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Abstract 
Data quality has exerted important influence over the application of grain big 
data, so data cleaning is a necessary and important work. In MapReduce 
frame, parallel technique is often used to execute data cleaning in high scala-
bility mode, but due to the lack of effective design, there are amounts of 
computing redundancy in the process of data cleaning, which results in lower 
performance. In this research, we found that some tasks often are carried out 
multiple times on same input files, or require same operation results in the 
process of data cleaning. For this problem, we proposed a new optimization 
technique that is based on task merge. By merging simple or redundancy 
computations on same input files, the number of the loop computation in 
MapReduce can be reduced greatly. The experiment shows, by this means, the 
overall system runtime is significantly reduced, which proves that the process 
of data cleaning is optimized. In this paper, we optimized several modules of 
data cleaning such as entity identification, inconsistent data restoration, and 
missing value filling. Experimental results show that the proposed method in 
this paper can increase efficiency for grain big data cleaning. 
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1. Introduction 

In recent years, with the applications of Internet of Things in agricultural field, 
grain big data have been occurring gradually. In the field of big data processing, 
MapReduce is a famous programming frame [1], which has already been applied 
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in Google, Facebook, Tencent, Alibaba and other large internet companies. 
However, its current status of only keeping a watchful eye on data analysis, not 
data itself, may probably lead to grave consequence. In the food industry of 
China, old or incomplete data in grain situation database reach 13.6% - 30% [2]. 
Data quality problem may probably make research or analysis meaningless, even 
lead to disastrous consequence. For example, due to the decision-making mis-
takes originated from the grain data error, macro-control of grain market failed 
in 2008 in China [3]. Therefore, for big data analysis and mining, data quality 
plays a key role, and data cleaning is a powerful tool to guarantee data quality. 

At present, data cleaning for big data, including data consistency [4] [5] [6], 
entity identification [7] [8] [9] [10], data preprocessing [11] [12] and so on, has 
been researched by many scholars [13] [14] [15] [16]. However, few researchers 
have studied optimization of data cleaning on MapReduce frame [17]. Based on 
the conception of the error distribution law and position accuracy of the GPS 
data, Yang et al. proposed a data cleaning method for this kind of spatial big data 
using movement consistency. GPS data are cleaned based on the similarities of 
GPS points and the movement consistency model of the sub-trajectory [4]. Tang 
tries to provide an overview of recent work in different aspects of data cleaning: 
error detection methods, data repairing algorithms, and a generalized data 
cleaning system [13]. Yan et al. proposed an iterative data cleaning method 
based on time sequence analysis because the power device status information 
can be made equivalent to the multivariate time sequence of each state [18]. 
Gueta et al. applied User-level data cleaning to biodiversity databases, and pre-
sented a new framework to quantify the effect of data cleaning on SDMs [19]. Xu 
et al. proposed an incorrect data detection method based on an improved local 
outlier factor (LOF), and used a simulation of vibration data generated by a de-
fective rolling element bearing to verify the effectiveness of the proposed method 
[20]. All the above scholars studied big data cleaning methods in specific fields, 
but there is still a lack of general methods for big data cleaning. Nowadays, al-
most all of data analysis tasks can be finished using MapReduce, but at the same 
time, a large number of redundancies, with the explosion of data, are also gener-
ated. In China, due to the lack of top-level design and related standards, the 
grain informatization process initiated by the government has produced a large 
number of dirty data, which has brought negative impact on macro deci-
sion-making. It is necessary to generate a better method to specifically clean 
grain big data. In this paper, for grain big data, we proposed a new optimized 
method based on task merge to reduce these redundancies.  

