
Journal of Computer and Communications, 2020, 8, 60-74
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2020.810007 Oct. 30, 2020 60 Journal of Computer and Communications

Improve Image Decoding in Lightweight
Environment Using a Coroutines Based
Approach

Rodrigue Saoungoumi-Sourpele1*, Jean Michel Nlong2, Jean-Robert Kala Kamdjoug3,
Glen Vernyuy Yufui4

1Department of Mathematics and Computer Science, ENSAI, University of Ngaoundere, Ngaoundere, Cameroon
2Department of Mathematics and Computer Science, FS, University of Ngaoundere, Ngaoundere, Cameroon
3GRIAGES, Catholic University of Central Africa, Yaounde, Cameroon
4Department of Computer Engineering, IUT, University of Ngaoundere, Ngaoundere, Cameroon

Abstract
The JPEG2000 still image compression standard, while providing a remedy
for the many shortcomings of its predecessor JPEG, is still slow to establish
itself on the Internet. This problem is mainly due to the complexity of the
COder-DECoder (CODEC) which implies its non-adoption by large firms
and platforms in the field of image acquisition, processing and transmission.
Indeed, the encoding and decoding process consumes a lot of CPU, memory
and energy resources and takes a lot of computing time. The objective of this
paper is to propose a model for decoding jpeg2000 on lightweight devices
running on the Android mobile operating system. This implementation uses
coroutines, which are a lightweight process model with reduced resource con-
sumption costs compared to conventional AsyncTask threadsets. The model
minimizes decoding time while minimizing CPU and memory usage, result-
ing in a fast and energetically economical decoded image. The results of inte-
grating the coroutines from the main thread into the decoding process in-
stead of the AsyncTask from the main thread produced better performance in
terms of computation time, CPU and memory utilization. Indeed, the use of
our model has led to a gain of around 23.41% in execution time, 9.8% in CPU
utilization rate and 18.56% in memory utilization rate, compared to the mod-
el proposed in the literature which uses the threads.

Keywords
Coroutines, JPEG2000, Android, Thread, Asynctask

How to cite this paper: Saoungoumi-Sour-
pele, R., Nlong, J.M., Kamdjoug, J.-R.K. and
Yufui, G.V. (2020) Improve Image Decod-
ing in Lightweight Environment Using a
Coroutines Based Approach. Journal of Com-
puter and Communications, 8, 60-74.
https://doi.org/10.4236/jcc.2020.810007

Received: September 24, 2020
Accepted: October 27, 2020
Published: October 30, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution-NonCommercial
International License (CC BY-NC 4.0).
http://creativecommons.org/licenses/by-nc/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2020.810007
https://www.scirp.org/
https://doi.org/10.4236/jcc.2020.810007
http://creativecommons.org/licenses/by-nc/4.0/

R. Saoungoumi-Sourpele et al.

DOI: 10.4236/jcc.2020.810007 61 Journal of Computer and Communications

1. Introduction

The requirements for operating lightweight equipment in their diversity and
wireless networks with limited and dynamic bandwidth to view images can be
very diverse. This makes it necessary to set up an adaptation process for file en-
coding, delivery, reception and decoding. Optimization at each of these stages
has an impact on the entire process. As a still image format, JPEG is widely used
as the preferred image format on the Internet and on digital cameras. But the li-
mitations displayed by this compression standard were among the motivations
behind the development of the JPEG2000 system. But it is worth noting that this
new standard was not only intended to provide superior compression efficiency
compared to the basic JPEG system. Rather, it was intended to provide a new
image representation with a rich set of features, all supported in the same com-
pressed bitstream, that can accommodate a variety of existing and emerging
compression applications. In particular, Part 1 of the standard addresses some of
the shortcomings of basic JPEG by supporting the following feature set:
• Improved compression efficiency;
• Lossy or lossless compression;
• Multi-resolution representation;
• Built-in bitstream, allowing progressive decoding and scalability according to

the signal-to-noise ratio (SNR);
• Tiling of the image;
• Coding of regions of interest (ROI);
• Resistance to errors;
• Random access and processing of data flows;
• Improved performance in case of compression/decompression cycle;
• A more flexible file format.

