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Abstract

The sparse matrix vector multiplication (SpMV) is inevitable in almost all
kinds of scientific computation, such as iterative methods for solving linear
systems and eigenvalue problems. With the emergence and development of
Graphics Processing Units (GPUs), high efficient formats for SpMV should
be constructed. The performance of SpMV is mainly determinted by the sto-
rage format for sparse matrix. Based on the idea of JAD format, this paper
improved the ELLPACK-R format, reduced the waiting time between differ-
ent threads in a warp, and the speed up achieved about 1.5 in our experimen-
tal results. Compared with other formats, such as CSR, ELL, BiELL and so on,
our format performance of SpMV is optimal over 70 percent of the test ma-
trix. We proposed a method based on parameters to analyze the performance
impact on different formats. In addition, a formula was constructed to count
the computation and the number of iterations.
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1. Introduction

The Sparse matrix vector multiplication (SpMV) is a key operation in for a va-
riety of computation science, such as in many iterative methods for solving li-
near systems ( AX =D ), image processing, simulation and so on. It is very im-

portant to improving the performance of the SpMV.

GPU including many Stream Processors, and many threads can simulta-

neously calculate multiple groups of data, with high computational power and
very high memory bandwidth. It has high parallelism. GPU has many different

types of memory, such as shared memory, texture memory, global memory, local
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memory and so on. Different memory access speed is also different, our compu-
ting will be greatly improved if we reasonably use them. The GPU architecture
and CUDA programming model can see in [1] [2] [3]. Dense operations are
regular and included by CUBLAS library [4]. However, the matrices obtained in
engineering that needs to be actually calculated are mostly sparse and have no
special format. The dimensions of the matrix are large (e.g. >10°), with non-zero
elements components is low (e.g. <5%). In order to improve the computational
efficiency, it is important to make changes to find a suitable matrix storage for-
mat and calculation method.

There are many storage formats related to sparse matrix, such as CSR, ELL,
HYB, BiELL and so on. In [5] we can see ELL performance for the structured
matrices because it has continuous access to memory. The ELLPACK-R format
presented in [6] is optimized to reduce the waiting time between different
threads. The jagged diagonals (JAD) format was used to implement the SpMV
Kernel in [7] to achieve a better performance. The BiELL format in [8] uses the
bisection technique to improve the performance of ELL format. You can see
more different formats in [9] [10] [11] [12].

This paper is an optimization of ELLPACK-R format, we call it PELLR. The
remainder of the paper is organized as follows. Section 2 gives some existing
sparse matrix storage formats. Related works and our new PELLR format are
described in Section 3, and Section 4 presents some numerical results. The con-

clusions are stated in Section 5.

2. Basic Formats to Sparse Matrices

In this section, some basic sparse matrix storage formats are described. For a
clearer understanding, let’s use a simple model. A sparse matrix A is represented
by Figure 1. The white box represents zero elements, and the blue boxes

represent non-zero elements.

2.1. COO Format

Coordinate (COO) storage format is the most direct and simple scheme for a

Matrix

Figure 1. A sparse matrix: A [6].
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sparse matrix [13]. Let nnz be the total number of non-zero entries of the ma-

trix. Then COO can be represented by three one dimension arrays with the size

of nnz.

® Realarray A[] contains the non-zero entries row by row in any order.

® Integer array J[] is made of the corresponding column indices for each
non-zero entry in A[]

® Integer array |[] is made of the corresponding row indices for each
non-zero entry in A[]

The calculation of SpMV based on COO format is not suitable for GPU
structure when the matrix is stored in disorder. In this case, the multi-threads
will access data and write vector in discontinuous way. On the other hand, this
format will occupy more memory than that of CSR format, which will be intro-

duced in next subsection.

2.2. CSR Format

The compressed sparse row (CSR) format is the most practical format to store

sparse matrices [13]. It can also represent as three one dimension arrays. Let NV

and nnz be the number of rows and the total number of non-zeros of the

sparse matrix, respectively.

