithm that combines quantum mechan-
ical aspects to the classical algorithm. And its goal is to find approximate solutions
to combinatorial problems. One of the fundamental approaches is to map the

combinatorial problems onto a physics problem (Hamiltonian). Namely onto a

DOI: 10.4236/jcc.2020.811004

47 Journal of Computer and Communications


https://doi.org/10.4236/jcc.2020.811004

A. P. Adelomou et al.

problem that can be phrased in terms of a Hamiltonian of the Ising model. So,
identify the solution to the combinatorial problem is related by finding the ground
state of this physics problem. Thus, the goal is to find the ground state of this Ha-
miltonian. The approach we follow is related to the annealing algorithm.

The unknown eigenvectors are prepared by varying the experimental parame-
ters and calculating the Rayleigh-Ritz ratio [20] in a classical minimization
(Figure 1). At the end of the algorithm, the reconstruction of the eigenvector
that is stored in the final set of experimental parameters that define the state will
be done.

From the variational principle the following equation (H >W(§) > A can be
reached out, with 4, as eigenvector and (H >W( 5) 2 the expected value. By this
way, the VQE finds (4) such an optimal choice of parameters @, that the ex-

pected value is minimized and that a lower eigenvalue is located.

(H)=(w(0)|H|w(9)) (4)

3. Definition of the Social Workers Problem

Let n be the number of patients (users) and considering a weekly calendar of vis-
its for each of them. Our objective is to find an optimal meeting’s timing which
minimizes the cost of time travel; hence, money and maximize the number of
visits to the patients in a work schedule.

In our case study, the daily schedule (Table 1), is set at 8 hours, and the dis-
tance between patients is at least 15 minutes.
e A set of social workers (N, N,,N;,, )

H H
Quantum module 1 B () (Hy)
g i <
g H H z
g Quantum module 2 i, § { +2) é
& 3 :
2 ™
8 Quantum module 3 (H3) (Hs) £
g e St =
g © 2
g s @
5 g
o o &
H H
Quantum module n i, (Hy)
| !
b y
\ Y, \ )
\\‘ I"
N feedback to parameterize the variables for the next iteration. /

~,
N -
Seia s

Figure 1. The variational quantum eigensolver diagram.
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Table 1. Schedule of patient visits without any association with social workers.

M T w TH F
9:00-10:00 U U, U U U
9:30-10:30 U,
10:15-11:15 U,
11:30-12:30 U,U,
11:45-12:45 U
12:00-13:00 U,
14:45-15:45 U,
15:00-16:00 U,
15:15-16:15 U,
15:45-16:45 U,
16:00-17:00 U,
16:30-17:30 U,
17:00-18:00 U,

Where U to U are the patients (users) and equal to the variable 7 or ; of the mathematical formulation.

A set of patients (P, P,, B, )
A set of visits (U,,U,,U;, )
e each visit is linked to a patient: a patient can have multiple appointments
on a day
e for each visit, we know the start time and duration
Social workers can work at most 8 hours per day (that means, social workers
cannot do a visit the first visit at 9:00 and end the last tour at 18:00) (removed
to reduce the number of variables, so this can be solved using Qiskit')
We know the cost of travelling between each pair of patients. The cost can be
seen as a function of travel time and distance.
The objective is the following:
Find a schedule where each visit is assigned to a social worker
We are minimizing the travel cost while also respecting that a social worker
does not work more than 8 hours per day.

We design this formulation keeping in mind that our device does not admit

inequality restrictions. For this, we will encode in some way the time informa-

tion that will represent the limits of the constraints in the said formula.

4. Formulation of the Social Workers’ Problem

What we pursue is to avoid using the inequality constraints and use the least

number of qubits. Within the real environments (not simulation) we have very

few real qubits to test our algorithm. Therefore, we will base our algorithm on

techniques already consolidated to achieve efficiency in several qubits.

'www.qiskit.org.
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Let G=(V,E,c) be a complete graph directed with V' ={0,1,2,---,n}, as
the set of nodes and E = {(i,j) i, jevV,i# j} as the set of edges, where node 0
represents the central, for a team of & social workers with the same capacity p
and n remaining nodes that represent geographically dispersed patients.

Each patient ieV —{0} has a specific demand for visits d, <p. The
non-negative travel cost W, is associated with each arc (i, j) € £ . To simplify,
we consider that the distances are symmetrical. Where x, are the decision va-

riables of the paths between two patients. The minimum number of social

2
o

workers needed to care for all patients is

Minimize:
m 1 n
22 W Xis )
k=l i=l j=lizj
Subject to:
3 Yk, =1 Vie{lnl, (6)
k=1 j=1
S>> xy=1 Vje{l,n}, (7)
k=1 i=1
1 n
Zd[ X <q Vke{l,---,m}, (8)
[
Xy =K Vke{lom), )
j=1
Zn:x/.Ok:K Vke{l,---,m}, (10)
=
i Xy —i Xy =0 Vhe{l,-,n} and Vk e{l,---, m} (11)
i=1 j
x; €{0,1}, Vi, je{0,--,n}, i#j Vke{l,---,m} (12)

In this formulation, the objective function (5) minimizes total travel savings
taking into account the new cost function with the time window. The restric-
tions of Equation (6) impose that exactly the arcs kleave the plant; (9) and (10)
are the restrictions on the degree of entry and exit of the social worker from the
central office. The constraints (11) are the route of continuity and the elimina-
tion of sub-courses, which ensure that the solution does not contain a sub-route
disconnected from the exchange. Restrictions (12) are mandatory.