Despite all these advantages, the JPEG 2000 algorithm requires a lot of re-
sources and calculations. The proportion of the requirements for each part is
70% for Embedded Block Coding with Optimized Truncation (EBCOT), 20% for
wavelet transformation and the remaining 10% for all the other calculations [1].
The first part of the implementation concerns the MQ-Decode procedure [2].
This procedure is the basic element of the entropy decoder. It is used one to sev-
eral times in each decoding pass. There is a lot of research into optimizing the
parameters that can speed up the COder-DECoder (CODEC) process while mi-
nimizing the use of resources in the execution environment. In general, authors
propose implementations based on Field Programmable Gate Arrays (FPGA)-
type circuits [3] [4], Very High Speed Integrated Circuit Hardware Description
Language (VHDL) [5] and Very-Large-Scale Integration (VLSI) [6] dedicated
solely to the JPEG2000 codec. As far as software implementations are concerned,
the standard’s reference applications1 are designed for heavy execution envi-
ronments with enough resources for the CODEC. Some attempts to import on

1JPEG 2000 Software https://jpeg.org/jpeg2000/software.html.

https://doi.org/10.4236/jcc.2020.810007
https://jpeg.org/jpeg2000/software.html

R. Saoungoumi-Sourpele et al.

DOI: 10.4236/jcc.2020.810007 62 Journal of Computer and Communications

light environments (Smartphones and tablets) on which the Android operating
system runs, recommend using parallel processes in order to speed up the most
time-consuming computing steps. In the latter case, common implementations
use threads in the form of asynchronous tasks. Threads implemented on Android
are inherited from the implementation made on the Linux kernel which was not
originally designed for equipment with limited resources.

In this paper we propose a model for decoding jpeg2000 on lightweight devic-
es running on the Android mobile operating system. This implementation uses
coroutines, which are a lightweight process model with reduced resource con-
sumption costs compared to conventional AsyncTask threadsets. The model mi-
nimizes decoding time while minimizing CPU and memory usage, resulting in a
fast and energetically economical decoded image.

The rest of the paper is organised as follows: Section 2 is devoted to a review
of JPEG2000; Section 3 is a review on coroutines; Section 4 presents our decod-
ing model which is available in several versions. This is followed by a presenta-
tion of the results and analysis; Section 5 closes the paper with the conclusion
and prospects for future work.

2. JPEG2000 Overview

The JPEG-2000 project was motivated by Ricoh’s submission of the CREW algo-
rithm [7] [8]. The fundamentals of a JPEG2000 encoder are shown in Figure 1.
These components include pre-processing, Discrete Wavelet Transform (DWT),
quantization, arithmetic coding (tier 1 coding) and bitstream organization (tier
2 coding). Each of these components is discussed in more detail below.

2.1. Preprocessing

The first step of the preprocessing consists in dividing the input image into rec-
tangular, non-overlapping tiles of equal size. Then, the unsigned sample values
in each component are level shifted (DC offset) by subtracting a fixed value of
2 1B − from each sample to make its value symmetrical around zero. Finally, the
level-shifted values can be subjected to a point intercomponent transformation
to decorrelate the color data.

2.2. Discrete Wavelet Transform (DWT)

The block DCT transformation in the basic JPEG has been replaced by full im-
age DWT [9] in JPEG2000. DWT decomposition provides a natural solution for
the multi-resolution requirement of the JPEG2000 standard. The lowest resolution

Figure 1. Fundamental elements of a JPEG2000 encoder.

https://doi.org/10.4236/jcc.2020.810007

R. Saoungoumi-Sourpele et al.

DOI: 10.4236/jcc.2020.810007 63 Journal of Computer and Communications

at which the image can be reconstructed is called zero resolution. For example,
referring to Figure 2, the 3LL sub-band would correspond to zero resolution for
a 3-level decomposition. For a decomposition at LN 2-levels, the image can be
reconstructed at 1LN + resolutions. In general, to reconstruct an image at r res-
olution (0r >), the sub-bands ()1LN r HL− + , ()1LN r LH− + and
()1LN r HH− + must be combined with the image at (r − 1) resolution. These
sub-bands are designated as belonging to the r resolution: Resolution zero in-
cludes only the LN LL band. If the sub-bands are encoded independently, the
image can be reconstructed at any resolution level by simply decoding the parts
of the code stream that contain the sub-bands corresponding to that resolution
and all previous resolutions. For example, referring to Figure 2, the image can
be reconstructed at resolution two by combining the resolution one image and
the three sub-bands labeled 2HL, 2LH and 2HH.

