
Journal of Computer and Communications, 2020, 8, 1-19
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2020.83001 Mar. 5, 2020 1 Journal of Computer and Communications

An Improvement of Data Cleaning Method
for Grain Big Data Processing Using Task
Merging

Feiyu Lian1,2*, Maixia Fu2, Xingang Ju1

1Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education,
Zhengzhou, China
2College of Information Science and Technology, Henan University of Technology, Zhengzhou, China

Abstract
Data quality has exerted important influence over the application of grain big
data, so data cleaning is a necessary and important work. In MapReduce
frame, parallel technique is often used to execute data cleaning in high scala-
bility mode, but due to the lack of effective design, there are amounts of
computing redundancy in the process of data cleaning, which results in lower
performance. In this research, we found that some tasks often are carried out
multiple times on same input files, or require same operation results in the
process of data cleaning. For this problem, we proposed a new optimization
technique that is based on task merge. By merging simple or redundancy
computations on same input files, the number of the loop computation in
MapReduce can be reduced greatly. The experiment shows, by this means, the
overall system runtime is significantly reduced, which proves that the process
of data cleaning is optimized. In this paper, we optimized several modules of
data cleaning such as entity identification, inconsistent data restoration, and
missing value filling. Experimental results show that the proposed method in
this paper can increase efficiency for grain big data cleaning.

Keywords
Grain Big Data, Data Cleaning, Task Merging, Hadoop, MapReduce

1. Introduction

In recent years, with the applications of Internet of Things in agricultural field,
grain big data have been occurring gradually. In the field of big data processing,
MapReduce is a famous programming frame [1], which has already been applied

How to cite this paper: Lian, F.Y., Fu,
M.X. and Ju, X.G. (2020) An Improvement
of Data Cleaning Method for Grain Big
Data Processing Using Task Merging. Journal
of Computer and Communications, 8, 1-19.
https://doi.org/10.4236/jcc.2020.83001

Received: January 31, 2020
Accepted: March 2, 2020
Published: March 5, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

 Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2020.83001
https://www.scirp.org/
https://doi.org/10.4236/jcc.2020.83001
http://creativecommons.org/licenses/by/4.0/

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 2 Journal of Computer and Communications

in Google, Facebook, Tencent, Alibaba and other large internet companies.
However, its current status of only keeping a watchful eye on data analysis, not
data itself, may probably lead to grave consequence. In the food industry of
China, old or incomplete data in grain situation database reach 13.6% - 30% [2].
Data quality problem may probably make research or analysis meaningless, even
lead to disastrous consequence. For example, due to the decision-making mis-
takes originated from the grain data error, macro-control of grain market failed
in 2008 in China [3]. Therefore, for big data analysis and mining, data quality
plays a key role, and data cleaning is a powerful tool to guarantee data quality.

At present, data cleaning for big data, including data consistency [4] [5] [6],
entity identification [7] [8] [9] [10], data preprocessing [11] [12] and so on, has
been researched by many scholars [13] [14] [15] [16]. However, few researchers
have studied optimization of data cleaning on MapReduce frame [17]. Based on
the conception of the error distribution law and position accuracy of the GPS
data, Yang et al. proposed a data cleaning method for this kind of spatial big data
using movement consistency. GPS data are cleaned based on the similarities of
GPS points and the movement consistency model of the sub-trajectory [4]. Tang
tries to provide an overview of recent work in different aspects of data cleaning:
error detection methods, data repairing algorithms, and a generalized data
cleaning system [13]. Yan et al. proposed an iterative data cleaning method
based on time sequence analysis because the power device status information
can be made equivalent to the multivariate time sequence of each state [18].
Gueta et al. applied User-level data cleaning to biodiversity databases, and pre-
sented a new framework to quantify the effect of data cleaning on SDMs [19]. Xu
et al. proposed an incorrect data detection method based on an improved local
outlier factor (LOF), and used a simulation of vibration data generated by a de-
fective rolling element bearing to verify the effectiveness of the proposed method
[20]. All the above scholars studied big data cleaning methods in specific fields,
but there is still a lack of general methods for big data cleaning. Nowadays, al-
most all of data analysis tasks can be finished using MapReduce, but at the same
time, a large number of redundancies, with the explosion of data, are also gener-
ated. In China, due to the lack of top-level design and related standards, the
grain informatization process initiated by the government has produced a large
number of dirty data, which has brought negative impact on macro deci-
sion-making. It is necessary to generate a better method to specifically clean
grain big data. In this paper, for grain big data, we proposed a new optimized
method based on task merge to reduce these redundancies.

A traditional big data cleaning system is shown in Figure 1. It runs on

Figure 1. The structure chart of the function modules for traditional big data cleaning system.

https://doi.org/10.4236/jcc.2020.83001

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 3 Journal of Computer and Communications

Hadoop platform, and deals with different kinds of data with different levels of
quality in a flexible way. This system consists of several modules, and each mod-
ule deals with a type of data quality. The interaction module provides an input
interface for files or data that need to be cleaned. The display module gives a
comparison between dirty data and cleaned data. Entity identification and true
value discovery module are used to reduce redundancy. Inconsistency detection
module is used to recover data, and data filling module tests missing data and fi-
nishes data filling. Users may select required modules to deal with data quality
problem that they encountered.