To solve the posed scheduling problem, we need a time variable. The Intro-
duction of the time restriction (schedule) in the original QUBO formulation is a
significant obstacle, as discussed above [10].

So, the strategy we follow is to incorporate the schedule information (calen-
dar) of Table 1 in the weight variable. Equations (13) and (14) describe the
temporal evolution of each social worker equivalent to achieve the scheduling

parameters.
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W, =d,+f(1,) (13)
2
f(t,,-)=7% (14)

where W, is our weight and time window function, d is the distance be-
tween the patient /and jand f (t[j.) is our time window’s function. The func-
tion f (t{.].) is a growing function, and we model it by a quadratic function to
weigh short distances concerning large ones. We are taking into account that the
first weight function W, =d, is a distance function, we want to make f (tl.j)
behave like d;, and thus, be able to take full advantage of the behaviour of the
primary objective function.

y >0 Itis a weighted degree parameter of our time window function; z, is
the start time of a time slot for patient 7and 7, for the patient j. where d,,,

represents the maximum distance between all patients and, d_, is the mini-

mum distance between the gaps of all patients. The term T z(rl. —Tj) >0 is
the time window.

The simplified Hamiltonian resulting from the schedule optimization problem
is as follows:

2

n N
H :#Z((dm ~dy )y (5 -1, Jx AR 1= X
dmax _dmin ijeE | i=1 jeb'(i)+ ,
15)
2 2 2
n N N N
+Az 1- Z X +A| k- z X, | +4 k— z X0
i=1 jes(iy” ies(0)" Jjes(0)

5. Resolution of Social Workers’ Problem
Based on QUBO Formulation

Let us solve our formulation in QUBO form by considering n =4 patients.
Where Qisa 2" x2" matrix with N =n(n—1) as the number of qubits. So,
in this case, N =12 qubits. Let’s remember that we are using binary variables
. 2 .
s0, (x;,u) =x,,.
Now, let’s develop step by step each term of (15) into the QUBO form consi-
dering the definition of our cost function from (13) and (14).
3 3 3
2 Wyxi ;=2 2 Wi
iicE i
i#j
=WoiXor T Wo,zxo,z +Wy3%05 + Wl,oxl,o + Wl,le,z + Wl,3x1,3 (16)
+ Wz,oxz,o W, 1%, + Wz,sxz,s + W3,0x3,0 + W3,1x3,1 + W3,2x3,2
2
3 3
AYN1- 2 X,
i=1 jes(i)”
2
=4 (1 = Xoy =Xy =Xy =X, =X, =Xy F =Xy s =X s =X )
2
=4 (3 —Xo,1 T X T X3 T X T X T X35 T Xp3 T X3 T X3 )
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2 2 2 2 2 2 2 2
= A(3 + (xo,1 ) + (xz,1 ) + (x3,1 ) + (xo,2 ) + (xl’2 ) + (xl2 ) + (xw )
2 2
+ (xl,3 ) + (xz,3 ) —6x,, —6x,, —6x;, —6x,, —6x,, —6x;, =6,
—6x, 5 — 6)62’3 +2X0,%,, + 2)60,1)63,1 + 2)60’1960,2 +2X0,%,, + 2x0,1)c3,2
+ 2)60,1950’3 + 2xo,lxl’3 + 2)60’1)62,3 + 2x2,1x3,1 + 2x2’1x0’2 + 2x2,1xl’2
+ 2)62’1963,2 + 2)62’1)60,3 + 2x2,1xl,3 2, X, 5+ 23, %), + 2)63’1xl,2
+ 2x3’1x3,2 + 2)63’1160,3 + 2)63,1)61,3 + 2)53’1x2,3 + 2x0’2x1,2 + 2)60’2)63’2
+ 2%y )Xo 53 +2X0 )X, 5 +2X0 1%y 5 +2X,,X5 5 +2X, 5 X0 5 +2X, 5%, 5 (17)
+2X 5%, 3 F2X5 505 F 2%, ,X 5 255X, 3 +2X) 5%, 5 F2X) 3% + 2, 5%, 4 )

2

AZl—Zx

= jes(i )
2
(1 X —Xip = X3 H1=0 0 =X =X H1-0 -y _xs,z)
2
( TXg T X T X3 T Xy T Xy T Xy 3 T Xy 0 TGy _xs,z)