2.3. Quantization

It has been shown in [10] that the optimal R-D quantizer for a continuous signal
with a Laplacian probability density (such as DCT or wavelet coefficients) is a
uniform quantizer with a central dead zone [11]. The first part of the JPEG2000
standard adopted the dead zone with twice the step size due to its optimal inte-
grated structure. In short, this means that if a quantization index of bM bits
resulting from a step size of b∆ is transmitted progressively starting with the
most significant bit (MSB) and progressing to the least significant bit (LSB), the
resulting index after decoding only bN bits is identical to that obtained using a
similar quantizer with a step size of 2 b bM N

b
−∆ .

2.4. Entropy Coding

The quantization indices corresponding to the quantized wavelet coefficients in
each sub-band are entropy-coded to create the compressed bitstream. The choice

Figure 2. 2D wavelet decomposition at 3 levels.

2NL is the notation used in the JPEG2000 document to indicate the number of resolution levels, al-
though the L index can be somewhat confusing as it seems to indicate a variable.

https://doi.org/10.4236/jcc.2020.810007

R. Saoungoumi-Sourpele et al.

DOI: 10.4236/jcc.2020.810007 64 Journal of Computer and Communications

of the entropy encoder in JPEG2000 is motivated by several factors. The first is
the need to create an integrated bitstream, which is made possible by bit-plane
coding of the quantization indices. Bit-plane coding of the wavelet coefficients
has been used by several well-known integrated wavelet encoders such as Em-
bedded Zero-tree Wavelet (EZW) [12] and Set Partitioning in Hierarchical Trees
(SPIHT) [13]. However, these encoders use coding models that exploit the cor-
relation between sub-bands to improve coding efficiency. Unfortunately, this has
a negative impact on error resilience and severely limits the flexibility of an en-
coder to organize the bitstream in an arbitrary progression order. In JPEG2000,
each sub-band is encoded independently of the other sub-bands. In addition,
JPEG2000 uses a block coding paradigm in the wavelet domain as in the EBCOT
[14] integrated block coding algorithm, where each sub-band is divided into
small rectangular blocks, called code blocks, and each code block is coded inde-
pendently. The nominal dimensions of a code block are free parameters speci-
fied by the encoder but are subject to the following constraints: they must be an
integer power of two; the total number of coefficients in a code block may not
exceed 4096; and the height of the code block may not be less than four. The
quantized coefficients in a code block are bit-plane coded independently of all
other code blocks when creating an embedded bitstream. Instead of encoding
the entire bitplane in a single coding pass, each bitplane is encoded in three
passes of sub-bitplanes with the ability to truncate the bitstream at the end of
each coding pass. One of the main advantages of this approach is near-optimal
integration, where the information that results in the greatest reduction in dis-
tortion for the smallest increase in file size is encoded first. In addition, a large
number of potential truncation points facilitates an optimal rate control strategy
where a target bit rate is achieved by including coding passes that minimize total
distortion.

3. Overview of Coroutines

The idea of the coroutines goes back to the work of Erdwinn and Conway on a
tape-based Cobol compiler and its separability into modules [15]. Although the
original use case is no longer relevant, other use cases have emerged. Coroutines
have been studied many times, and initially appeared in languages such as Mod-
ula-2 [16], Simula [17] and BCPL [18]. A detailed classification of coroutines is
given by Moura and Ierusalimschy [19], as well as a formalization of asymmetric
coroutins by an operational semantics. Moura and Ierusalimschy observed that
stacked asymmetric first class coroutines have an expressive power equal to that
of point continuations, but did not study snapshots, which make coroutines
equivalent to complete continuations. Anton and Thiemann showed that it is
possible to derive type systems for symmetrical and asymmetrical coroutines
automatically by converting their reduction semantics into equivalent functional
implementations and then applying the existing type systems for programs with
continuations. James and Sabry identified the input and output types of corou-

https://doi.org/10.4236/jcc.2020.810007

R. Saoungoumi-Sourpele et al.

DOI: 10.4236/jcc.2020.810007 65 Journal of Computer and Communications

tines [20], where the output type corresponds to the output type described in
this paper. The input type assigns the past value to the coroutine when it is taken
over. As a design compromise, we chose not to have explicit input values in our
model. First, the input type increases the verbosity of the coroutine type, which
may have practical consequences. Second, as indicated in [21], the input type
can be simulated with the return type of another coroutine, which gives a writa-
ble location, and returns its value when taken back. Fischer et al. proposed a co-
routine based programming model for the Java programming language, as well
as the corresponding formal extension of Featherweight Java [22].