® Realarray A[] ofsize of nnz contains the non-zero entries row by row.

® Integer array J[] of size of nnz is made of the corresponding column in-
dices for each non-zero entry in A[ ].

® Integer array |[] is made of the start pointer of each row in A[] and
J[] . The size of I[] is N+1, I[N +1]=nnz+1 . The number of
non-zeros of the ith row can be expressed as | [i+1]—I[i].

There are two basic ways to implement SpMV on GPU based on CSR format:
CSR scalar (CSRS) and CSR vector (CSRV). CSRS calculates one row by one
thread. Since the non-zero values and column indices are stored row by row in
A[] and J[], so all threads access data in discontinuous way. This is why its
performance is poor on GPUs.

The CSRV format is proposed in [5] and modified in [7] to realize the memo-
ry access contiguously. Unlike CSRS, it uses a half-warp (generally, 16 threads)
to compute each row. All of the threads in a half-warp access the memory con-
tiguously, so the chance of coalescing will be higher. Each thread of a half-warp
compute partial result and stored in share memory and it’s need to reduce the

partial result to sum up when all calculation finished [8].

2.3. ELL-Like Formats
2.3.1. ELL Format

Ellpack format (ELL, in brief) is well suited to vector architectures [5]. For a
N xM matrix with a maximum of K non-zeros every row, the ELL format
stores the non-zero elements in each row to the left side in a dense N xK ar-

ray. The corresponding column indices are store in another two dimension ar-

ray.
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® Real two dimension array A[] contain the non-zeros entries.
® Integer two dimension array J[] is made of the column indices for each
non-zero entry in A[]

Each row of ELL format with the number of non-zeros less than K needs
to be padded with zeros. For ease of the calculation on GPUs, it is a common
way to write a two dimension array as a one dimensional array, column by
column. Then A[i + jx N] represents element of the ith row and the j+1th
(j=0,1---,K—-1) column.

ELL can be considered as an approach to fit a sparse matrix in a regular data
structure similar to a dense matrix. When the numbers of non-zeros in each row
are almost equal, the zeros need to be padded will be less, which leads to a high
performance of the implementation of SpMV on GPUs. On the other hand,
when difference of the number of non-zeros between rows is large, more zeros

need to be padded, which will decrease the performance.

2.3.2. ELLR Format

ELLPACK-R format (ELLR, in brief) made some changes and optimizations on

ELL format. It consists of three one dimension arrays, A[ ] N | [ ] ,and rl [ ] .

® A[] and J[] are same as ELL format.

® Integer array rl[] contains the numbers of non-zeros per row. The size of
rl[] is N(ie the number of rows of the matrix).

These three arrays are represented in Figure 2. This format have some advan-
tage, which can be seen in [6] for more detail. Some of its characters are listed in
the following:

1) The coalesced global memory access, thanks to the column-major ordering
used to store the matrix elements [6].

2) Non-synchronized execution between different blocks of threads.

3) The reduction of the waiting time or unbalance between threads of one
warp [6]. Figure 3 give an example of ELLR, which assume a warp consists 8
threads. The darker areas are the non-zero elements that need to be computed.
The lighter areas are the waiting times. The number of iterations needed in a
warp equals to the largest number of non-zeros in rows (e.g., the first warp needs

4 iterations in Figure 3). It reduces many iterations compare with ELL format.

ELL-R

=
[a—
—
—
—_
=
—
[—
5 5 5 T 5 5

Figure 2. ELLR format.
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| ELLR
Matrix Histogram

Figure 3. ELLR format for every warp (8 threads) [6].

4) Homogeneous computing within the threads in the warps.