2 2 2 2 2 2
( +(x10) L (x2) +(x5) +(3x00) +(x0s) +(x25) +(x50)
(xs 1 ) (x3 2 ) - 6x1,0 - 6x1,2 - 6x1,3 - 6x2,0 - 6x2,1 - 6x2,3 - 6x3,0
=63, —6x35, +2X 0X;, +2X 0% 5 2%, X, 0 +2x, (X, + 20X, 5
+2X, %5 0+ 25, 0 X5, + 2% 0X3 52X, 5% 52X ,X, 2% ,X,
+2X, 5% 32X, 5% 0 2,05 +2X, 5%, +2X, 3%, ¢ +2X, 3%, |
+2X, 3%, 32X, 33 + 20X, 53X + 205X, + 200X, +2X, 0%,
+2X, X5 22, (X5 +2X, (X5 +2X, X, 5 +2X, X +2X, Xy (18)
F2X, 1055 2%, 355 2, 3%+ 2X, 305, + 225 (X5 + 220X, + 2x3’1x3,2)

2

Al k- Z Xo.; =A(k—x0’1—x0’2—x0’3)2

ies( )

= AR+ (x0, )+ (30 )+ (50 ) 2k, — 2k, (19)
= 2kxy 5 +2X),X0 5 +2X),X) 5 +2X0 5% 3 )

3
Z Xjio | = A(k_xl,o X0 " X0 )2

je&(0)+
= A(k2 +(x1)0)2 +(x2)0 )2 +(x3‘0)2 ~2kx, o —2kx,,  (20)

= 2kx; o +2X, X, o +2X 0X5 4 +2X, X5 )

Grouping the terms (16) to (20) we reach out to the following expression:
W1 Xo1 +WoaXon +WosXos + WX 5 + W 3xy 5 + W5 16, + W) 5, 5
+A(3 +(xo, )2 +(x,, )2 +(xy, )2 + (%05 )2 +(x,, )2 + (%3 )2 + (%03 )2
+ ()cl’3 )2 + <x2,3 )2 —6x), —6x,, —6x;, —6x,, —6x,, —6x;, —6x
—6x,3 —6x, 3 +2x, X, | +2X, X3 +2x X, + 2%, %, + 2%, %3,

+ 2X0,1x0’3 + 2x0’1x1’3 + 2)60,1)62,3 + 2x2,1x3,1 + 2)62’1)60,2 + 2)62’1961’2
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206155 + 22 1 Xo 5 201X 5 + 22 10 3+ 2X5, X 5 + 251X,

200515 5 205 1 X 3+ 25 1%, 3+ 251X 5+ 22 2% 5 +2X) 5 X5,

+ 2% 2% 5+ 2X 5 Xy 3 2% 2%, 3+ 2X) X5 20 5 X 5 +2X, X, 5

20 5% 5+ 225Xy 5+ 2055 X 5+ 20500 3+ 2X 3% 5+ 22 3Xp; + 2x1,3x2,3)
) 2 2 2 2 2 2 2

+ A3 +(x0) +(x00) +(xis) +(xra0) +(x00) +(x5) +(x50)

2 2

+ (xl1 ) + (x3’2 ) —6x,, —6x,, —6x; —6x,,—6x,, —6x,, —6x3,

—6x3, —6x3, +2X, X 5 +2x, 0 X; 5 +2X, X, + 2, 0 X, +2X X, 5

2 0%5,0 + 2% 0X51 + 2% 05 5 + 2%, 2% 3+ 2%, 5, o + 2% 5%,

+2X 5%, 5 2 )X )+ 2X 5% + 2% )X, +2X, 3%, ¢ +2X, 5%,

+2X 3%y 3 +2X 305 0 +2X 30, +2X 30, +2X, 0%, +2X, X, 5

+ 2 X5 20 0 X5 20, 055 201 5 20 1 X530+ 22,1 X

22,155 20, 305 0 +2X, 325 20, 355 + 200X, + 20 X5 225, X;5, )
AR+ (o, )+ (302 )+ (30 ) = 2hony, = 2oy , = 2oy 3 + 2,3, (21)
+2X0 %93 + 2% 5% 3 ) + 4 (k2 + (x]’o )2 + (xz’o )2 + (x}’0 )2 —2kx, o —2kx,

= 2kx; o +2X, X, o +2X, 0250 +2X, 0 X5 )