The above data cleaning system often requires multiple MapReduce opera-
tions. For a complicated problem, we need to divide it into many simple tasks,
and each task is executed via one round of MapReduce operation. In the majori-
ty of cases, this division is excessive, which leads to superfluous MapReduce op-
erations. In this paper, we merged some tasks to optimize the MapReduce oper-
ations for the above big data cleaning system. To be specific, the optimized tech-
nique proposed in this paper merged redundancy computations or simple com-
putations from the same files to reduce cycle number of MapReduce. Thus, sys-
tem running time reduced greatly, and system performance has also been im-
proved obviously.

2. Optimization for Missing Data Filling
2.1. Traditional Missing Data Filling

The automatic data collection produces amount of missing data. Normally,
Naive Bayes Classifier (NBC) is applied in resolving missing data. In the tradi-
tional data cleaning system, the missing data filling module roughly contains
three parts: parameter estimation module, linking module and filling module
[21]. The main task of parameter estimation module is to compute the probabil-
ity of each attribute value, and takes the value with the highest probability as
filling value. Specially, when the sample space is large enough, the probability is
replaced approximatively by the frequency that the attribute value appears in.
The linking module associates attribute value with its probability. The input data
of linking module are the output of parameter estimation module as original da-
ta to be filled, and the output is a file that contains the relationship between
missing value and its probability. Filling module is executed in the manner of a
cycle of MapReduce. First, a linking computation is executed between the output
of linking module and the original input data via an offset as key value. Its Map
stage is similar to linking module, and its Reduce stage uses bayes formula to se-
lect a maximum probability value as a filling value. In this paper, we only consi-
dered discrete missing data filling.

2.2. Analysis and Optimization for the Missing Data Filling Module

We first have analyzed the data stream and relationship between modules in the
above data filling framework. The whole filling process needs two kinds of con-

https://doi.org/10.4236/jcc.2020.83001

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 4 Journal of Computer and Communications

ditional probabilities (CP): 1) Parameter estimation module uses tuples that
don’t contain missing data in its input data to compute a conditional probability
(entitled CP1) of an attribute value that needs to be filled; 2) Another condition-
al probability (entitled CP2), which is one group of special values, is used in the
process of filling value. The relationship between the two CPx is determined by
the values of dependency attributes. The group of special values is associated
with the tuples that need to be filled in original data via the offsets of the tuples.
Therefore, the linking module is required between parameter estimation module
and filling module.

After observing the data stream in above system carefully, we found that both
map input and map output contain the offset of the tuples in parameter estima-
tion, but the output of the Reduce only contains attribute value and CP2, which
leads to it is necessary to add a linking computing to link CP2 with the offset of
the tuples to be filled.

Aiming at the above circumstance, we proposed an optimized scheme that
merged the tasks in parameter estimation module and linking module. Firstly, in
parameter estimation module, we associated the exporting conditional probabil-
ity with the offset of the tuples that contain missing data. Its algorithm is as
follow Algorithm 1.

In the above code segment, value is the attribute value of each tuple that con-
tains missing value, and offset is the skewing quantity of original record to
original file, probable_value.txt is the text file that contains all possible value for
missing data. The Reduce process is shown in Figure 2.

For example, Table 1 is the dataset that contains missing data, and the missing

Algorithm 1. Parameter estimation algorithm.

Input: data file containing missing value and possible missing value

Output: conditional probability

Map (Object, DataText, DataText, DataText)

Input: key :=offset, value:=tuple

 FOR each (key, value) DO

 IF missing_value exists in tuple THEN

 FOR each value in probable_value.txt DO

 FOR each property in tuple DO

 output_key := probable_value

 output_value := “#” + offset + property_ID + property

Reduce (DataText, DataText, DataText, DataText)

 FOR each value in value_table DO

 IF “#” exists in value THEN

 APPEND property_ID + property on likelihood

 else

 compute conditional probability of each property_ID + property

 IF property_ID + property exists in likelihood THEN

 output_key := offset

 output_value := “#” + list of probable value + conditional probability

https://doi.org/10.4236/jcc.2020.83001

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 5 Journal of Computer and Communications

data probably may be V1 or V2. The former two tuples don’t contain missing
data, so we can split them only according to their attributes. The third tuple
contains missing value, so we should split it according to each probable value.
The outputs of Map stage are shown in Table 2. In Reduce stage, firstly, the pre-
fixes of all input data are checked. Then, some calculations on contingent

Figure 2. The reduce flow chart for parameter estimation.

Table 1. The data including missing-value.

offset Field 1 Field 2 Field 3

0 V1 V2 V1

S1 V2 V1 V2

S2 ? V1 V1

Table 2. The map output for parameter evaluation.

Key Value

tuple_value/probable_value Prefix + offset + property ID + property

V1 0, 1, V2

V2 0, 2, V1

V2 S1, 1, V1

V2 S1, 2, V2

V1 #S2, 1, V1

V2 #S2, 1, V1

V1 #S2, 2, V1

V2 #S2, 2, V1

https://doi.org/10.4236/jcc.2020.83001

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 6 Journal of Computer and Communications

Table 3. The Reduce output for parameter evaluation.