3.1. Coroutines and the Kotlin Language on Android

A coroutine is a simultaneity design model that you can use on Android to sim-
plify code that runs asynchronously. Coroutines were added to Kotlin in version
1.3 and are based on concepts established in other languages.

Features
The coroutine system is the solution that Google recommends for asynchronous
programming on Android. Among the remarkable features are the following:
• Light: You can run multiple coroutines on a single thread using the suspen-

sion bracket, which does not block the thread where the coroutine is run.
Suspension saves memory compared to blocking while supporting many si-
multaneous operations;

• Memory Leakage Reduction: Use structured concurrency to perform oper-
ations within a given scope;

• Integrated Cancellation Support: Undo propagates automatically through
the running coroutine hierarchy;

• Jetpack integration: Many Jetpack libraries include extensions that provide
full support for the routines. Some libraries also provide their own coroutine
scope that can be used for structured competition.

4. Optimization of the JPEG2000 Decoding Process on
Android

4.1. Model Statement

In this section we introduce our models for optimizing the decoding process. In
addition to using Threads to parallelize the execution of certain parts of the de-
coding that can be done, we use coroutines for the most resource-intensive
processes.

4.1.1. First Approach: A General Decoding Coroutine
The classical decoding model of jpeg2000 files proposed for android3 by Thales
Group4 implements a thread in addition to the main thread for the execution of
the different steps of the decoding process, which produces the representation
given in Figure 3. In the first approach of our model, we propose the integration

3JP2 for Android: https://github.com/gemalto/JP2ForAndroid.
4https://www.thalesgroup.com/en.

https://doi.org/10.4236/jcc.2020.810007
https://github.com/gemalto/JP2ForAndroid
https://www.thalesgroup.com/en

R. Saoungoumi-Sourpele et al.

DOI: 10.4236/jcc.2020.810007 66 Journal of Computer and Communications

of a coroutine in charge of managing all the decoding process. This choice was
made in order to demonstrate the efficiency of coroutines instead of the asyn-
chronous tasks classically used on Android implemented with threads. The mo-
tivation of the choice also comes from the fact that coroutines have a light thread
property. In a lightweight environment, execution optimization must take into

Figure 3. Classical decoding process of JPEG2000 on Android.

https://doi.org/10.4236/jcc.2020.810007

R. Saoungoumi-Sourpele et al.

DOI: 10.4236/jcc.2020.810007 67 Journal of Computer and Communications

account resources (CPU, memory, battery). The proposed model is shown in the
Figure 4. Given that the decoding process is computationally intensive, there-
fore, will mobilize a lot the process, we make the choice of a dispacher.Default().
The latter is adapted for this type of process.

Figure 4. Single coroutine decoding process of JPEG2000 on An-
droid.

https://doi.org/10.4236/jcc.2020.810007

R. Saoungoumi-Sourpele et al.

DOI: 10.4236/jcc.2020.810007 68 Journal of Computer and Communications

4.1.2. Second Approach: Micro Network of Coroutines
The entire JPEG 2000 algorithm requires a lot of resources and calculations. The
proportion of requirements for each part is 70% for EBCOT, 20% for wavelet
transformation and the remaining 10% for all the other calculations [1].

In this second approach, we propose the integration of coroutins in the de-
coding process at the block level as shown in Figure 5. This produces 4 coroutines,

Figure 5. Micro network coroutines decoding process of JPEG2000 on Android.

https://doi.org/10.4236/jcc.2020.810007

R. Saoungoumi-Sourpele et al.

DOI: 10.4236/jcc.2020.810007 69 Journal of Computer and Communications

one per decoding block. This approach can have a variant in 5 coroutines. This
is done by splitting coroutine 1 into 2 coroutines, respectively in charge of ex-
ecuting tier-2 and tier-1 decoding. This variant is illustrated in the Figure 6.