. . 2
Now let’s apply the binary variable property x;; =x, ; so,
WoaXon ¥ WoaXos +WosXos + W 5% + WX, 5 + W, 1%, + W) 5%, 5
+A@2+%1+%1+%1+%2+%2+%2+%3+M3+%3
—6x,, —6x,, — 6x3’1 — 6x0’2 — 6x1’2 — 6x3,2 —6x;— 6x1,3 — 6x2’3
+ 2%, + 2%, X5 +2X0 X5 +2X0 X, +2X0 X35 +2X 1 X 5
+ 20,2 5+ 201X, 5 + 2%, 1 X5 F 2%, X0, + 2%, X, +2X,,%5,
+ 2%, 1 Xg5 + 2%, X 3 +2X) 1 X 5+ 205 Xg 5 +2X5, X, + 251 X5,
+ 2% X0 5 T 2% 1 X, 5 251X, 3 +2X0 5%, 5, +2X0,X5 5 +2X0 5%, 5
+ 205X 3 +2X0 3 Xy 5 F2X 5 X5 5 +2X, 5% 5 +2X X5 +2X,X, 5
F2X5 5% 3 +2X5 5%, 3 F2X; 5%, 5+ 2X0 3%, 5 + 2% 3X55 +2X, 3%, 5 )
+A@2+%0+%2+%3+%0+@1+%3+%0+%1+%2
— 6)61’0 —6x,, — 6)61’3 — 6)62’0 — 6)c2’1 — 6)62’3 — 6x3,0 — 6)63’1 — 6)63’2
+2X, 0%, 5 2%, X5 F2X, %, 0 T 2%, 0%y +2X, 0 Xy 5 +2X, X5
+2X, 0%y 1 F2X, 0%y 5 +2X 5%, 5 +2X 5%, o F 2%, 5%, +2X,,X, 5
F2X 53X 02X 5 X5+ 2X 555, +2X, 3%, o+ 2%, 3, +2X, 5%, 4
+2X, 30 0 F2X, 305 223X, +2X, )X, F2X, 0 X, 5 +2X, X5,
+2X, 03, 2%, 0X3 5 2%, 1, 5+ 2%, 1 X5 4 2%, 1 X5, +2X, 1%,
22, 335 0+ 2, 305 + 22, 3355+ 2X5 0 X5, +2X5 055 +2X51%5, )
2
A + 30, + X 5 + X5 — 2oy — 2k, 5 = 2k, 5 + 2%, 1%, 5 (22)
2
+ 2, X 5 + 2% 1% 5 ) + A(k X, X0+ Xy o — 2k, o — 2k,

= 2kx; o + 20X, o+ 2, 0 X5 + 2%, 0 X5 )

Grouping similar terms:
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WoiXos +WooXon +WosXo5 + W 5%, + W sx s + W, 1%, + W, 5%, 4

+ A(3? = 5%y, = 5%, =5y, = 5%, = 5%, = 5%, = 505 = 5%,5 — 5%,
+2X0 1%y F 2X0 1%y +2X) X0 5 +2X0,%) 5 +2X0,%5 5 + 2% 1% 5
+2X0,1% 5+ 2x01% 3 + 221X + 23X, 1 X0, + 2%, X, 5 +2X, X5,
+2%, 1 X053 + 2%, 1 5+ 2X, 1 X, 5 + 251X 5 + 2%, X, +2X5, %5,
251 X053 + 225,55 2551, 5+ 2% 5%, 5 + 2% 5X5, +2X) 5% 5
+2X0 5% 32X 2 Xy 3+ 2% 55 5 +2X, 5% 5 + 2%, 5%, 5 +2X,%, 5

25 X053 F 255X, 3 + 255X, 5 + 2X0 3%, 5 + 2X) 3 X5 + 2X, 35X, 5 )

+ A(37 = 5%, = 5%, =55 =5, = 5%, = 5%, 5 =5y = 5%, = 5%
+ 20X 5 + 20X, 3+ 2X, 0 X + 20X 1 +2X 5 X, 5 +2X X5

20 0%+ 2X) X35 20 5% 5+ 2%, o + 2%, ) +2X, 5%, 5
22,5 2%, 55, +2X, 5 X5 5 2 3%, o +2X 3%, ) +2X, 3%, 5
2,350 22,3 ) +2X,3X5 5 +2X, 0%, +2X, 0%, 5 +2X, 0X;
220X + 20, 05 5 2%, 1%, 5+ 20 105 0 + 201X, +2X, X5,
+2X, 325 0+ 2%, 305 ) + 22, 325 5+ 2X5 0 X5 ) + 2% 055 +2X51%5, )

+ A x5, X + % 5 = 2k, — 2oy 5 = 2k 5 + 25y,

+ 20X X3 + 2% 1 X5 )+ A(k2 + X+ 0 X — 2k, o — 2Ky (23)

= 2kxy o + 2 0%, o + 2% 0X5 0 +2X, X, 0)

Now let’s group the linear terms as following:

243 + 247 + (W, + A(1=5-2k)) x,, + (W, + A(1=5-2k) ) x, ,

+(Wos+ A(1=5-2k))x,, + A(W, o — A(1-5-2k) ) x,

+ AWy, — A(1-5-2k))x, + A(W,  — A(1-5-2k)) x;, (24)
+(W,, =104)x,, +(W,5 =104) x,; +(W,, =104) x,,

+(W5 =104) x5 = (W3, =104) x;, =(W;,, =104) x;

Now let’s group quadratic terms.

+4A4x, 1%, +4AX) X5 +AAXY HX) 5+ 2AX) X +2A% 1%, 5 +24%,1%,
+2A4x,%, 5 + 2 A%, X5y +2A%0 X5 5 HAAX, (X, 0 +4X, 05 0 +AAX, 05

+ 240X, 5 + 24X, 0%, 5 + 24X, (X, + 24X )X, 5 + 24X 0 X5 + 24X, 0%,
+2A4x, x5 + 2A4%, 1 X, 5 + 2A4%, 1 X5 o+ 4AX, (X5 +AAX, (X5, +24%, X,