2.3.3. BiELL Format

BiELL format is a bisection ELL format [8]. Based on ELL format, it sort the

rows in a warp according to the numbers of non-zeros in each row, then group

the rows in a warp by bisection technique. The detailed process can be seen in

[8]. BiELL format consists of four arrays, A[ ] N | [ ] , | [ ] and perm[ ] .

® Real array A[] and integer array J[] store the non-zeros and corres-
ponding column indices column by column and warp by warp.

® Integer array |[] contain the starting pointers of the first element in each
group.

® Integer array perm|] records the order of rows.

A simple example is given in Figure 4, which assume there is 4 threads in a
warp [8].

The main advantage of the BiELL format is that it balances the workload of
different threads in a warp, so reduces the waiting time. By using bisection tech-
nique, the non-zero elements in a group are equally allocated to different
threads. This reduces the number of zeros to be padded and the number of itera-

tions.

2.3.4. HYB Format

The hybrid format (HYB) is a combination of the ELL and COO formats. The
purpose of the HYB is to store the non-zeros of a given number per row in the
ELL data structure and the remaining entries in the COO format [5]. How to se-
lect the storage portion of the ELL is a difficult point in the HYB format. One
way profitable to do this is to add the Kth column to ELL structure if at least one
third of the matrix rows contain K (or more) non-zeros. The other way is to se-

lect the average number of non-zeros of each row to storage in ELL format.

2.3.5.JAD and BiJAD Format
The jagged diagonal (JAD) format [7] [14] sorts the rows based on the numbers
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group 0 group 1

Figure 4. A simple example of BiELL.

of non-zeros of each row, then stored the non-zeros in jagged diagonals. It con-

sists of four arrays, A[], J[], I[] and perm[].

® Real array A[] and integer array J[] store the non-zeros and its corres-
ponding column indices jagged diagonal by jagged diagonal.

® Integer array |[] contains the starting position of the first element in each
jagged diagonals.

® Integer array perm[] records the order of rows.

JAD reduces the number of zeros to be padded, which leads to a better per-
formance than the ELL format.

The bisection JAD (BiJAD) format is a bisection of JAD, which is an opti-
mized and improved version of JAD on GPUs. BiELL sorts each row in a warp,
while BiJAD sorts all the rows. The BiJAD format may decrease the padding ze-
ros compared with BiELL format; however, when the results are permuted back

to the origin order, the pattern memory accessed may not be coalescent [8].

3. Our New Format: PELLR

In order to optimizing the SpMV on GPUs, we propose a new format, PELLR
format. It is based on the permutation of row for ELLR format.

PELLR format sorts the rows based on the number of non-zeros of each row,
then stored the non-zeros in ELL format. It consists of four one dimension ar-
rays, A[], J[], rI[] and perm[].
® A[], J[] and rI[] are same as ELLR format.
® Integer array perm|] records the order of rows.

The size of rl[] is N (ie. the number of rows of the matrix), which purposes
to easy theory analysis. In the actual calculation, we can take the size of rl[] as
N, (much less than M, see in follows), which reduce the need of memory.

PELLR mainly optimizes the third character of ELLR format. For a sparse ma-
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trix of size N xM , the difference of non-zeros of each row may be very large.

GPU calculation is based on a warp as a whole. It’s going to happen frequently

that a row consist of little non-zeros (e.g., <5), while another row consist many

non-zeros (e.g., >20) belong to a warp. This creates extra unnecessary computa-

tional workload. Our idea is to sort the whole row according to the number of

non-zeros in each row, so the rows with more non-zero elements would be ar-

ranged together, and the rows with fewer elements would be grouped together.

This will reduce unnecessary calculations and obtain an optimized version of

storage format. An example is given in Figure 5.

Now, we give some analysis and compare of ELLR and PELLR. In order to

better describe how to sum the total work amount, we use the following denotes:

nnz : the total number of non-zeros.

N: the number of rows.

rl : an array for the number of non-zeros of each row.
warp : has 32 threads, warp=32.

N, : {MJ , the number of warp for the matrix. L J means to take
warp

an integer.