Key Value

117 #V2 0.5, #V1 0.5

probabilities are executed if missing values are contained in the input data, oth-
erwise, the input data are entered into linklihood that is used to determining
whether contingent probabilities should be output. And at last, we selected the
contingent probabilities that attribute values are in likelihood to output results,
and the output results are shown in Table 3.

In the parameter estimation module, the algorithm complexity on Map stage is
()O m NX+ , where m is the number of tuples that don’t contain missing values,

N is the number of tuples that contain missing values, and X is the number of
probable missing values. Normally, due to N m≤ , () ()()1O m NX O X m+ = +
is true. Because X is smaller m greatly, the algorithm complexity is ()O m ,
and its complexity on Reduce stage is also ()O m . Therefore, the algorithm
complexity of the parameter estimation module is ()O m .

Although the algorithm complexity of the parameter estimation module al-
ways is ()O m , both the MapReduce cycle number and IO number in the miss-
ing value filling module reduce, as shown in the above example, from 3 to 2,
which indicates obvious optimization effect.

3. Optimization of Entity Identification

Entity identification is to recognize the form of an entity. For same entities, the
data from different sources produce different presentations, even probably pro-
duce some errors in data storage or transformation. In MapReduce framework,
although there are many researches on entity identification [22] [23], these re-
searches basically solved the identification of anonymous entities, but few of
them can solve problems on the identification of homonymous entities faultless-
ly [24] [25]. In this paper, we tried to solve the two problems simultaneously.

We found that both basic cluster module and entity identification module re-
peatedly use preprocessing result M times (M is the number of attributes that
each tuple contains), and the subsequent entity identification module also works
for single attribute. If we consider the preprocessing module and the entity iden-
tification module as a whole model, we need to scan input files many times, and
can only use the part of input data, which results in the low data utilization rate.
In addition, system requires extra resource for each task allocation. In view of
this, we need a scheme that can process all of attributes for each tuple in one
MapReduce cycle.

For this purpose, we proposed following optimization idea for entity identifi-
cation module: firstly, use basic cluster module to process all the attributes syn-
chronously, and then produce an attribute index table for all attribute values.
Thus, we can merge these separated preprocessing procedures together. The de-
tailed scheme is described as follows.

https://doi.org/10.4236/jcc.2020.83001

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 7 Journal of Computer and Communications

3.1. Basic Cluster Module

This module doesn’t output the ith attribute value, but output all attribute values.
Considering that the entity IDs in attribute index table are from different attributes,
we added a prefix to the keys to translate “attribute value” into “attribute sequence *
attribute value”. Because MapReduce classifies attributes according to keys, the
entities with same attribute values will be in same attribute table. On Reduce stage,
we added attribute sequence to entities as the prefix of entity IDs. The following is
the optimized basic cluster algorithm (Algorithm 2).

In the above algorithm, the entity ID is the code of each tuple. We set an
unique entity ID for each tuple (data-in-line) in preprocessing stage. In addition,
property ID is the sequence code of an property in tuple.

The following is an illustration of an optimized algorithm flow. Table 4 shows
the data that need to be recognized. In Map stage, we split all tuples according to
their properties and then output results, as shown in Table 5. The entities with
same property values will be input into the same Reduce, and output the prop-
erty index table, as shown in (01 * 01, <02 * 01, 02 * 03>, <03 * 01, 03 * 02>, 01 *
02, 02 * 02, 01 * 03, 03 * 03).

For the above basic cluster module, the algorithm complexity in Map stage is

()()2O m x x+ , where x is the number of the attributes. Because x normally
is a very small constant, the algorithm complexity is around ()O m . In Reduce
stage, there are no any changes except an additional attribute ID, so the algo-
rithm complexity is still ()O m . To sum up, the algorithm complexity of the
whole basic cluster module is ()O m .

Algorithm 2. Basic cluster algorithm.

Input: relationship table

Output: attribute index table

Map (LongWritable, DataText, DataText, DataText)

Input: key:=entity ID, value:=tuple

FOR each (key, value) DO

 FOR each property DO

 output_key := property ID + “*” + property value

 output_value := entity ID

Reduce (DataText, DataText, NullWritable, DataText)

FOR each value in value_table

 entity ID:= property ID + “*” + entity ID

 output_key:= null

 output_value:= all of entity ID in value_table

Table 4. Entity identification data.

Entity ID Wheat variety Year Production place

01 Yunong 416 2017 Henan province

02 Zhongmai 895 2016 Henan province

03 Ganmai 16 2017 Hebei province

https://doi.org/10.4236/jcc.2020.83001

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 8 Journal of Computer and Communications

Table 5. Output of basic cluster map.

property ID + “*” + property value entity ID

01*Yunong416 01

02*2017 01

03*Henan province 01

01*Zhongmai895 02

02*2016 02

03*Henan province 02

01*ganmai16 03

02*2017 03

03*Hebei province 03

3.2. Entity Identification Module

Because the above improvement on the entity cluster module guarantees that the
entities with same attribute values belong to a same attribute index table, the al-
gorithm of entity identification module doesn’t need to be changed. Thus, the
time complexity of its algorithm is still.