+ 24, 1 Xg 5 +AAX, 1 Xy 5 +2AX, 5 X0 5 +2AX, 5%, o + 24X, 5,0, +2 A%, 5%,
+24%x, 5% ) +AAx 5 X, 5 FHAAX, 5 X5 5 HAAX HX, 5+ 2AX Xy, + 24X, X,
FAAx; X5, + 2 A5 X0 5 + 2A%5 x5 + 24X, X, 5+ 2 A%, 5%, o + 2 4%, 5%,
FAAx, 3%, 5+ 2A4% 355 o+ 2AX 3 X5 + 24X, 35, + 245 5%, 5 + 24X ,%;,

+ 2Ax0 5%, 5+ 2Ax 1%, 5+ 2A%, (X, |+ 2AX, (X, 5+ 2AX, Xy, + 24X, 01X,
24X )X 5+ 2A%; 5%, 3 + 24X 5%, 5 + 24X, 35 + 24X, 3% + 24X, 3%, (25)

+ 2)60,3)&3 + 2)50’39623 + 2x3’0x3,1 + 2x3’0x3’2

Recalling the quadratic form x"Qx+g"x+C with the following terms.
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EXN [0 4 40220220 2 2]
Xy 004022022022
Xo.5 000022022022
X0 000022422422
X, 000004224224
| Q:oooooozz4222
X0 | 000000022422
X, 00000O0OO 042 4 4
X5 00000O0O0O0GO0?222
X3 000000O0O0O0TO0?2?2
X, 00000O0O0OO0OO0O0O0 4
EN 00000 O0O0O0OO0O0 0
(WOl A(4+2k))

(W = A(4+2k))

(o, —4(4+2k))

(W4 — A(4+2k))

(W, —104)
g= (7, -104) and C=24k*+24(n-1)’
(W, — A(4+2k))

(W, -104)

(w,,-104) (26)
(W3,0_A(4+2k))

(w,,-104)

(W,,-104)

We put Equations (13) and (14) together, and we arrive at the following ex-

pression:

(Tf i )2

d..—d

max min

=d;+y (27)

There are several strategies to implement the objective function with inequa-
lity constraints. But each of these strategies requires additional variables that end
up working as a stack. The approach most frequently used in the scientific
community is to use auxiliary binary variables to convert inequality to equality
and then proceed, as usual, by squaring the equality constraint following penalty
theory [21].

These additional variables are translated into qubits; extra qubits that today
are scarce for some experiments.

To do this, we define a strategy that allows us to solve combinatorial optimi-
zation problems with inequality constraints without the need to increase the

number of qubits required.
Our strategy is based on coding the variables of time inequality, the time
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: : . (7 -7, )2
window following the formulation W, =d,; + 7ﬁ .
max ~ %min

However, IBM’s significant contribution® opens up promising horizons in
quadratic programming with inequality constraints (with more additional qu-
bits).

Now we only have to code the information in Table 1, the data (distance,
costs and correction) of each patient and generate our weight matrix, which in
turn will serve to calculate our variables linear g

With all this, we already have all the components for one, write our objective
function in the form QUBO and second solve it efficiently on quantum anneal-

ing computers.

6. QUBO to Ising Hamiltonian Formulation

As we already have our objective function as a QUBO in the form <xT |Q|x>,
now we can map our QUBO to Ising Hamiltonian formulation leads to calculat-
ing the values of J, and #;.

The transformation between Ising Hamiltonian and QUBO is Z =2x-1,
with Z as Pauli-Z matrix. This means that by writing an algorithm for QUBO
with this single variable change, we will have the algorithm in Ising form. That is
very useful to have the algorithm for various platforms that are based on quan-
tum gates (meanly IBM Q) or quantum annealing (meanly D-Wave) in case of

going from the Hamiltonian form.

Table 2. QUBO Q matrix for the social workers problem.

x(“ )Cﬂ.Z x0,3 XL0 XLZ .X'L3 xzvn szl )CZA3 xm .X'3 | XL2
X, 0 4 4 0 2 2 0 2 2 0 2 2
X, 0 0 4 0 2 2 0 2 2 0 2 2
X, 0 0 0 0 2 2 0 2 2 0 2 2
X, 0 0 0 0 2 2 4 2 2 4 2 2
x, 0 0 0 0 0 4 2 2 4 2 2 4
X, 0 0 0 0 0 0 2 2 4 2 2 2
x,, 0 0 0 0 0 0 0 2 2 4 2 2
x,, 0 0 0 0 0 0 0 0 4 2 4 4
x,, 0 0 0 0 0 0 0 0 0 2 2 2
X, 0 0 0 0 0 0 0 0 0 0 2 2
x, 0 0 0 0 0 0 0 0 0 0 0 4
x,, 0 0 0 0 0 0 0 0 0 0 0 0