A traditional big data cleaning system is shown in Figure 1. It runs on  
 

 
Figure 1. The structure chart of the function modules for traditional big data cleaning system. 
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Hadoop platform, and deals with different kinds of data with different levels of 
quality in a flexible way. This system consists of several modules, and each mod-
ule deals with a type of data quality. The interaction module provides an input 
interface for files or data that need to be cleaned. The display module gives a 
comparison between dirty data and cleaned data. Entity identification and true 
value discovery module are used to reduce redundancy. Inconsistency detection 
module is used to recover data, and data filling module tests missing data and fi-
nishes data filling. Users may select required modules to deal with data quality 
problem that they encountered. 

The above data cleaning system often requires multiple MapReduce opera-
tions. For a complicated problem, we need to divide it into many simple tasks, 
and each task is executed via one round of MapReduce operation. In the majori-
ty of cases, this division is excessive, which leads to superfluous MapReduce op-
erations. In this paper, we merged some tasks to optimize the MapReduce oper-
ations for the above big data cleaning system. To be specific, the optimized tech-
nique proposed in this paper merged redundancy computations or simple com-
putations from the same files to reduce cycle number of MapReduce. Thus, sys-
tem running time reduced greatly, and system performance has also been im-
proved obviously. 

2. Optimization for Missing Data Filling 
2.1. Traditional Missing Data Filling 

The automatic data collection produces amount of missing data. Normally, 
Naive Bayes Classifier (NBC) is applied in resolving missing data. In the tradi-
tional data cleaning system, the missing data filling module roughly contains 
three parts: parameter estimation module, linking module and filling module 
[21]. The main task of parameter estimation module is to compute the probabil-
ity of each attribute value, and takes the value with the highest probability as 
filling value. Specially, when the sample space is large enough, the probability is 
replaced approximatively by the frequency that the attribute value appears in. 
The linking module associates attribute value with its probability. The input data 
of linking module are the output of parameter estimation module as original da-
ta to be filled, and the output is a file that contains the relationship between 
missing value and its probability. Filling module is executed in the manner of a 
cycle of MapReduce. First, a linking computation is executed between the output 
of linking module and the original input data via an offset as key value. Its Map 
stage is similar to linking module, and its Reduce stage uses bayes formula to se-
lect a maximum probability value as a filling value. In this paper, we only consi-
dered discrete missing data filling. 

2.2. Analysis and Optimization for the Missing Data Filling Module 

We first have analyzed the data stream and relationship between modules in the 
above data filling framework. The whole filling process needs two kinds of con-
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ditional probabilities (CP): 1) Parameter estimation module uses tuples that 
don’t contain missing data in its input data to compute a conditional probability 
(entitled CP1) of an attribute value that needs to be filled; 2) Another condition-
al probability (entitled CP2), which is one group of special values, is used in the 
process of filling value. The relationship between the two CPx is determined by 
the values of dependency attributes. The group of special values is associated 
with the tuples that need to be filled in original data via the offsets of the tuples. 
Therefore, the linking module is required between parameter estimation module 
and filling module. 

After observing the data stream in above system carefully, we found that both 
map input and map output contain the offset of the tuples in parameter estima-
tion, but the output of the Reduce only contains attribute value and CP2, which 
leads to it is necessary to add a linking computing to link CP2 with the offset of 
the tuples to be filled. 

Aiming at the above circumstance, we proposed an optimized scheme that 
merged the tasks in parameter estimation module and linking module. Firstly, in 
parameter estimation module, we associated the exporting conditional probabil-
ity with the offset of the tuples that contain missing data. Its algorithm is as 
follow Algorithm 1. 

In the above code segment, value is the attribute value of each tuple that con-
tains missing value, and offset is the skewing quantity of original record to 
original file, probable_value.txt is the text file that contains all possible value for 
missing data. The Reduce process is shown in Figure 2. 

For example, Table 1 is the dataset that contains missing data, and the missing  
 

Algorithm 1. Parameter estimation algorithm. 