4.1.3. Third Approach: Macro Network of Coroutines
In this approach, we propose to keep without change, apart from the EBCOT
block, the whole system of the previous coroutine microarray. In EBCOT, which
consumes more than 70% of the global computation time, we integrate as many

Figure 6. Micro network coroutines decoding process of JPEG2000 on Android: small
zoom on EBCOT.

https://doi.org/10.4236/jcc.2020.810007

R. Saoungoumi-Sourpele et al.

DOI: 10.4236/jcc.2020.810007 70 Journal of Computer and Communications

coroutines as packets in Tier 2 and as many coroutines as code blocks in Tier 1.
Each coroutine in Tier 2 performs two tasks: packet decoding and arithmetic
decoding to produce the bit planes and contexts necessary for decoding the bit
planes in Tier 1. This model is illustrated by the flowchart in Figure 7.

Figure 7. Android JPEG2000 coroutine macro array decoding process on Android: large
zoom on EBCOT.

https://doi.org/10.4236/jcc.2020.810007

R. Saoungoumi-Sourpele et al.

DOI: 10.4236/jcc.2020.810007 71 Journal of Computer and Communications

4.2. Results and Discussion

Implementation environment: The implementation environment is Android
Studio on a machine with a Windows 10 operating system.

Execution environments: The tests were performed on a TECNO DP7CPRO
phone with 1Gb RAM, Quad-core processor, with Android 5.1. The Android
Studio profiler allowed us to retrieve information about the runtime environ-
ment.

Images and tests: We performed several decoding operations on the balloon
files in color and High Definition (2717 × 3701), grayscale lena with a resolution
of 512 × 512 and color lena with the same resolution.

Computation time: Figure 8 gives us the results in computing time for de-
coding and displaying “Balloon” and “Lena-grey” images. The result of this ex-
periment shows that the use of coroutines results in an acceleration of the de-
coding process. The saving in time is about 23.41% on average.

CPU utilization rate: Figure 9 gives us the CPU usage rates for decoding and
displaying “Balloon” and “Lena-grey” images in their entirety. An analysis of
two curves clearly shows the efficiency of the use of coroutine which consumes
less CPU resources to do the same work as with the “AsyncTask”. Given that

Figure 8. Execution time in milliseconds for decoding with AsyncTask and coroutines.
(a) Balloon.jp2 (resolution of 2717 × 3701); (b) Lena-grey.jp2 (resolution of 512 × 512).

Figure 9. CPU usage ratese (%) during decoding with AsyncTask and coroutines. (a)
Balloon.jp2 (resolution of 2717 × 3701); (b) Lena-grey.jp2 (resolution of 512 × 512.

https://doi.org/10.4236/jcc.2020.810007

R. Saoungoumi-Sourpele et al.

DOI: 10.4236/jcc.2020.810007 72 Journal of Computer and Communications

the use of the CPU has an impact on the reactivity of the entire system as well as
on energy consumption, we can say that the use of coroutine has a beneficial ef-
fect on the system. The average gain here is around 9.8%.

Memory space used: Figure 10 gives us the memory usage rates for decoding
and displaying “Balloon” and “Lena-grey” images in their entirety. This result
shows once again that coroutines use fewer resources than AsynTask. Here in
terms of memory occupied during the decoding operation, we see that the aver-
age gain is around 18.56%.

Discussion
The results we obtained and previously compared to the model integrating the
AsyncTask under Android show the better character of our model. These results,
obtained in an environment similar to the one presented in [23], which carries
out an integration test of the JPEG2000 encoder/decoder under Android in
terms of execution time, show that: for an image with a resolution of 512 × 512
(in this case that of LENA for its example and ours as well), we have an average
decoding time of 0.3s whereas in [23] the same image is decoded in 1s. We ob-
serve that our model obtains a time saving of around 70% compared to the result
of [23]. Still in the same vein, the gain in calculation time for an image with a
size of 1024 × 1024 is of the order of 24% (2.5s for [23] and 1.8s for our model),
still in favour of our model. As demonstrated by [23], the power of the CPUs has
a great influence on the speed of encoding and decoding images. We also know
that with the rapid development of mobile equipment (smartphones in particu-
lar), processors will become increasingly powerful. This increase in power will
therefore have a positive impact on image decoding time. This time must tend to
be less than 1/24th of a second (41.6 ms) to hope to see JPEG2000 adopted as a
still image form for videos with an isochronism of 24 frames per second. These
results are a contribution to the adoption of the JPEG2000 file format in limited
environments such as smartphones and tablets. This adoption will have a num-
ber of benefits, among which, the decrease in power consumption during the
image decoding process will have a positive impact on battery life. In addition,