*https://medium.com/qiskit/towards-quantum-advantage-for-optimization-with-giskit-9a564339ef26.
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Next, we calculate these variables. We start with J,; asis summarized in Ta-

ble 3.
J, = 9 "y ifi<j (28)
0 otherwise
Let’s calculate the external forces 7 :
h=glara) ot e ) o a) o) )
(s + 52 )+ (91 + 6 )+ (017 +02.) + (1 + 00,)
(a0 0. )+ (0 + 10, )+ (i +000)+ (9122 12|
Now let calculate i=1.
Iy = %[(qm )+ (2 +0a) + (03 + 400 )+ (41 + 40
15+ 450) + (G0 + o) + (17 + 420 ) + (415 + 44 )
o)+ 00) 590 2 0)]
:%[(0+0)+(4+0)+(4+o)+(0+0)+(2+0)+(2+0)
+(0+0)+(2+0)+(2+0)+(0+0)+(2+0)+(2+0)]
=5
Table 3. J, interaction forces between grid neighbours. We assume that J, =0 for i
and jare not adjacent,
J, J, J, J, J J, J, Jy J, Jy J, J,
J, 0 1 1 0 0.5 0.5 0 0.5 0.5 0 0.5 0.5
J, 0 0 1 0 0.5 0.5 0 0.5 0.5 0 0.5 0.5
J, 0 0 0 0 0.5 0.5 0 0.5 0.5 0 0.5 0.5
J, 0 0 0 0 0.5 0.5 1 0.5 0.5 1 0.5 0.5
J, 0 0 0 0 0 4 2 0.5 4 0.5 0.5 1
J, 0 0 0 0 0 0 0.5 0.5 1 0.5 0.5 0.5
J, 0 0 0 0 0 0 0 0.5 0.5 1 0.5 0.5
J, 0 0 0 0 0 0 0 0 1 0.5 1 1
J, 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5
J, 0 0 0 0 0 0 0 0 0 0 05 05
J, 0 0 0 0 0 0 0 0 0 0 0 1
J 0 0 0 0 0 0 0 0 0 0 0 0
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where h =5.
Now let calculate i=2.
O PR SO RO RO
(25 52 )+ (02 + 002) + (02 + 022 ) + (2 + 442
@20+ 002 )+ (@200 + 02 )+ (@201 % 002+ (920 + 0122 |
=i[(0+4)+(0+0)+(4+o)+(0+0)+(2+o)+(2+0)
+(0+0)+(2+0)+(2+0)+(0+0)+(2+0)+(2+0)]
=5
where f, =5.
Now let calculate i=3.
= [(00 100 )+ (324 020)+ (000 +005) (00000
+(055 + 55 )+ (@56 + 963 )+ (55 + @75 ) + (455 + 4s5)
(230 + o)+ (2510 + 10 )+ (@51 + 9113 ) + (@5, + G105 )|
=Z[(0+4 +(0+4)+(0+0)+(0+0)+(2+0)+(2+0)
+(0+0)+(2+0)+(2+0)+(0+0)+(2+0)+(2+0)]
=5
where &, =5.
Now let calculate i=4.
=00+ 1) (00 00 ) (00 0) 0+ 00
(a5 5. ) (das + 00 )+ (00 + 00 ) + (1 + )
(@00 + 0. )+ (010 + 0 )+ (@014 000) (900 + 0124 |
:%[(0+0)+(0+0)+(0+0)+(0+0)+(2+0)+(2+0)
+(4+0)+(2+0)+(2+0)+(4+0)+(2+0)+(2+0)]
=5
where h, =5.

Now let calculate i=5.

hy = [(951""115) (‘]52+412,5)+(LI5,3+93,5)+(95,4+‘I4,5)
(‘155""]55)"‘(%6""]65) (%,7"“17,5)"'(‘15,8"'%,5)
(%9 ""%5)"‘(‘]5 10 +‘I105) (%,11 +Q11,5)+(%,12 +4s ):|
=Z[(0+2 +(0+2)+(0+2)+(0+2)+(0+0)+(4+0)
+(0+2)+(2+0)+(4+0)+(2+0)+(2+0)+(4+0) ]
=7
where A, =7.

(31)

(32)

(33)

(34)
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Now let calculate i=6.

hs = |:<‘I61 +4q 6) (% 2 +‘I2,6)+(‘I6,3 +‘]3,6)+(%,4 +CI4,6)

(Q65+q56)+(q66+q66) (q6,7+q7,6)+<q6,8+q8,6)
(%9 +%6)+<% 10 T o, 6) (%,11 +%1,6)+(%,12 T, )J
(35)
:Z[(0+2 +(0+2)+(0+2)+(0+2)+(0+4)+(0+0)

+(2+0)+(2+0)+(4+0)+(2+0)+(2+0)+(2+0)]
13
"2

where A, =6.5.

Now let calculate i=7.

by —4[(%1“117) (@70 + 027 )+(dr + 3 ) + (2.0 + 15
(0457 )+ (06 + e )+ (@07 + 0 )+ (07 + 445
#(010 %00 )+ (4200 + 002 )+ (00 +000)+ (422 +40) ] )
=%[(0+0)+(0+0)+(0+o)+(0+4)+(0+2)+(0+2)
+(0+0)+(2+0)+(2+0)+(4+0)+(2+0)+(2+0)]
=5

where &, =5.

Now let calculate i=8.
hy :%I:(Q&I +qus )+ (G + o )+ (055 + s )+ (05 + das)
+(dss + G55 )+ (@56 + G5 )+ (57 + o5 )+ (25 + 55
(250 + o5 )+ (2510 + G105 ) * (2511 + s )+ (2510 + G5 | -
:Z[(0+2 +(0+2)+(0+2)+(0+2)+(0+2)+(0+2)
+(0+2)+(0+0)+(4+0)+(2+0)+(4+0)+(4+0)]
=7

where A, =7.