Input: data file containing missing value and possible missing value 

Output: conditional probability 

Map (Object, DataText, DataText, DataText) 

Input: key :=offset, value:=tuple 

    FOR each (key, value)  DO 

       IF missing_value exists in tuple THEN 

          FOR each value in probable_value.txt DO 

             FOR each property in tuple DO 

                output_key := probable_value 

                output_value := “#” + offset + property_ID + property 

Reduce (DataText, DataText, DataText, DataText) 

    FOR each value in value_table DO 

       IF “#” exists in value THEN 

          APPEND property_ID + property on likelihood 

       else 

          compute conditional probability of each property_ID + property 

       IF property_ID + property exists in likelihood THEN 

          output_key := offset 

          output_value := “#” + list of probable value + conditional probability 
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data probably may be V1 or V2. The former two tuples don’t contain missing 
data, so we can split them only according to their attributes. The third tuple 
contains missing value, so we should split it according to each probable value. 
The outputs of Map stage are shown in Table 2. In Reduce stage, firstly, the pre-
fixes of all input data are checked. Then, some calculations on contingent 

 

 
Figure 2. The reduce flow chart for parameter estimation. 

 
Table 1. The data including missing-value. 

offset Field 1 Field 2 Field 3 

0 V1 V2 V1 

S1 V2 V1 V2 

S2 ? V1 V1 

 
Table 2. The map output for parameter evaluation. 

Key Value 

tuple_value/probable_value Prefix + offset + property ID + property 

V1 0, 1, V2 

V2 0, 2, V1 

V2 S1, 1, V1 

V2 S1, 2, V2 

V1 #S2, 1, V1 

V2 #S2, 1, V1 

V1 #S2, 2, V1 

V2 #S2, 2, V1 
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Table 3. The Reduce output for parameter evaluation. 

Key Value 

117 #V2 0.5, #V1 0.5 

 
probabilities are executed if missing values are contained in the input data, oth-
erwise, the input data are entered into linklihood that is used to determining 
whether contingent probabilities should be output. And at last, we selected the 
contingent probabilities that attribute values are in likelihood to output results, 
and the output results are shown in Table 3. 

In the parameter estimation module, the algorithm complexity on Map stage is 
( )O m NX+ , where m  is the number of tuples that don’t contain missing values, 

N  is the number of tuples that contain missing values, and X  is the number of 
probable missing values. Normally, due to N m≤ , ( ) ( )( )1O m NX O X m+ = +  
is true. Because X  is smaller m  greatly, the algorithm complexity is ( )O m , 
and its complexity on Reduce stage is also ( )O m . Therefore, the algorithm 
complexity of the parameter estimation module is ( )O m . 

Although the algorithm complexity of the parameter estimation module al-
ways is ( )O m , both the MapReduce cycle number and IO number in the miss-
ing value filling module reduce, as shown in the above example, from 3 to 2, 
which indicates obvious optimization effect. 

3. Optimization of Entity Identification 

Entity identification is to recognize the form of an entity. For same entities, the 
data from different sources produce different presentations, even probably pro-
duce some errors in data storage or transformation. In MapReduce framework, 
although there are many researches on entity identification [22] [23], these re-
searches basically solved the identification of anonymous entities, but few of 
them can solve problems on the identification of homonymous entities faultless-
ly [24] [25]. In this paper, we tried to solve the two problems simultaneously. 

We found that both basic cluster module and entity identification module re-
peatedly use preprocessing result M times (M is the number of attributes that 
each tuple contains), and the subsequent entity identification module also works 
for single attribute. If we consider the preprocessing module and the entity iden-
tification module as a whole model, we need to scan input files many times, and 
can only use the part of input data, which results in the low data utilization rate. 
In addition, system requires extra resource for each task allocation. In view of 
this, we need a scheme that can process all of attributes for each tuple in one 
MapReduce cycle. 