Figure 10. Memory space consumed (in Mb) during decoding with AsyncTask and Co-
routines. (a) Balloon.jp2 (resolution of 2717 × 3701); (b) Lena-grey.jp2 (resolution of 512
× 512.

https://doi.org/10.4236/jcc.2020.810007

R. Saoungoumi-Sourpele et al.

DOI: 10.4236/jcc.2020.810007 73 Journal of Computer and Communications

the consumption of memory, which is also a critical resource in limited envi-
ronments, will be reduced.

5. Conclusion

In this paper, we have reviewed the process of encoding/decoding images in
JPEG2000 format, as well as the corountin-type processes which, according to
Google, perform better than Threads. We have performed decoding tests using .jp2
files on Android with Threads and coroutines. The results obtained show us that
coroutines run faster than threads, while consuming less processor resources.
The tests carried out made use of a coroutine that managed the whole decoding
process. In perspective, we believe that the implementation of a network of co-
routines, each of which has to execute a part of the decoding process, may have
better results.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Nicholson, D., Martinez, P., Iregui, M. and Corral, J. (2000) Evaluation de la com-

plexité algorithmique de JPEG2000. Proceedings CORESA, Poitiers.

[2] Fages, J.-M. (2000) JPEG2000: Principes, implémentation et évaluation. PhD Thesis,
Cnam.

[3] Iskander, I.F., Al-Rawi, D.R. and Al-Tikriti, M.N. (2006) Design and Implementa-
tion of JPEG 2000 Image Compression Using FPGA. Journal of Engineering and
Sustainable Development, 10, 151-162.

[4] Descampe, A., Devaux, F., Rouvroy, G., Macq, B. and Legat, J.-D. (2004) An Effi-
cient FPGA Implementation of a Flexible JPEG2000 Decoder for Digital Cinema.
2004 12th IEEE European Signal Processing Conference, Vienna, 6-10 September
2004, 2019-2022. https://doi.org/10.1109/MELCON.2004.1348272

[5] Wagh, K.H., Dakhole, P.K. and Vinod, G.A. (2008) Design & Implementation of
JPEG2000 Encoder Using VHDL. Proceedings of the World Congress on Engineer-
ing, Vol. 1, 2-4.

[6] Huang, Q., Zhou, R. and Hong, Z. (2004) Low Memory and Low Complexity VLSI
Implementation of JPEG2000 Codec. IEEE Transactions on Consumer Electronics,
50, 638-646. https://doi.org/10.1109/TCE.2004.1309443

[7] Zandi, A., Allen, J.D., Schwartz, E.L. and Boliek, M. (1995) Crew: Compression with
Reversible Embedded Wavelets. Proceedings DCC’95 Data Compression Conference,
Snowbird, 212-221. https://doi.org/10.1109/DCC.1995.515511

[8] Boliek, M.P., Gormisch, M.J., Schwartz, E.L. and Keith, A.F. (1998) Decoding Com-
pression with Reversible Embedded Wavelets (Crew) Code-Streams. Journal of
Electronic Imaging, 7, 402-410. https://doi.org/10.1117/1.482653

[9] Lian, C.-J., Chen, K.-F., Chen, H.-H. and Chen, L.-G. (2001) Lifting Based Discrete
Wavelet Transform Architecture for JPEG2000. The 2001 IEEE International Sym-
posium on Circuits and Systems, Vol. 2, 445-448.