Now let calculate i=9.
=3[90 (002020 )+ (00 00) (0004 420
(o5 + 59+ (05 + s ) + (057 + 1) + (o5 + 410
(a0 1)+ (4 0+ (002 +020)] 3
:%[(0+2)+(0+2)+(0+2)+(0+2)+(0+4)+(0+4)

+(0+2)+(0+4)+(0+0)+(2+0)+(2+0)+(2+0)]
=7
where /4y =7.
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Now let calculate i=10.

1
hyy = Z[(%o,l +4110 ) + (%0,2 +4510 ) + (%0,3 +4;0 ) + (910,4 +440 )

+ (‘]10,5 +4s,10 ) + (%0,6 + 46,10 ) + (%0,7 + 47,10 ) + (%0,8 +dz10 )

+ (%0,9 +49,10 ) + (%0,10 10,10 ) + (%0,11 + 4110 ) + (%0,12 T q12.10 ):|

(39)
:%[(0+o)+(0+o)+(0+0)+(0+4)+(0+2)+(0+2)
+(0+4)+(0+2)+(0+2)+(0+0)+(2+0)+(2+0)]
_2
2
where &, =4.5.
Now let calculate i=11.
1
by = Z[(qll,l +Q1,11>+(Q11,2 +92,11)+(q11,3 +q3,11)+<q11,4 +Q4,11)
+(qll,5 +4qs )+(‘]|1,6 +%,11)+(‘]|1,7 +4q71 )+(%1,8 +Q8,11)
+(Q1|,9 t 4o )+(‘I11,10 +‘I1o,11)+(‘]|1,11 + 40 )+(q11,|2 t 0 ):|
(40)
=%[(0+2)+(0+2)+(0+2)+(0+2)+(0+2)+(0+2)
+(0+2)+(0+4)+(0+2)+(0+2)+(0+0)+(4+0)]
BE
2
where h, =6.5.
Now let calculate i=12.
1
hy, :Z[(%z,l +Q1,12)+(q12,2 +q2,12)+(%2,3 +CI3,12>+<Q12,4 +CI4,12)
+(Q12,5 +‘I5,12)+(Q12,6 +%,12)+(912,7 +Q7,12)+(%2,8 +%,12)
+(%2,9 +q9,12)+(q12,10 +q10,12)+(%2,11 +q11,12)+(q12,12 +q12,12):| (41)

=%[(0+2)+(0+2)+(0+2)+(0+2)+(0+4)+(0+2)

+(0+2)+(0+4)+(0+2)+(0+2)+(0+4)+(0+0)]
=7
where &, =7.

With the calculated J i and /%, (Table 2 and Table 4), we can now solve
our Social Worker Problem with VQE (<!// (0)|H | % (0)>) or with the Quantum
Exact Solver or with any variational method. We are considering that the superpo-
sition state (N qubits) of O =g, ---q, isdescribedby |y)=|y,)--|wy)-

H,ly) :(Zhﬂiz +ZJyGizafz'j

i<j

) (42)

Where the energy function is as follows and where the notation o7 means

that the Pauli-Z operator is applied to the single-qubit =|---s,---).
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Table 4. Calculated values of the external force #, .

h, 5
I, 5
h, 5
h, 5
I, 7
hy 6,5
h, 5
h, 7
h, 7
hy, 4,5
h, 6,5
h, 7

= Sh( T () () (@

ieV (i./)eV
with
o> 1 ®-® o ®-® I (44)
v - &
1t position i™ position N'™ position
and
cioi—<s [ ®-® ¢ ®-® o -0 I (45)
J & — — &
1% position it position j‘h position N position

7. Results and Discussion

The first observation is that both the proposed cost function and the social
workers’ problem formulation behave much better than we expected. Form the
posed cost function, the quadratic function (27) acts very well for small numbers
and also for large quantities. For intermediate numbers of y, we use the value
of y=0.73 to correct the resulting function. Figure 2 describes the analysis
done in terms of y.

The second comment is that we have considered a specific problem with a
very generic vision that combines both a routing and scheduling problem. We
have presented and detailed it to step by step in the QUBO formulation and to
adapt the limitation of the latter. But we were making our formulation generic
and above all making the time restrictions (time window) in the form of social
workers’ schedules not grow proportionally in the number of qubits. This allows
us to use the few useful qubits that we have for the most suitable operations.

The formulation that we have provided is feasible for any quantum architec-

ture, however, due to the feasibility offered by IBMQ and its very active com-
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munity, the viability of the code and experimentation have been done on Qiskit
under its library aqua’.

All experiments performed, 100 in total, we have seen that the exact quantum
solver behaves in the same way, in terms of the output result, as the classical

solver that we have used (MIP Solver). On the one hand, the results obtained are

44.0

]

139.0
34.0
29.0
24.0
19.0
14.0

9.0

4.0

Cost function with time windows W _i

-1.0
1 234567 8 91011121314151617 18192021 22232425

Epoch

dij = === g(tij), y=0.7 g(tij). y=1.2 g(tij), y=0.4

Figure 2. Comparison of performance with standard deviation error bar on the three
mappings of our proposed formulation ((11), (12)). The Standard Deviation expected to-
tal anneal time for 99% percent success for each mapping value, with the best & for each
shoot are shown. Our optimal case is for y =0.7. Our most representative cases are for
y=04, y=0.7 and y=12.