For this purpose, we proposed following optimization idea for entity identifi-
cation module: firstly, use basic cluster module to process all the attributes syn-
chronously, and then produce an attribute index table for all attribute values. 
Thus, we can merge these separated preprocessing procedures together. The de-
tailed scheme is described as follows. 
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3.1. Basic Cluster Module 

This module doesn’t output the ith attribute value, but output all attribute values. 
Considering that the entity IDs in attribute index table are from different attributes, 
we added a prefix to the keys to translate “attribute value” into “attribute sequence * 
attribute value”. Because MapReduce classifies attributes according to keys, the 
entities with same attribute values will be in same attribute table. On Reduce stage, 
we added attribute sequence to entities as the prefix of entity IDs. The following is 
the optimized basic cluster algorithm (Algorithm 2). 

In the above algorithm, the entity ID is the code of each tuple. We set an 
unique entity ID for each tuple (data-in-line) in preprocessing stage. In addition, 
property ID is the sequence code of an property in tuple. 

The following is an illustration of an optimized algorithm flow. Table 4 shows 
the data that need to be recognized. In Map stage, we split all tuples according to 
their properties and then output results, as shown in Table 5. The entities with 
same property values will be input into the same Reduce, and output the prop-
erty index table, as shown in (01 * 01, <02 * 01, 02 * 03>, <03 * 01, 03 * 02>, 01 * 
02, 02 * 02, 01 * 03, 03 * 03). 

For the above basic cluster module, the algorithm complexity in Map stage is 

( )( )2O m x x+ , where x  is the number of the attributes. Because x  normally 
is a very small constant, the algorithm complexity is around ( )O m . In Reduce 
stage, there are no any changes except an additional attribute ID, so the algo-
rithm complexity is still ( )O m . To sum up, the algorithm complexity of the 
whole basic cluster module is ( )O m . 

 
Algorithm 2. Basic cluster algorithm. 

Input: relationship table 

Output: attribute index table 

Map (LongWritable, DataText, DataText, DataText) 

Input: key:=entity ID, value:=tuple 

FOR each (key, value) DO 

  FOR each property DO 

    output_key := property ID + “*” + property value 

    output_value := entity ID 

Reduce (DataText, DataText, NullWritable, DataText) 

FOR each value in value_table 

  entity ID:= property ID + “*” + entity ID 

  output_key:= null 

  output_value:= all of entity ID in value_table 

 
Table 4. Entity identification data. 

Entity ID Wheat variety Year Production place 

01 Yunong 416 2017 Henan province 

02 Zhongmai 895 2016 Henan province 

03 Ganmai 16 2017 Hebei province 
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Table 5. Output of basic cluster map. 

property ID + “*” + property value entity ID 

01*Yunong416 01 

02*2017 01 

03*Henan province 01 

01*Zhongmai895 02 

02*2016 02 

03*Henan province 02 

01*ganmai16 03 

02*2017 03 

03*Hebei province 03 

3.2. Entity Identification Module 

Because the above improvement on the entity cluster module guarantees that the 
entities with same attribute values belong to a same attribute index table, the al-
gorithm of entity identification module doesn’t need to be changed. Thus, the 
time complexity of its algorithm is still. 

Because we only performed optimum operation for partial data on Hadoop, 
we regarded entity partition module as constant, and the time complexity didn’t 
be changed. Before optimization, the cycle times of MapReduce is 1 + M (1 + 4) 
= 5M + 1, and after optimization, it is change to be 1 + 1 + 4 = 6, so speed-up 
rate reaches (5M + 1)/6. Normally, due to M > 1, speed-up rate is bigger than 1, 
and with the increase of M, the speed-up effect is more evident, and at the same 
time, the times of IO also reduced from 5M + 1 to 6, which reduced system up-
time for IO. In addition, due to the reduction of cycles on MapReduce, the time 
for task scheduling and the used resource are also reduced. 

In general, theoretically, the scheme proposed in this paper can provide ob-
vious optimization result. 