N, : the total number of iterations.

N, : the number of computations.

b : an array of size of warp contains the number of non-zero elements in

each row in the ith warp. In the final warp, we take zero for the row that
doesn’t exist. We have the following relation
b =rl[warpx(i—1)+1,--,warpxi], i=1:--,N

w*

Then we can deduce that the number of iterations and work amount are:

Nier = 2 max{b; [1],---,b; [32]} (1)

N, =_Nz“”[w_”pbi[j]+"§m(q[j]—1)]=§warp(zam—l) @

For a matrix, we can use these two expressions to obtain the amount of com-

putation and the number of iterations. For the ELLR and PELLR formats, it can

ELLR PELLR
Matrix Histogram Histogram P
— +
Figure 5. PELLR format (P is the array perm[ ]).
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be judged from equations of Equation (1) and Equation (2) that the total num-
ber of iterations has changed, but the amount of calculation has not changed.
For the matrix given in Figure 5, N, =4, we have

By e =[2,3,3,4,4,4,2,4], By penr = [7,4,4,4,4,4,3,3],

B, eir = [2,3,2,3,2,3,2,2], By penr = [3,3,3,3,3,3,3,3],

by =[2.2,7,3,3.33,3], by, =[2.2,2,2,2,2,2,2],
by enr =[4,3,0,0,0,0,0,0], b, . =[2,2,0,0,0,0,0,0].
So
Niter,ellr 218’ Niter,pellr :14’ Np,ellr = Np,pellr .

We reduce the number of iterations by a new permutation of the rows. In this
example, PELLR only needs 14 iterations, less than 18 iterations needed by
ELLR.

4. Numerical Result

Our experiments are run on a personal computer equipped with NVIDIA Qua-
dro P600; the operating system is a 64-bit Linux with CUDA 10.0 driver. The
SDK and CUDA Toolkit, CUSPARSE [15], are used for programming. All the
programs are based on CUDA-ITSOL [16] released by Li and Saad.

All the test matrices in our experiments are real square matrices collected
from Matrix Market and the university of Florida sparse matrix collection. In-
formation about the matrix is listed in Table 1. The parameters used in the table
as follows:

N: the matrix row size.

nnz : the non-elements number for matrix.

ave : the average of non-zeros per row, ave =nnz/N .

o : the standard deviation of the number of non-zeros elements per row.
max—min : is the difference between the maximum and minimum of non-zeros
elements per row.

Performance in GFlops is calculated as 2 x nnz/T , where T'is the wall time of
SpMV calculated on the GPU. In order to improve the performance of SpMV,
we used texture memory to store the vector x for the SpMV kernels. This mem-
ory is bound to the global memory and plays the role of a cache level within the
memory hierarchy [3].

In Figure 6, the experimental results of ELLR and PELLR formats are pre-
sented. The ordinate is the ratio of the performance of PELLR format against
that of ELLR format. The abscissa is arranged based on o of the matrices (and
the axes in the following figures are arranged in the same way). It can be seen
that the performance of PELLR format is better than that of ELLR format for all
matrices. The benefits are significant for matrices with large parameters of
a(> 10), which means that the difference of the number of non-zero between
rows is large, such as matrix bcsstk24, cavity25 and e40r5000. In this case,
PELLR format is faster than ELLR format about 1.5 times. On the other hand,
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Table 1. Test matrices.