[10] Sullivan, G.J. (1996) Efficient Scalar Quantization of Exponential and Laplacian

https://doi.org/10.4236/jcc.2020.810007
https://doi.org/10.1109/MELCON.2004.1348272
https://doi.org/10.1109/TCE.2004.1309443
https://doi.org/10.1109/DCC.1995.515511
https://doi.org/10.1117/1.482653

R. Saoungoumi-Sourpele et al.

DOI: 10.4236/jcc.2020.810007 74 Journal of Computer and Communications

Random Variables. IEEE Transactions on Information Theory, 42, 1365-1374.
https://doi.org/10.1109/18.532878

[11] Christopoulos, C., Skodras, A. and Ebrahimi, T. (2000) The JPEG2000 Still Image
Coding System: An Overview. IEEE Transactions on Consumer Electronics, 46, 1103-
1127. https://doi.org/10.1109/30.920468

[12] Shapiro, J.M. (1993) Embedded Image Coding Using Zerotrees of Wavelet Coeffi-
cients. IEEE Transactions on Signal Processing, 41, 3445-3462.
https://doi.org/10.1109/78.258085

[13] Said, A. and Pearlman, W.A. (1996) A New, Fast, and Efficient Image Codec Based
on Set Partitioning in Hierarchical Trees. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 6, 243-250. https://doi.org/10.1109/76.499834

[14] Taubman, D. (2000) High Performance Scalable Image Compression with EBCOT.
IEEE Transactions on Image Processing, 9, 1158-1170.
https://doi.org/10.1109/83.847830

[15] Conway, M.E. (1963) Design of a Separable Transition-Diagram Compiler. Com-
munications of the ACM, 6, 396-408. https://doi.org/10.1145/366663.366704

[16] Wirth, N. (1985) Programming in Modula-2 (Texts and Monographs in Computer
Science). Springer-Verlag, Berlin.

[17] Nygaard, K. and Dahl, O.-J. (1978) The Development of the Simula Languages. In:
History of Programming Languages, ACM, New York, 439-480.
https://doi.org/10.1145/800025.1198392

[18] Moody, K. and Richards, M. (1980) A Coroutine Mechanism for BCPL. Software:
Practice and Experience, 10, 765-771. https://doi.org/10.1002/spe.4380101002

[19] Moura, A.L.D. and Ierusalimschy, R. (2009) Revisiting Coroutines. ACM Transac-
tions on Programming Languages and Systems, 31, 1-31.
https://doi.org/10.1145/1462166.1462167

[20] James, R.P. and Sabry, A. (2011) Yield: Mainstream Delimited Continuations. First
International Workshop on the Theory and Practice of Delimited Continuations,
Vol. 95, 96.

[21] Prokopec, A. and Liu, F. (2018) Theory and Practice of Coroutines with Snapshots.
32nd European Conference on Object-Oriented Programming, Dagstuhl, 3:1-3:32.
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.3

[22] Fischer, J., Majumdar, R. and Millstein, T. (2007) Tasks: Language Support for
Event-Driven Programming. Proceedings of the 2007 ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-Based Program Manipulation, 134-143.
https://doi.org/10.1145/1244381.1244403

[23] Wang, H.-Y. and You, X.-D. (2012) Study of JPEG2000 on Android. 2012 Interna-
tional Conference on Wavelet Active Media Technology and Information Processing,
57-61.

https://doi.org/10.4236/jcc.2020.810007
https://doi.org/10.1109/18.532878
https://doi.org/10.1109/30.920468
https://doi.org/10.1109/78.258085
https://doi.org/10.1109/76.499834
https://doi.org/10.1109/83.847830
https://doi.org/10.1145/366663.366704
https://doi.org/10.1145/800025.1198392
https://doi.org/10.1002/spe.4380101002
https://doi.org/10.1145/1462166.1462167
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.3
https://doi.org/10.1145/1244381.1244403

	Improve Image Decoding in Lightweight Environment Using a Coroutines Based Approach
	Abstract
	Keywords
	1. Introduction
	2. JPEG2000 Overview
	2.1. Preprocessing
	2.2. Discrete Wavelet Transform (DWT)
	2.3. Quantization
	2.4. Entropy Coding

	3. Overview of Coroutines
	3.1. Coroutines and the Kotlin Language on Android
	Features

	4. Optimization of the JPEG2000 Decoding Process on Android
	4.1. Model Statement
	4.1.1. First Approach: A General Decoding Coroutine
	4.1.2. Second Approach: Micro Network of Coroutines
	4.1.3. Third Approach: Macro Network of Coroutines

	4.2. Results and Discussion
	Discussion

	5. Conclusion
	Conflicts of Interest
	References