0.0007

0.0006

0.0005

0.0004

0.0003

Execution time (ms)

0.0002

0.0001

0 1 2 3 4 5 6
# of patients

Figure 3. Backtracking’s behaviour depending on the execution time and the number of
patients.

3https://qiskit.org/documentation/apidoc/qiskit_aqua.html.
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6000
=@=1 trial —®- 5 trials 25 trials
5000
4000
3000

2000

Execution time (ms)

1000

# of patients

Figure 4. VQE’s behaviour depending on the execution time and the number of patients
and number of trials.

identical in more significant computational time for the quantum Exact Solver
and QASM_simulator. Conceptually it is expected, since the priority of the era of
quantum computing in which we are (NISQ), the most important thing is to
compare the complexity and the good functioning of the quantum algorithm,
not its execution time. Figure 3 and Figure 4 plot what we just mentioned.

On the other hand, the QASM_simulator, to obtain the same result we need to
increase the number of seeds considerably up to 10,598 and max_trials close to
2000 within the VQE configuration. Therefore, we can see that in the case of
Monday and Wednesday (Figure 5), the algorithm finds three paths instead of
the two that it should have found.

It should be added that Figures 5-7 are the results for the case of 5 patients
and two social workers with the values of seed = 10,598 and max_trials = 300 for
the QASM_simulator.

The three banks of figures show us the results when using the classical solver
as a cplex, or backtracking, when using the exact quantum solver and when us-
ing the ibmq_qasm_simulator from IBMQ*.

We can see that the three results are identical, which ensures that our algo-
rithm works well. We can observe that our quantum algorithm responds to the
classical solver. And in the experiments we did (Figure 3 and Figure 4), we were
able to attend that, while the classical solver exhibits exponential behaviour as
the number of patients (which would be the nodes of the graph) increases, the
VQE algorithm, without taking into account the cost of evaluation and algo-
rithm calibration, has logarithm growth. This, as the number of patients grows,
will offer more significant advantages than a classic algorithm, such as Back-
tracking, since its temporary cost will be much lower for more complex prob-
lems. In other words, the quantum algorithm has a linear complexity compared

to a classical solver.

7.1. Results from QUBO Form with Classical Solver

*https://quantum-computing.ibm.com/.
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Social Worker TimeTable Social Worker TimeTable

Social Worker 1:
Patient 1: 09:00-10:00

Patient 5: 11:45-12:45 :
Social Worker 2: Social Worker 2:

Patient 4: 09:30-10:30 Patient 2: 14:45-15:45
Patient 2: 12:00-13:00 Patient 3: 16:30-17:30
Patient 3: 15:15-16:15

Social Worker 1:
Patient 1: 09:00-10:00

Our QSW Algorithm with Total weight: 621.7
Our QSW Algorithm with Total weight: 4887.2

@ \
o122 0 o
‘I"///////////’
6.
N 81-2
@——an7 —>®/ \@/

Social Worker TimeTable

[4748
o

4

4
2 0
N

Social Worker TimeTable

Social Worker 1: Social Worker 1:

Patient 1: 09:00-10:00 Patient 1: 09:00-10:00
Patient 4: 10:15-11:15 Social Worker 2:
Patient 3: 15:45-16:45 Patient 3: 15:00-16:00
Social Worker 2:
Patient 2: 16:00-17:00 Our QSW Algorithm with Total weight: 0

Our QSW Algorithm with Total weight: 6373.2

315 A

8'L509
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—

Social Worker TimeTable

Social Worker 1:
Patient 1: 09:00-10:00
Patient 5: 11:30-12:30
Patient 3: 17:00-18:00
Social Worker 2:
Patient 4: 11:30-12:30

Our QSW Algorithm with Total weight: 7307.3
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05~
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Q

Figure 5. Result of the social workers’ algorithm by using classical solver.
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7.2. Results from Ising Model with Quantum Exact Eigen Solver
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Figure 6. Result of the social workers’ algorithm by using the quantum exact eigensolver.
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Result of Monday by using VQE QASM_Simulator
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7.3. Results from the Ising Model with Quantum ASM Simulator
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Figure 7. Result of the social workers’ algorithm by using the ibmq_simulator.
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8. Conclusions and Further Work

In this work, we have defined, written and solved a time-constrained combina-
torial optimization problem in the form QUBO. The question of social workers
has inequality constraints that are very difficult to tackle within the QUBO
framework. To do this, we have defined a strategy to solve it in this NISQ era.
We found the quantum efficient solution using Exact solver and VQE.

The future direction of this work will be modelling the social workers’ prob-
lem into the IBM docplex. And compare the complexity of quantum algorithms
in the face of the classic ones. Also, it is worth saying that our proposal is not li-
mited exclusively to the case of social workers, but to all combinatorial optimi-

zation problems that require routing and scheduling features.
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