Matrix N nnz ave o max-min
rdb2048l1 2048 12,032 2.9 0.34 2
dw2048 2048 10,114 4.9 0.51 5
dw8192 8192 41,746 5.1 0.61 5
qh1484 1484 6110 4.1 1.60 11
mhd4800b 4800 27,250 5.7 2.00 9
s3dkt3m2 90,449 1,921,955 21.2 2.39 38
s3dkq4m?2 90,449 2,455,670 27.1 2.67 44
sherman3 5005 20,033 4.0 2.70 6
gematl2 4929 33,044 6.7 3.00 42
Insp3937 3937 25,407 6.5 3.10 10
mhd3200a 3200 68,026 21.0 5.80 32
utm5940 5940 83,842 14.0 6.30 29
bcsstk24 3562 159,910 45.0 11.00 42
msc23052 23,052 1,154,814 50.1 11.60 166
bcesstk36 23,052 1,143,140 49.6 12.20 170
e20r4000 4241 131,430 31.0 15.00 54
e40r5000 17,281 553,562 32.0 16.00 54
cavity25 4562 131,735 29.0 17.00 61
boneSol 127,224 6,715,152 52.8 17.64 69
memplus 17,758 126,150 7.1 22.00 572
4 4.4752 ﬁ
- pellr]
4 ol
35— —
3 2.9821 -
25 2.4089 2.3846 I
oL _
1.6427 1.6968 1.6936; 1.6779
15 1.5027 14621 | o0 e
o192 1007141079 10436 1.0148 10536 1.0105 1%
0.5 —
0 | | | ! | | | ! | | | | | |
0‘79@ “&9@ 4&@% Q\@v v‘b@c && & &5" & s 039@ & «\&Q& S ’ &“QQ (QQQ 4\\@: @60\ @Q‘g
kS S S X 5\\6 ,;bb ébsk ﬁ\ § \(@Q & & & &%o & &Q Q)b@ & & &

Figure 6. The performance comparison of ELLR and PELLR.
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for matrices with small o(<3), PELLR format has no obvious advantage to
ELLR format, such as the matrix dw2048, qgh1484 and s3dkt3m2.

The matrices memplus and Insp3937 are special. The structure of memplus
is shown in Figure 7, which the dots in different colour represent non-zero ele-
ments. It has a o of 22, but the ratio of performance is only has 1.1. Another
fact for it is avg =7.1 is small and max—min=572 is really large, which
means only few rows has many non-zeros entries in the matrix. The Figure 7
also proves this view of point. We can observe that there are many dots focus on
the diagonals, the upper and the left sides of the matrix. So this matrix has only
few rows in the front which have a lot of non-zero elements. So advantages of per-
mutate are not distinct. The matrix Insp3937 has ¢ =3.1 and max—min=10,
but the ratio of performance reaches 4.5. This is because the rows which have
almost equal length are scattered, permutation groups the together and the
number of iterations is reduced dramatically.

From a large amount of experiments, we can make a general remark that
PELLR format is faster than ELLR for almost all matrices, and when the matrix
has the parameters of o >10, ave>20 and max—min>10, PELLR format is
faster than ELLR format about a factor of 1.5.

We have compared the performance PELLR format with HYB format, the re-
sults are give in Figure 8. The program for HYB format we used is from
CUSPARSE library [15]. We see again that the PELLR format has a significant
advantage over HYB format. But in this case, the trend of ratio is different. With
the increase of o, the advantage of PELLR format trends to decrease. For ma-
trices with small o <10, the average factor of speedup is approximately 4. This
is because HYB format use a factor of 1/3 (default in CUSPARSE) to separate the
ELL and COO. What the defect of HYB in this case is comes from COO. While
for large o >10, the ratio is approximately 1.6, which shows that the effect of
COO in this case is not so apparent.

Some matrices have special results due to their structures. msc23052 and
bcesstk36 have large max—min (166 and 170, respectively), the ratio is only 1.2.
memplus (see Figure 7) has max—min=572, the ratio of 0.7 shows that
PELLR is slower than HYB and the advantage of permutation is overwhelmed.