4. Reparation Optimization to Inconsistent Data 

In the real application or database, there are amounts of inconsistent data due to 
various reasons. In the proposed system, we defined an integrity constraint ac-
cording to conditional function dependency principle in theory of data dependency, 
and used the integrity constraint to repair inconsistent data. The purpose of this 
paper is to improve the performance of the reparation module to inconsistence 
data. As for how to guarantee that the repair process is correct, it is depended 
on conditional functions. The detailed explanations can be seen in reference [5] 
[6]. 

4.1. Optimization for Inconsistent Data Reparation 

The main steps of the inconsistent data reparation module are as follows [26]: 
(1) The data files and the CFDs (centralized file directory system) files are input 
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to the system to be executed for preprocessing, then are transformed to a proper 
format, and are checked for subsequent processing; (2) check and repair the 
outputs from preprocessing and get primary reparation results; (3) check pri-
mary reparation results, determine whether introduce new inconsistent. If pro-
duce new inconsistent, execute step (1) again, otherwise continue to execute step 
(3). To avoid trapping into endless loop, an upper limit for these steps is neces-
sary; (4) Process the reparation results, and change data format to original for-
mat to be used by another system normally. 

4.2. Analysis and Optimization for Inconsistent Data Reparation 

A main shortcoming of the inconsistent data reparation module is to divide a 
task that can be finished by only one cycle of MapReduce into several tasks, 
which results in the reduction of system performance. Therefore, we merged 
multiple tasks into one task for the optimization under the condition of not 
changing algorithm complexity. 

1) Preprocessing Module 
The function of the preprocessing module is only to setup index for input da-

ta, and doesn’t involve data decomposition and merge. We may use a map func-
tion to realize this process, and the algorithm is shown as follow Algorithm 3. 

Obviously, the algorithm complexity of this module is ( )O m . 
2) Detection and Reparation Module 
Detection and reparation of constant violation can be finished only by one 

cycle of MapReduce. Because the Map stage dispenses one tuple N copies (N is 
the number of constant violations), and although N value is not big and has al-
most no influence to algorithm complexity of the reduce stage, it still can enlarge 
middle data quantity N times, which causes large load to communication. We 
found that we can repair these constant violations when calculating their sug-
gested values, so it is not necessary to separate seeking process and reparation 
process. Therefore, we proposed an optima scheme that finished the process of 
the constant violation detection and reparation using one map function. 

After finishing constant violation reparation via one map function, the data 
are guided directly to variable reparation module. The formats of both the input 
files are same, especially, if there are no constant violations in original data, both 
the input files are same entirely. Based on this viewpoint, we proposed an opti-
mized scheme that merges the constant violation reparation and the variable  

 
Algorithm 3. Preprocessing algorithm. 

Input: dirty data files 

Output: preprocessing results 

Map (Object, Data_Text, NullWritable, Data_Text) 

Input: key = offset, value = tuple 

  FOR each (key, value) DO 

    output_key := null 

    output_value := key +value 
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violation reparation together. In this scheme, we arranged the constant violation 
reparation on the front of the first MapReduce process, and make its output re-
sults to be used to variable violation directly in Map function. The algorithm is 
as follow Algorithm 4. 

Where offset is the index of the tuples, and fixFlag is the reparation flag that 
indicates whether or not we need the reparation, and “0” indicates we need the 
reparation due to a violation, “1” indicates we needn’t the reparation. cfdseq is a 
cfd serial number of a tuple with violation, ptseq is a serial number of the tuple 
in mode table, and propseq is an attribute serial number of the inconsistent data 
of the tuples, and the output_value is the reparation of the attribute. 

The computation complexity of Algorithm 4 is ( )O m , and the flow chart of 
the algorithm is shown in Figure 3. 