Because we only performed optimum operation for partial data on Hadoop,
we regarded entity partition module as constant, and the time complexity didn’t
be changed. Before optimization, the cycle times of MapReduce is 1 + M (1 + 4)
= 5M + 1, and after optimization, it is change to be 1 + 1 + 4 = 6, so speed-up
rate reaches (5M + 1)/6. Normally, due to M > 1, speed-up rate is bigger than 1,
and with the increase of M, the speed-up effect is more evident, and at the same
time, the times of IO also reduced from 5M + 1 to 6, which reduced system up-
time for IO. In addition, due to the reduction of cycles on MapReduce, the time
for task scheduling and the used resource are also reduced.

In general, theoretically, the scheme proposed in this paper can provide ob-
vious optimization result.

4. Reparation Optimization to Inconsistent Data

In the real application or database, there are amounts of inconsistent data due to
various reasons. In the proposed system, we defined an integrity constraint ac-
cording to conditional function dependency principle in theory of data dependency,
and used the integrity constraint to repair inconsistent data. The purpose of this
paper is to improve the performance of the reparation module to inconsistence
data. As for how to guarantee that the repair process is correct, it is depended
on conditional functions. The detailed explanations can be seen in reference [5]
[6].

4.1. Optimization for Inconsistent Data Reparation

The main steps of the inconsistent data reparation module are as follows [26]:
(1) The data files and the CFDs (centralized file directory system) files are input

https://doi.org/10.4236/jcc.2020.83001

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 9 Journal of Computer and Communications

to the system to be executed for preprocessing, then are transformed to a proper
format, and are checked for subsequent processing; (2) check and repair the
outputs from preprocessing and get primary reparation results; (3) check pri-
mary reparation results, determine whether introduce new inconsistent. If pro-
duce new inconsistent, execute step (1) again, otherwise continue to execute step
(3). To avoid trapping into endless loop, an upper limit for these steps is neces-
sary; (4) Process the reparation results, and change data format to original for-
mat to be used by another system normally.

4.2. Analysis and Optimization for Inconsistent Data Reparation

A main shortcoming of the inconsistent data reparation module is to divide a
task that can be finished by only one cycle of MapReduce into several tasks,
which results in the reduction of system performance. Therefore, we merged
multiple tasks into one task for the optimization under the condition of not
changing algorithm complexity.

1) Preprocessing Module
The function of the preprocessing module is only to setup index for input da-

ta, and doesn’t involve data decomposition and merge. We may use a map func-
tion to realize this process, and the algorithm is shown as follow Algorithm 3.

Obviously, the algorithm complexity of this module is ()O m .
2) Detection and Reparation Module
Detection and reparation of constant violation can be finished only by one

cycle of MapReduce. Because the Map stage dispenses one tuple N copies (N is
the number of constant violations), and although N value is not big and has al-
most no influence to algorithm complexity of the reduce stage, it still can enlarge
middle data quantity N times, which causes large load to communication. We
found that we can repair these constant violations when calculating their sug-
gested values, so it is not necessary to separate seeking process and reparation
process. Therefore, we proposed an optima scheme that finished the process of
the constant violation detection and reparation using one map function.

After finishing constant violation reparation via one map function, the data
are guided directly to variable reparation module. The formats of both the input
files are same, especially, if there are no constant violations in original data, both
the input files are same entirely. Based on this viewpoint, we proposed an opti-
mized scheme that merges the constant violation reparation and the variable

Algorithm 3. Preprocessing algorithm.

Input: dirty data files

Output: preprocessing results

Map (Object, Data_Text, NullWritable, Data_Text)

Input: key = offset, value = tuple

 FOR each (key, value) DO

 output_key := null

 output_value := key +value

https://doi.org/10.4236/jcc.2020.83001

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 10 Journal of Computer and Communications

violation reparation together. In this scheme, we arranged the constant violation
reparation on the front of the first MapReduce process, and make its output re-
sults to be used to variable violation directly in Map function. The algorithm is
as follow Algorithm 4.

Where offset is the index of the tuples, and fixFlag is the reparation flag that
indicates whether or not we need the reparation, and “0” indicates we need the
reparation due to a violation, “1” indicates we needn’t the reparation. cfdseq is a
cfd serial number of a tuple with violation, ptseq is a serial number of the tuple
in mode table, and propseq is an attribute serial number of the inconsistent data
of the tuples, and the output_value is the reparation of the attribute.

The computation complexity of Algorithm 4 is ()O m , and the flow chart of
the algorithm is shown in Figure 3.

In terms of time complexity, the algorithm did not change the computational
complexity of each module and each MapReduce within each module before and
after optimization. In terms of MapReduce rounds and IO times, the MapRe-
duce rounds of the system changed from 1 + 1 + 2 + 1 + 1 + 1 = 7 before opti-
mization to 1 + 2 + 1 + 1 = 5 after optimization. From the perspective of Ma-
pReduce rounds alone, the acceleration ratio of the system is 7/5 = 1.4. In addi-
tion, the optimization of the system also makes the MapReduce of the prepro-
cessing module become a map, which will correspondingly reduce the running
time of the system. With the reduction of MapReduce rounds, the IO times of
the system are correspondingly reduced, which also reduces the IO burden of
the system.