In Figure 9, we present the experimental results for PELLR and BiELL for-
mats. The PELLR format still has advantages for most cases (17 vs. 3). It is worth

Figure 7. The matrix structure of memplus.
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Figure 9. The performance of different formats. PELLR and BiELL.

to note matrices Insp3937 and mhd4800b. Their o and max—min are 3.1

and 2, and 10 and 9, respectively. Since they are relatively small, the number of
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iterations per warp for BiELL format will not reduce very much, and the time of
the judgment statement (in SpMV kernel on GPU) is not covered, so PELLR has
obvious advantage in this cases. For matrix memplus, which structure is seen in
Figure 7, the first warp of BiELL will reduce many iterations, so the ratio is
0.8172.

In Figure 10, PELLR and BiJAD are compared. Both formats sort all the rows
in a whole. So the performances of two formats are nearest. The difference is
BiJAD divides each warp into six groups to reduces the number of iterations,
while PELLR format only relies on rl[]. So it is important that how many itera-
tions are reduced in the warp in BiJAD SpMV kernel. If the number of iterations
reduced is less, the effect of the judgment statement may be not covered and the
benefits obtained may be less. Therefore, for these matrices, the experimental
results depend on the characteristics of each matrix. For our 20 test matrices,
PELLR format is advantageous in 15 cases (75%), while the highest ratio is only
1.3.

Figure 11 shows a comparison of PELLR, HYB, BiELL, and BiJAD formats.
We found that the PELLR, BiELL, and BiJAD formats are better than the HYB
format in most cases, especially when parameter o is relatively small (<10).
For our test matrices, we find the performance of HYB format is superior to that
of other formats only in the case of memplus.

Figure 12 gives the comparison of more formats, which are CSRV, JAD, ELL,
ELLR, PELLR, HYB and cuCSR. The cuCSR format is CSR format provided by
CUSPARSE. What we can see from Figure 12 is listed as follows:

1.1822

1.1322

1.079,

1.078

1.1491

T
=*-bijad
+ pellr

1.3283

1.2947
1.26
1.2026

1.1848 1.1938

1.101
1.0704 1.075
1.047

LIEETE | L
0.98261
]O.9696 0.97661

0.92372

Figure 10. The performance of different formats: PELLR and BiJAD.
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Figure 12. The performance of different formats. For every matrix, formats listed from left to right are CSRV, JAD, ELL,
ELLR, PELLR, HYB, cuCSR.

1) Overall, the PELLR format is optimal in most cases. And then the JAD and
ELLR formats also turned out pretty well, the CSRV format is relatively poor.

DOI: 10.4236/jcc.2020.84004 56 Journal of Computer and Communications


https://doi.org/10.4236/jcc.2020.84004

Z.Q.Wang, T. X. Gu

2) The performance of CSRV and cuCSR is sensitive to the ave. In general,
CSRYV is poorer than cuCSR in most cases. CSRV will performance well when
ave islarge (>16), such as boneSo1l and bcsstk24.

3) HYB is not as good as we thought for our test matrices. But it can be found
good performance when ave and o are bigger, such as bcsstk36 and
msc23052, and its performance is best for matrix memplus.

4) For almost matrices, PELLR and JAD are most outstanding, which in turn
they are the best case.

5) All statements in the previous experiments is obtained again.

5. Conclusions

We proposed a permutated ELLR format by sorting the rows based on the num-
ber of non-zeros (or the length) of each row. This preprocessing makes the rows
of almost equal length together. So the number of the iterations is reduced and
the performance of SpMV can be improved, the speed up achieved about 1.5 in
our experimental results. Furthermore, we deduced the formulation of the
number of iterations and the work amount, which can be used to evaluate the
performance of SpMV. In our experiments results, the performance of PELLR
format is best in most cases. The performance comparison of different matrix
formats is given, and some special cases are explained.

The PELLR format improves ELLR format in performance of SpMV, but it
also adds increased storage memory. This format stores two more arrays than
ELL format, rl [] and perm[ ] . In the future, we want to reduce the memory
of PELLR format and how to choose an optimal storage format for A sparse ma-

trix by the matrix parameters and Equation (1).
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