In terms of time complexity, the algorithm did not change the computational 
complexity of each module and each MapReduce within each module before and 
after optimization. In terms of MapReduce rounds and IO times, the MapRe-
duce rounds of the system changed from 1 + 1 + 2 + 1 + 1 + 1 = 7 before opti-
mization to 1 + 2 + 1 + 1 = 5 after optimization. From the perspective of Ma-
pReduce rounds alone, the acceleration ratio of the system is 7/5 = 1.4. In addi-
tion, the optimization of the system also makes the MapReduce of the prepro-
cessing module become a map, which will correspondingly reduce the running 
time of the system. With the reduction of MapReduce rounds, the IO times of 
the system are correspondingly reduced, which also reduces the IO burden of 
the system. 

5. Experimental Results 

The computer cluster that used to do experiments was composed of ten nodes, 
including one task-tracker (name node) and nine job-trackers (data node). The  

 
Algorithm 4. The Map algorithm in the first cycle of MapReduce for inconsistent data 
detection and reparation. 

Input: the preprocessing results 

Output: the output of Map in the first cycle of MapReduce for variable violation 

Input: key=offset, value=tuple 

Map (Object, Data_Text, Data_Text, Data_Text, Data-Text) 

    FOR each cfd r = (R:X→Y, tp) DO 

      IF tuple[X] = tp[X] and tuple[Y] ≠tp[Y] THEN 

         tuple[Y] = tp[Y] 

    FOR each cfd r = (R:X→Y,Tp) DO 

      IF fixFlag THEN 

        output_key := (cfdseq, ptseq, propseq,1) 

        output_value := (offset, tuple) 

    FOR tuples not match cfd with varialbles 

    DO 

        output_key :=  (cfdseq, ptseq, propseq, 0) 

        output_value := (offset, tuple) 
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Figure 3. The flow of Algorithm 4. 

 
hardware configuration of each node was as follows: Intel i7 7700k processor, 4.2 
GHz main frequency, 8 G memory, and 1TB hard disk. The whole system was 
developed using java on Eclipse environment, and run on Hadoop 3.0 platform 
based on Centos 7.5. 

5.1. Experiment for Entity Identification Optimization 

Considering the optimization effectiveness for dataset scale, we used the real da-
taset that is from National Warehouse Grain Condition Monitoring Project 
(WGCM). It is a grain storage information depository in China. We selected 
three attributes, including warehouse temperature, grain temperature, and 
warehouse humidity, and five data scales, including 11.7 M, 45.3 M, 70.2 M, 
115.6 M and 150.9 M as our experimental environment. The attributes of data 
are allocated weight values as 0.9, 0.1 and 0.1. The experimental results are 
shown in Figure 4. 

Figure 4 shows the time consuming on different scale dataset using Naïve, 
BlockSplit, PairRange that used in Ref. [22], and the proposed method in this 
paper based on tasks merge. 

Following the increase of dataset scale, both the unoptimized system and the 
optimized system increase their run-time, but the run-time ratio of the unopti-
mized system to optimized system is about 2.3 due to the only three attributes 
that were used in this experiment for each data. Based on the analysis to 
optimization effect in section 2.2, the theoretical ration value is (5 * 3 + 1)/6 = 
2.7, which is in accordance with experimental results. Because the entity identi-
fication based on BlockSplit and PairRange is more complicated than the me-
thod based on tasks merge, their run-times are longer than that of the method 
that was proposed in this paper. In summary, this experiment illustrated the 
good expandability of the optimization scheme. 
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1) Influence of Parallelization Level to Optimization Effectiveness 
Considering the influence of Reduce number in cluster to optimization re-

sults, we used the real WGCM dataset as experimental data. We selected three 
attributes of the experimental data that are titled warehouse temperature, grain 
temperature, and warehouse humidity to construct an experimental dataset with 
100,000 records. We set weight values for each attribute 0.9, 0.1 and 0.1 respec-
tively, and set Reduce number 2, 4, 6, 8 and 10 respectively. As shown in Figure 
5, the optimization effectiveness of the proposed method is obvious under the 
different parallelization levels. 