5. Experimental Results

The computer cluster that used to do experiments was composed of ten nodes,
including one task-tracker (name node) and nine job-trackers (data node). The

Algorithm 4. The Map algorithm in the first cycle of MapReduce for inconsistent data
detection and reparation.

Input: the preprocessing results

Output: the output of Map in the first cycle of MapReduce for variable violation

Input: key=offset, value=tuple

Map (Object, Data_Text, Data_Text, Data_Text, Data-Text)

 FOR each cfd r = (R:X→Y, tp) DO

 IF tuple[X] = tp[X] and tuple[Y] ≠tp[Y] THEN

 tuple[Y] = tp[Y]

 FOR each cfd r = (R:X→Y,Tp) DO

 IF fixFlag THEN

 output_key := (cfdseq, ptseq, propseq,1)

 output_value := (offset, tuple)

 FOR tuples not match cfd with varialbles

 DO

 output_key := (cfdseq, ptseq, propseq, 0)

 output_value := (offset, tuple)

https://doi.org/10.4236/jcc.2020.83001

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 11 Journal of Computer and Communications

Figure 3. The flow of Algorithm 4.

hardware configuration of each node was as follows: Intel i7 7700k processor, 4.2
GHz main frequency, 8 G memory, and 1TB hard disk. The whole system was
developed using java on Eclipse environment, and run on Hadoop 3.0 platform
based on Centos 7.5.

5.1. Experiment for Entity Identification Optimization

Considering the optimization effectiveness for dataset scale, we used the real da-
taset that is from National Warehouse Grain Condition Monitoring Project
(WGCM). It is a grain storage information depository in China. We selected
three attributes, including warehouse temperature, grain temperature, and
warehouse humidity, and five data scales, including 11.7 M, 45.3 M, 70.2 M,
115.6 M and 150.9 M as our experimental environment. The attributes of data
are allocated weight values as 0.9, 0.1 and 0.1. The experimental results are
shown in Figure 4.

Figure 4 shows the time consuming on different scale dataset using Naïve,
BlockSplit, PairRange that used in Ref. [22], and the proposed method in this
paper based on tasks merge.

Following the increase of dataset scale, both the unoptimized system and the
optimized system increase their run-time, but the run-time ratio of the unopti-
mized system to optimized system is about 2.3 due to the only three attributes
that were used in this experiment for each data. Based on the analysis to
optimization effect in section 2.2, the theoretical ration value is (5 * 3 + 1)/6 =
2.7, which is in accordance with experimental results. Because the entity identi-
fication based on BlockSplit and PairRange is more complicated than the me-
thod based on tasks merge, their run-times are longer than that of the method
that was proposed in this paper. In summary, this experiment illustrated the
good expandability of the optimization scheme.

https://doi.org/10.4236/jcc.2020.83001

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 12 Journal of Computer and Communications

1) Influence of Parallelization Level to Optimization Effectiveness
Considering the influence of Reduce number in cluster to optimization re-

sults, we used the real WGCM dataset as experimental data. We selected three
attributes of the experimental data that are titled warehouse temperature, grain
temperature, and warehouse humidity to construct an experimental dataset with
100,000 records. We set weight values for each attribute 0.9, 0.1 and 0.1 respec-
tively, and set Reduce number 2, 4, 6, 8 and 10 respectively. As shown in Figure
5, the optimization effectiveness of the proposed method is obvious under the
different parallelization levels.

From Figure 5, we can see that, following the increase of parallelization de-
gree, system uptime increases. The main reason for this phenomenon is that the
data size for experiment is too small to provide benefits. However, system still
reaches 2.3 speed-up ratio under different parallelization modes, which indicates
the optimization result is in line with forecast.

2) Influence of Parallelization Level to Optimization Effectiveness
In this experiment, we studied the influence of feature number of the input

Figure 4. The influence of dataset scale to optimization results.

Figure 5. The influence of Reduce number to optimization effectiveness.

https://doi.org/10.4236/jcc.2020.83001

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 13 Journal of Computer and Communications

tuples on optimization effectiveness. The experimental results are shown in Fig-
ure 6. When dealing with the same scale records, the optimization effectiveness
got better and better with the increase of the feature number. From Figure 6, we
can see that, the optimization results are the worst, even are lower than the
un-optimized when processing only one record, but the optimization results be-
came better after increasing feature number. The reason that caused the above
experimental results was that the optimized scheme generated more middle data
than non-optimized scheme, and was more complicated than the non-optimized
scheme. Because the purpose of the optimized scheme proposed in this paper
was to utilize the input data adequately when dealing with multiple attributes,
the optimized scheme presented more advantages than non-optimized scheme
with the increase of the attributes.

5.2. Optimization Experiments for Inconsistent Data Reparation

We used a real dataset that is from Zhengzhou grain trade market in China,
which is named ZZGR, and an artificial dataset that generated from Transaction
Processing Performance Council (TPC-H) to verify the operative mode of the
system in real environment. We did an experiment for speed-up ratio verifica-
tion on the real dataset, and at the same time, we also did an experiment for ex-
pansibility and parallelism verification on the artificial dataset.