From Figure 5, we can see that, following the increase of parallelization de-
gree, system uptime increases. The main reason for this phenomenon is that the 
data size for experiment is too small to provide benefits. However, system still 
reaches 2.3 speed-up ratio under different parallelization modes, which indicates 
the optimization result is in line with forecast. 

2) Influence of Parallelization Level to Optimization Effectiveness 
In this experiment, we studied the influence of feature number of the input  

 

 
Figure 4. The influence of dataset scale to optimization results. 

 

 
Figure 5. The influence of Reduce number to optimization effectiveness. 
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tuples on optimization effectiveness. The experimental results are shown in Fig-
ure 6. When dealing with the same scale records, the optimization effectiveness 
got better and better with the increase of the feature number. From Figure 6, we 
can see that, the optimization results are the worst, even are lower than the 
un-optimized when processing only one record, but the optimization results be-
came better after increasing feature number. The reason that caused the above 
experimental results was that the optimized scheme generated more middle data 
than non-optimized scheme, and was more complicated than the non-optimized 
scheme. Because the purpose of the optimized scheme proposed in this paper 
was to utilize the input data adequately when dealing with multiple attributes, 
the optimized scheme presented more advantages than non-optimized scheme 
with the increase of the attributes. 

5.2. Optimization Experiments for Inconsistent Data Reparation 

We used a real dataset that is from Zhengzhou grain trade market in China, 
which is named ZZGR, and an artificial dataset that generated from Transaction 
Processing Performance Council (TPC-H) to verify the operative mode of the 
system in real environment. We did an experiment for speed-up ratio verifica-
tion on the real dataset, and at the same time, we also did an experiment for ex-
pansibility and parallelism verification on the artificial dataset. 

1) Speed-up Ratio Experiment 
In this experiment, six tuples without missing values were selected from the 

ZZGR dataset and were put into some errors intentionally to violate several re-
straints. The experiment conditions and results are shown in Table 6. The expe-
rimental results show that there is prominent speed-up effectiveness on the real 
dataset. The optimization scheme provided actual 1.3 speed-up ratio and less 
than 1.4 speed-up ratio in theory (see Algorithm 4). 

2) Expansibility Experiment 
The aim of this experiment was to verify the same effectiveness on different 

scale dataset. The experiment dataset is composed of six attributes from  
 

 
Figure 6. The influence of attribute number to optimization effectiveness. 

https://doi.org/10.4236/jcc.2020.83001


F. Y. Lian et al. 
 

 
DOI: 10.4236/jcc.2020.83001 14 Journal of Computer and Communications 
 

Table 6. Speed-up ratio experiment on the ZZGR dataset. 

Items Data 

Data source ZZGR 

Record number 50000 

cfd number 3 

tp number 6 

Reduce number 2 

Run time before optimization 212 

Run time after optimization 166 

Speed-up ratio 1.28 

 

 
Figure 7. Expansibility experiment. 

 
lineitem.tbl that was generated by TPC-H, and CFDs are composed of one cfd 
including three lps. The experimental results that are shown in Figure 7 indicate 
that the optimization effectiveness gets better with the increase of dataset scale. 
Thus it can be seen that our optimization scheme is extensible easily. 

From Figure 7, we can see that the uptime of the non-optimized system in-
crease with the enlargement of the dataset, and the uptime of the optimized sys-
tem also increase but the slope is lower than the former. Compared to the for-
mer, the speed-up ratio of the optimized system improved from 1.6 to 2.2. All 
modules are in overloaded works before optimization, but the optimized system 
reduces the burdens of various modules except the modules of data inconsisten-
cy test and reparation. In addition, we can also see that the non-optimized sys-
tem firstly enters full load status with the enlargement of the dataset compared 
to the optimized system, as shown in Figure 7. 