1) Speed-up Ratio Experiment
In this experiment, six tuples without missing values were selected from the

ZZGR dataset and were put into some errors intentionally to violate several re-
straints. The experiment conditions and results are shown in Table 6. The expe-
rimental results show that there is prominent speed-up effectiveness on the real
dataset. The optimization scheme provided actual 1.3 speed-up ratio and less
than 1.4 speed-up ratio in theory (see Algorithm 4).

2) Expansibility Experiment
The aim of this experiment was to verify the same effectiveness on different

scale dataset. The experiment dataset is composed of six attributes from

Figure 6. The influence of attribute number to optimization effectiveness.

https://doi.org/10.4236/jcc.2020.83001

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 14 Journal of Computer and Communications

Table 6. Speed-up ratio experiment on the ZZGR dataset.

Items Data

Data source ZZGR

Record number 50000

cfd number 3

tp number 6

Reduce number 2

Run time before optimization 212

Run time after optimization 166

Speed-up ratio 1.28

Figure 7. Expansibility experiment.

lineitem.tbl that was generated by TPC-H, and CFDs are composed of one cfd
including three lps. The experimental results that are shown in Figure 7 indicate
that the optimization effectiveness gets better with the increase of dataset scale.
Thus it can be seen that our optimization scheme is extensible easily.

From Figure 7, we can see that the uptime of the non-optimized system in-
crease with the enlargement of the dataset, and the uptime of the optimized sys-
tem also increase but the slope is lower than the former. Compared to the for-
mer, the speed-up ratio of the optimized system improved from 1.6 to 2.2. All
modules are in overloaded works before optimization, but the optimized system
reduces the burdens of various modules except the modules of data inconsisten-
cy test and reparation. In addition, we can also see that the non-optimized sys-
tem firstly enters full load status with the enlargement of the dataset compared
to the optimized system, as shown in Figure 7.

3) Parallelism Experiment
To verify the influence of parallelism to optimization effectiveness, this expe-

riment used six attributes from lineitem.tbl that was generated from TPC-H to

https://doi.org/10.4236/jcc.2020.83001

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 15 Journal of Computer and Communications

form dataset. CFDs were composed of one cfd including three tp samples, as
shown in Figure 8.

From Figure 8, we can see that the system speed-up ratio reached up to 2.3
under the low degree of parallelism with 2 reduces, then with the increase of
degree of parallelism, the system speed-up ratio reduces. In addition, for the
non-optimized system, the uptime become shorter with the increase of the de-
gree of parallelism, but the uptime of optimized system remains unchanged. The
reason why the above phenomenon generates is that the non-optimized system
has the weak processing capacity. We may only add the degree of parallelism to
improve processing capacity, which means the system uptime becomes shorter
with the increase of the degree of parallelism. But for the optimized system, due
to the big handling capacity, it always is in the underloading status when
processing the same data size, which means the advantages are not obvious when
increasing the degree of parallelism.

5.3. Optimization Experiment for Missing Value Filling

In this experiment, the used data are from the real dataset entitled ZZGR and the
artificial dataset that generated from TPC-H. To verify the operation status in
real environment for the optimization system, we used the two datasets to verify
the impact of missing rate on optimization result on the ZZGR dataset, and to
verify expansibility and parallelism on the artificial dataset.

1) Impact of Miss Rate on Optimization Effectiveness
We have also studied the impacts of various miss rates on optimization re-

sults. The data for the experiments were generated by emptying some data in
used dataset based on certain proportion. In this experiment, we selected eight
discrete features and missing features with six values. The experimental results
are shown in Figure 9. From Figure 9, we can figure out that the speed-up ratio
stabilizes at 1.5 roughly, which matches theoretical value of 3/2 in this module,
under the miss rates that are shown in Figure 9.

2) Verification Test for Expansibility
In this experiment, we selected six features from lineitem.tbl that is generated

Figure 8. Parallelism experiment.

https://doi.org/10.4236/jcc.2020.83001

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 16 Journal of Computer and Communications

Figure 9. The impact of miss rate on optimization results.

Figure 10. Verification test for expansibility.

from TPC-H to generated dataset. The experimental results are shown in Figure
10. From Figure 10, we can see that the system uptime increases with the en-
largement of the dataset, but the speed-up ratio stays around 1.5, which coin-
cides with the theoretical value of this module.

3) Verification Test for Parallelism
This experiment was designed to test the optimization effectiveness of the

system under the different parallelism degrees. In this experiment, we used
TPC-H to produce a data table entitled lineitem.tbl, including six attributes and
1,000,000 tuples. We randomly emptied 5% of the data in first column of the ta-
ble and recorded the optimization results under different parallelism degrees.
The experimental results are shown in Figure 11.

On the provided dataset, the operating efficiency of the non-optimized system
and the optimized system are not to become better with the increase of paral-
lelism degree yet. This is because for the given scale of dataset, the most appro-
priate number of Reduce is determinate, and only increasing parallelism degree
will bring about more spending on task allocation for the system. In any case,

https://doi.org/10.4236/jcc.2020.83001

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 17 Journal of Computer and Communications

Figure 11. The impact of different numbers of Reduce on optimization results.

the optimization effectiveness is obvious under the different parallelism degrees.

6. Conclusion

Although we have acquired many achievements on study of Hadoop, most of the
softwares based on MapReduce programming frame are inefficient due to the
lack of the deep understanding of MapReduce. Therefore, we proposed a set of
optimization methods for MapReduce programming frame in this paper, and
the test for these methods passed as expected on massive data cleaning system.
We only changed a little to the original system using these methods, and hardly
changed its original complexity. The optimization objects are simply obtained by
only reducing the cycle numbers of MapReduce and IO numbers, which indi-
cates its simplification and practicability. In the future works, we will apply these
methods to more systems based on MapReduce 3, and other MapReduce alter-
natives, like Spark, and do a more deep analysis to find the disadvantages of
these methods to improve their performances.

Acknowledgements

This work was supported by Key scientific research projects of institutions of
higher learning (18A51003), Henan, China.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Chen, C.H., Lin, J.W. and Kuo, S.Y. (2015) MapReduce Scheduling for Dead-

line-Constrained Jobs in Heterogeneous Cloud Computing Systems. IEEE Transac-
tions on Cloud Computing, 6, 127-140. https://doi.org/10.1109/TCC.2015.2474403

[2] Wang, J.G. (2007) Ideas about Improving Foodstuff Statistic. Journal of Zhejiang
Business Technology Institute, 1, 21-23. (In Chinese)

[3] Cheng, G.Q. and Zhu, M.D. (2013) The Situation and Policy Framework of Chinese

https://doi.org/10.4236/jcc.2020.83001
https://doi.org/10.1109/TCC.2015.2474403

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 18 Journal of Computer and Communications

Grain Macro-Control. Reform, 1, 18-34. (In Chinese)

[4] Yang, X., Tang, L., Zang, X. and Li, Q. (2018) A Data Cleaning Method for Big
Trace Data Using Movement Consistency. Sensors, 3, 824-825.
https://doi.org/10.3390/s18030824

[5] Fan, W.F., Li, J.Z., Ma, S. and Tang, N. (2011) Interaction between Record Match-
ing and Data Repairing. Proceedings of the ACM SIGMOD International Confe-
rence on Management of Data, Athens, 12-16 June 2011, 469-480.
https://doi.org/10.1145/1989323.1989373

[6] Fan, W.F., Geerts, F., Tang, N. and Yu, W.Y. (2013) Inferring Data Currency and
Consistency for Conflict Resolution. Proceedings of the IEEE 29th International
Conference on Data Engineering, Brisbane, April 2013, 470-481.
https://doi.org/10.1109/ICDE.2013.6544848

[7] Mittal, D., Pilli, E.S. and Gupta, M. (2017) Efficient Entity Resolution Using Mul-
tiple Blocking Keys for Bibliographic Dataset. Proceedings of the 2017 International
Conference on Intelligent Communication and Computational Techniques, Jaipur,
22-23 December 2017, 108-113. https://doi.org/10.1109/INTELCCT.2017.8324029

[8] Mestre, D.G., Pires, C.E.S. and Nascimento, D.C. (2017) An Efficient Spark-Based
Adaptive Windowing for Entity Matching. Journal of Systems & Software, 128,
1-10. https://doi.org/10.1016/j.jss.2017.03.003

[9] Wang, D.X., Liu, X., Luo, H.Z. and Fan, J.P. (2015) A Novel Framework for Seman-
tic Entity Identification and Relationship Integration in Large Scale Text Data. Fu-
ture Generation Computer Systems, 64, 198-210.
https://doi.org/10.1016/j.future.2015.08.003

[10] Ran, H., Wang, H.Z., Zhu, R., Li, J.Z. and Gao, H. (2013) Map-Reduce Based Entity
Identification in Big Data. Journal of Computer Research & Development, 50,
170-179. (In Chinese)

[11] He, Q., Tan, Q., Ma, X., et al. (2010) The High-Activity Parallel Implementation of
Data Preprocessing Based on MapReduce. Proceedings of the International Confe-
rence on Rough Sets and Knowledge Technology, Beijing, 15-17 October 2010,
646-654. https://doi.org/10.1007/978-3-642-16248-0_88

[12] Rodrigues, M., Santos, M.Y. and Bernardino, J. (2019) Big Data Processing Tools:
An Experimental Performance Evaluation. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 9, e1297. https://doi.org/10.1002/widm.1297

[13] Nan, T. (2014) Big Data Cleaning. In: Chen, L., Jia, Y., Sellis, T. and Liu, G., Eds.,
Web Technologies and Applications, Lecture Notes in Computer Science, Volume
8709, Springer International Publishing, Berlin, 13-24.
https://doi.org/10.1007/978-3-319-11116-2_2

[14] Uno, T., Maegawa, T., Nakahara, H. and Hamuro, Y. (2017) Micro-Clustering by
Data Polishing. Proceedings of the 2017 IEEE International Conference on Big Da-
ta, Boston, 11-14 December 2017, 4546-4554.
https://doi.org/10.1109/BigData.2017.8258024