3) Parallelism Experiment 
To verify the influence of parallelism to optimization effectiveness, this expe-

riment used six attributes from lineitem.tbl that was generated from TPC-H to 
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form dataset. CFDs were composed of one cfd including three tp samples, as 
shown in Figure 8. 

From Figure 8, we can see that the system speed-up ratio reached up to 2.3 
under the low degree of parallelism with 2 reduces, then with the increase of 
degree of parallelism, the system speed-up ratio reduces. In addition, for the 
non-optimized system, the uptime become shorter with the increase of the de-
gree of parallelism, but the uptime of optimized system remains unchanged. The 
reason why the above phenomenon generates is that the non-optimized system 
has the weak processing capacity. We may only add the degree of parallelism to 
improve processing capacity, which means the system uptime becomes shorter 
with the increase of the degree of parallelism. But for the optimized system, due 
to the big handling capacity, it always is in the underloading status when 
processing the same data size, which means the advantages are not obvious when 
increasing the degree of parallelism. 

5.3. Optimization Experiment for Missing Value Filling 

In this experiment, the used data are from the real dataset entitled ZZGR and the 
artificial dataset that generated from TPC-H. To verify the operation status in 
real environment for the optimization system, we used the two datasets to verify 
the impact of missing rate on optimization result on the ZZGR dataset, and to 
verify expansibility and parallelism on the artificial dataset. 

1) Impact of Miss Rate on Optimization Effectiveness 
We have also studied the impacts of various miss rates on optimization re-

sults. The data for the experiments were generated by emptying some data in 
used dataset based on certain proportion. In this experiment, we selected eight 
discrete features and missing features with six values. The experimental results 
are shown in Figure 9. From Figure 9, we can figure out that the speed-up ratio 
stabilizes at 1.5 roughly, which matches theoretical value of 3/2 in this module, 
under the miss rates that are shown in Figure 9.  

2) Verification Test for Expansibility 
In this experiment, we selected six features from lineitem.tbl that is generated  

 

 
Figure 8. Parallelism experiment. 
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Figure 9. The impact of miss rate on optimization results. 
 

 
Figure 10. Verification test for expansibility. 

 
from TPC-H to generated dataset. The experimental results are shown in Figure 
10. From Figure 10, we can see that the system uptime increases with the en-
largement of the dataset, but the speed-up ratio stays around 1.5, which coin-
cides with the theoretical value of this module. 

3) Verification Test for Parallelism 
This experiment was designed to test the optimization effectiveness of the 

system under the different parallelism degrees. In this experiment, we used 
TPC-H to produce a data table entitled lineitem.tbl, including six attributes and 
1,000,000 tuples. We randomly emptied 5% of the data in first column of the ta-
ble and recorded the optimization results under different parallelism degrees. 
The experimental results are shown in Figure 11. 

On the provided dataset, the operating efficiency of the non-optimized system 
and the optimized system are not to become better with the increase of paral-
lelism degree yet. This is because for the given scale of dataset, the most appro-
priate number of Reduce is determinate, and only increasing parallelism degree 
will bring about more spending on task allocation for the system. In any case,  
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Figure 11. The impact of different numbers of Reduce on optimization results. 

 
the optimization effectiveness is obvious under the different parallelism degrees. 

6. Conclusion 

Although we have acquired many achievements on study of Hadoop, most of the 
softwares based on MapReduce programming frame are inefficient due to the 
lack of the deep understanding of MapReduce. Therefore, we proposed a set of 
optimization methods for MapReduce programming frame in this paper, and 
the test for these methods passed as expected on massive data cleaning system. 
We only changed a little to the original system using these methods, and hardly 
changed its original complexity. The optimization objects are simply obtained by 
only reducing the cycle numbers of MapReduce and IO numbers, which indi-
cates its simplification and practicability. In the future works, we will apply these 
methods to more systems based on MapReduce 3, and other MapReduce alter-
natives, like Spark, and do a more deep analysis to find the disadvantages of 
these methods to improve their performances. 
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