[15] Kiyoshi, M. and Shigeki, H. (2004) ICT Workers and Professional Spirit in the
E-Business Era. Journal of Electronic Science and Technology of China, 3, 108-113.
(In Chinese)

[16] Xue, C.J. (2019) Guest Editorial Special Issue on Emerging Technologies for Big
Data Processing. Journal of Electronic Science and Technology, 1, 3-4. (In Chinese)

[17] Zhang, F., Xue, H.F., Xu, D.S., et al. (2013) Big Data Cleaning Algorithms in Cloud
Computing. International Journal of Online Engineering, 3, 77-81.
https://doi.org/10.3991/ijoe.v9i3.2765

https://doi.org/10.4236/jcc.2020.83001
https://doi.org/10.3390/s18030824
https://doi.org/10.1145/1989323.1989373
https://doi.org/10.1109/ICDE.2013.6544848
https://doi.org/10.1109/INTELCCT.2017.8324029
https://doi.org/10.1016/j.jss.2017.03.003
https://doi.org/10.1016/j.future.2015.08.003
https://doi.org/10.1007/978-3-642-16248-0_88
https://doi.org/10.1002/widm.1297
https://doi.org/10.1007/978-3-319-11116-2_2
https://doi.org/10.1109/BigData.2017.8258024
https://doi.org/10.3991/ijoe.v9i3.2765

F. Y. Lian et al.

DOI: 10.4236/jcc.2020.83001 19 Journal of Computer and Communications

[18] Yan, Y., Sheng, G., Chen, Y., et al. (2015) Cleaning Method for Big Data of Power
Transmission and Transformation Equipment State Based on Time Sequence Anal-
ysis. Automation of Electric Power Systems, 7, 138-144.

[19] Gueta, T. and Carmel, Y. (2016) Quantifying the Value of User-Level Data Cleaning
for Big Data: A Case Study Using Mammal Distribution Models. Ecological Infor-
matics, 34, 139-145. https://doi.org/10.1016/j.ecoinf.2016.06.001

[20] Xu, X., Lei, Y. and Li, Z. (2019) An Incorrect Data Detection Method for Big Data
Cleaning of Machinery Condition Monitoring. IEEE Transactions on Industrial
Electronics, 67, 2326-2336. https://doi.org/10.1109/TIE.2019.2903774

[21] Sun, J., Li, J., Gao, H. and Wang, H. (2018) Truth Discovery on Inconsistent Rela-
tional Data. Tsinghua Science & Technology, 3, 288-302. (In Chinese)
https://doi.org/10.26599/TST.2018.9010004

[22] Jin, C., Chen, J. and Liu, H. (2017) MapReduce-Based Entity Matching with Mul-
tiple Blocking Functions. Frontiers of Computer Science, 11, 895-911.
https://doi.org/10.1007/s11704-016-5346-4

[23] Altowim, Y. and Mehrotra, S. (2017) Parallel Progressive Approach to Entity Reso-
lution Using MapReduce. Proceedings of the 2017 IEEE 33rd International Confe-
rence on Data Engineering, San Diego, 19-22 April 2017, 909-920.
https://doi.org/10.1109/ICDE.2017.139

[24] Xie, H., Lu, X., Tang, Z., et al. (2016) Detection of Entity Mixture in Knowledge
Bases Using Hierarchical Clustering. Proceedings of the National CCF Conference
on Natural Language Processing and Chinese Computing, Kunming, 2-6 December
2016, 288-299. https://doi.org/10.1007/978-3-319-50496-4_24

[25] Pouriyeh, S. (2017) Es-Ida: Entity Summarization Using Knowledge-Based Topic
Modeling. Proceedings of the Eighth International Joint Conference on Natural
Language Processing, Taipei, November 2017, 605-614.

[26] Zhang, A.Z., Men, X.Y., Wang, H.Z., Li, J.Z. and Gao, H. (2015) Hadoop-Based In-
consistence Detection and Reparation Algorithms for Big Data. Journal of Frontiers
of Computer Science & Technology, 9, 1044-1055. (In Chinese)

https://doi.org/10.4236/jcc.2020.83001
https://doi.org/10.1016/j.ecoinf.2016.06.001
https://doi.org/10.1109/TIE.2019.2903774
https://doi.org/10.26599/TST.2018.9010004
https://doi.org/10.1007/s11704-016-5346-4
https://doi.org/10.1109/ICDE.2017.139
https://doi.org/10.1007/978-3-319-50496-4_24

	An Improvement of Data Cleaning Method for Grain Big Data Processing Using Task Merging
	Abstract
	Keywords
	1. Introduction
	2. Optimization for Missing Data Filling
	2.1. Traditional Missing Data Filling
	2.2. Analysis and Optimization for the Missing Data Filling Module

	3. Optimization of Entity Identification
	3.1. Basic Cluster Module
	3.2. Entity Identification Module

	4. Reparation Optimization to Inconsistent Data
	4.1. Optimization for Inconsistent Data Reparation
	4.2. Analysis and Optimization for Inconsistent Data Reparation

	5. Experimental Results
	5.1. Experiment for Entity Identification Optimization
	5.2. Optimization Experiments for Inconsistent Data Reparation
	5.3. Optimization Experiment for Missing Value Filling

	6. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

